
Credence: Augmenting Datacenter Switch Buffer Sharing with ML Predictions

Vamsi Addanki
TU Berlin

Maciej Pacut
TU Berlin

Stefan Schmid
TU Berlin

Abstract
Packet buffers in datacenter switches are shared across all the
switch ports in order to improve the overall throughput. The
trend of shrinking buffer sizes in datacenter switches makes
buffer sharing extremely challenging and a critical perfor-
mance issue. Literature suggests that push-out buffer sharing
algorithms have significantly better performance guarantees
compared to drop-tail algorithms. Unfortunately, switches are
unable to benefit from these algorithms due to lack of support
for push-out operations in hardware. Our key observation is
that drop-tail buffers can emulate push-out buffers if the future
packet arrivals are known ahead of time. This suggests that aug-
menting drop-tail algorithms with predictions about the future
arrivals has the potential to significantly improve performance.

This paper is the first research attempt in this direction. We
propose CREDENCE, a drop-tail buffer sharing algorithm aug-
mented with machine-learned predictions. CREDENCE can
unlock the performance only attainable by push-out algorithms
so far. Its performance hinges on the accuracy of predictions.
Specifically, CREDENCE achieves near-optimal performance
of the best known push-out algorithm LQD (Longest Queue
Drop) with perfect predictions, but gracefully degrades to the
performance of the simplest drop-tail algorithm Complete
Sharing when the prediction error gets arbitrarily worse. Our
evaluations show that CREDENCE improves throughput by
1.5x compared to traditional approaches. In terms of flow com-
pletion times, we show that CREDENCE improves upon the
state-of-the-art approaches by up to 95% using off-the-shelf
machine learning techniques that are also practical in today’s
hardware. We believe this work opens several interesting fu-
ture work opportunities both in systems and theory that we
discuss at the end of this paper.

1 Introduction
Datacenter switches come equipped with an on-chip packet
buffer that is shared across all the device ports in order to
improve the overall throughput and to reduce packet drops.
Unfortunately, buffers have become increasingly expensive
and chip-manufacturers are unable to scale up buffer sizes

 Optimal
Throughput

 Lower
Throughput

Harmonic
 Dynamic
Thresholds

without predictions

Push-out

 Perfect
Predictions

Drop-tail

Competitive Ratio1 N

LQD

 Arbitrarily
Large Error

Complete
 Sharing

Credence
Drop-tail Buffer Sharing with ML Predictions

with predictions

Figure 1: Augmenting drop-tail buffer sharing with ML
predictions has the potential to significantly improve
throughput compared to the best possible drop-tail algorithm
(without predictions), and unlock the performance that was
only attainable by push-out so far.

proportional to capacity increase [13]. As a result, the buffer
available per port per unit capacity of datacenter switches
has been gradually reducing over time. Worse yet, datacenter
traffic is bursty even at microsecond timescales [22, 57]. This
makes it challenging for a buffer sharing algorithm to max-
imize throughput. Recent measurement studies in large scale
datacenters point-out the need for improved buffer sharing
algorithms in order to reduce packet drops during congestion
events [22]. To this end, buffer sharing under shallow buffers
is an emerging critical problem in datacenters [1, 12].

The buffer sharing problem has been widely studied in the
literature from an online perspective [15] with the objective
to maximize throughput [9, 24, 26, 33, 34]. Traditional online
algorithms for buffer sharing can be classified into two types:
drop-tail e.g., Dynamic Thresholds (DT) [20], Harmonic [33],
ABM [1] and push-out e.g., Longest Queue Drop (LQD). The
performance gap of these algorithms compared to an offline
optimal (clairvoyant) algorithm can be expressed in terms of
the competitive ratio [15]. For instance, we say that an online
algorithm is 2-competitive if it performs at most 2x worse
compared to an offline optimal algorithm. Figure 1 illustrates

Algorithm Competitive Ratio
Complete Sharing [26] N+1

Dynamic Thresholds [20, 26] O(N)
Harmonic [33] ln(N)+2

LQD (push-out) [9, 26] 1.707
LateQD (clairvoyant) [14] 1

CREDENCE min(1.707 η, N)

Table 1: CREDENCE’s performance smoothly depends on
the prediction error (η). CREDENCE outperforms traditional
drop-tail buffer sharing algorithms and performs as good as
push-out when the predictions are perfect (η=1) but is also
never worse than Complete Sharing even when the predictions
are bad (η→∞). N denotes the number of ports.

the performance spectrum of drop-tail and push out buffer
sharing algorithms. In terms of throughput-competitiveness, it
is well-known that push-out algorithms perform significantly
better than drop-tail algorithms. In fact, no deterministic
drop-tail algorithm can perform better than a certain through-
put (a lower bound for competitive ratio), beyond which
only push-out algorithms exist (Figure 1). Table 1 presents
the competitive ratios of known algorithms. Interestingly,
LQD pushes out packets when the buffer is full, and it is
≈ 2-competitive whereas Complete Sharing drops packets
when the buffer is full, but it is N+1-competitive.

Intuitively, the poor throughput-competitiveness of
drop-tail buffers owes it to the fundamental challenge that
utilizing the buffer for some queues comes at the cost of
deprivation of buffer for others [1]. To this end, drop-tail
algorithms proactively drop packets i.e., packets are dropped
even when the buffer has remaining space [11, 20, 26, 28, 33].
On one hand, maintaining remaining buffer space is necessary
to serve future packet arrivals. On the other hand, maintaining
remaining buffer space could lead to under-utilization,
throughput loss and excessive packet drops. In contrast, the
superior throughput-competitiveness of push-out algorithms
owes it to their fundamental advantage to push out packets
instead of dropping them1. Hence, push-out algorithms can
utilize the entire buffer as needed and only push out packets
when multiple ports contend for buffer space. Although
push-out algorithms offer far superior performance guarantees
compared to drop-tail, hardly any datacenter switch supports
push-out operations for the on-chip shared buffer. This begs
the question: Are drop-tail buffer sharing algorithms ready
for the trend of shrinking buffer sizes?

Our key observation is that every push-out algorithm
can be converted to a drop-tail algorithm. However, such a
conversion requires certain (limited) visibility into the future
packet arrivals. Specifically, pushing out a packet is equivalent
to dropping the packet when it arrives. Recent advancements

1Push-out operation, similar to a drop operation, does not incur any
transmission delays, unlike extract-out [51].

in dataplane programmability and traffic predictions play a
pivotal role in providing such visibility into the future packet
arrivals [4, 17, 31, 37]: paving a way for better drop-tail buffer
sharing algorithms.

In this paper, we take the first step in this direction.
Figure 1 illustrates our perspective. We propose CREDENCE,
a drop-tail buffer sharing algorithm augmented with machine-
learned predictions. CREDENCE’s performance is tied to
the accuracy of these predictions. As the prediction error
decreases, CREDENCE unlocks the performance of push-out
algorithms and reaches the performance of the best-known
algorithm. Even when the prediction error grows arbitrarily
large, CREDENCE offers at least the performance of the
simplest drop-tail algorithm Complete Sharing. Table 1 gives
the competitive ratio of CREDENCE as a function of the
prediction error η. Importantly, CREDENCE’s performance
smoothly varies with the prediction error, generalizing the
performance space between the known push-out and drop-tail
algorithms. Hence, CREDENCE achieves the three goals of
prediction-augmented algorithms, in the literature referred
to as consistency, robustness and smoothness [42, 46].

In addition to the theoretical guarantees for CREDENCE’s
performance, our goal is also its practicality. Specifically,
without predictions, CREDENCE’s core logic only uses
additions, subtractions, and does not add additional complex-
ity compared to existing approaches. For predictions, we
currently use random forests, which have been recently shown
to be feasible on programmable switches at line rate [4, 17]. A
full implementation of CREDENCE in hardware unfortunately
requires switch vendor involvement since buffer sharing is
merely a blackbox even in programmable switches. With
this paper, we wish to gain attention from switch vendors
on the fundamental blocks required for such algorithms
to be deployed in the dataplane. We currently implement
CREDENCE in NS3 to evaluate its performance using realistic
datacenter workloads. We present a detailed discussion on the
practicality of CREDENCE later in this paper.

Our evaluations show that CREDENCE performs 1.5x better
in terms of throughput and up to 95% better in terms of flow
completion times, compared to alternative approaches.

We believe CREDENCE is a stepping stone towards further
improving buffer sharing algorithms. Especially, achieving
better performance than CREDENCE under large prediction
error remains an interesting open question. Our approach
of augmenting buffer sharing with predictions is not limited
to drop-tail algorithms, but push-out algorithms can also
benefit from predictions. We discuss exciting future research
directions both in systems and theory at the end of this paper.
In summary, our key contributions in this paper are:
■ CREDENCE, the first buffer sharing algorithm augmented

with predictions, achieving near-optimal performance with
perfect predictions while also guaranteeing performance
under arbitrarily large prediction error, and gradually
degrading the performance as the prediction error increases.

■ Extensive evaluations using realistic datacenter workloads,
showing that CREDENCE outperforms existing approaches
in terms of flow completion times.

■ All our artifacts have been made publicly available at
https://github.com/inet-tub/ns3-datacenter.

2 Motivation
In this section, we provide a brief background and motivate
our approach by highlighting the drawbacks of traditional ap-
proaches. We show the potential for reaching close-to-optimal
performance when buffer sharing algorithms are augmented
with machine-learned predictions. To this end, we first
describe our model and throughput competitiveness (§2.1).
We then discuss the drawbacks of existing approaches (§2.2).
We show that a renewed hope for improved buffer sharing is
enabled by the recent rise in algorithms with predictions (§2.3).

2.1 Buffer Sharing from Online Perspective
A network switch receives packets one after the other at each
of its ports. The switch does not know the packet arrivals
ahead of time. This makes buffer sharing inherently an online
problem i.e., algorithms must take instantaneous decisions
upon packet arrivals without the knowledge of the future. In
order to systematically understand the performance of such
algorithms, we take an online approach following the classical
model in the literature [9, 24, 26, 33, 34]. In this section, we
describe our model intuitively, and we refer to Appendix A
for formal definitions. Figure 2 illustrates the model.

Buffer model: We consider an output-queued switch with
N ports and a buffer size of B. Buffer is shared across all the
ports. A buffer sharing algorithm takes buffering decisions
that we describe next. We assume that time is discrete. At most
N packets can arrive in a single timeslot (since there are N
ports), and each port removes at most one packet in a timeslot.

Online algorithm: When a packet arrives, a buffer sharing
algorithm determines whether it should be accepted into the
available buffer space. Drop-tail algorithms can only accept
or discard incoming packets, while push-out algorithms can
also remove packets from the buffer.

Objective: The network throughput is of utmost importance
for datacenter operators since throughput often relates to the
cost in typical business models (e.g., $ per bandwidth usage).
We hence consider throughput as an objective function,
following the literature. Specifically, for any packet arrival
sequence, our objective is to maximize the total number of
transmitted packets. The throughput maximization objective
is closely related to packet drops minimization objective. In
this sense, our objective captures two important performance
metrics i.e., throughput and packet drops.

Competitive Ratio: We use competitive ratio as a measure to
compare the performance of an online algorithm to the optimal

Input
Ports

Output
Ports

Shared Buffer

B
uf

fe
r

S
ha

rin
g

A
lg

or
ith

m

RX TXObjective: Maximize Throughput

Figure 2: The switch has a buffer size of B shared across N
output ports. Each color indicates the packets residing in the
shared buffer corresponding to each port. A buffer sharing al-
gorithm takes decisions (accept or drop) for each input packet.

offline algorithm. Specifically, let ALG and OPT be an online
and optimal offline algorithm correspondingly. Let ALG(σ)
be the throughput of ALG for the packet arrival sequence σ.
We say an algorithm ALG is c-competitive if the following
relation holds for any packet arrival sequence.

OPT (σ)≤c·ALG(σ)

Competitive ratio is a particularly interesting metric for
buffer sharing since it offers performance guarantees without
any assumptions on specific traffic patterns. For example, the
buffer may face excessive packet drops or may temporarily ex-
perience throughput loss due to bursty traffic. One could argue
that the buffer sharing algorithm is the culprit and should have
allocated more buffer to the bursty traffic. While this may have
solved the problem for a particular bursty arrival, the same so-
lution could result in unexpected drops and throughput loss if
there were excessive bursty arrivals i.e., large bursts could mo-
nopolize the buffer. Instead, from an online perspective, better
competitive ratio indicates that the buffer sharing algorithm
performs close to optimal under any traffic conditions.

■ Takeaway. A buffer sharing algorithm with lower compet-
itive ratio improves the throughput of the switch and reduces
packet drops under worst-case packet arrival patterns.

2.2 Drawbacks of Traditional Approaches
We observe two main drawbacks of traditional buffer
sharing algorithms, both affecting the competitive ratio. First,
algorithms proactively and unnecessarily drop packets in view
of accommodating future packet arrivals. Second, algorithms
reactively drop packets when the buffer is full and incur
throughput loss, which could have been avoided. We argue that
these drawbacks are rather fundamental to drop-tail algorithms
and cannot be addressed by traditional online approaches.

Proactive unnecessary packet drops→ throughput loss: A
drop-tail buffer sharing algorithm typically drops packets even

https://github.com/inet-tub/ns3-datacenter

Output
Ports

Shared Buffer

RX TX

(a) ALG

Output
Ports

Shared Buffer

RX TX

(b) OPT

Figure 3: Upon a large burst arrival, a typical drop-tail algorithm
(ALG) proactively drops the incoming packets in anticipation
of future bursts and significantly under-utilizes the buffer. In
this case, an optimal offline algorithm accepts the entire burst
without any packet drops.

Output
Ports

Shared Buffer

RX TX

(a) ALG

Output
Ports

Shared Buffer

RX TX

(b) OPT

Figure 4: In pursuit of high burst absorption, a drop-tail
algorithm ALG may absorb bursts but this results in excessive
reactive drops for the future packet arrivals. In this case, an
optimal offline algorithm OPT drops few packets such that the
overall throughput is maximized.

if there is remaining buffer space available [1,11,20]. We refer
to such drops as proactive drops. Being proactive is indeed
necessary in order to accommodate transient bursts. However,
proactive packet drops and the corresponding remaining
buffer space ends up being wasteful if the future packet
arrivals do not need additional buffer space (if the anticipated
burst does not arrive). Figure 3a and Figure 3b illustrate an
example. Consider a traffic pattern where there is little to no
congestion on all the ports but once in a while, a large burst
appears. Specifically, the buffer is empty initially and a large
burst of size B appears. A deterministic drop-tail algorithm has
two choices: (i) accept a portion of the burst and proactively
drop the rest of the burst or (ii) accept the entire burst. Typical
algorithms in the literature choose the former in view of accom-
modating future packet arrivals. An optimal offline algorithm
that knows the arrivals ahead of time would accept the entire
burst of size B in this case. This makes an online algorithm at
least c-competitive for this particular arrival pattern, where 1

c
is the fraction of the burst accepted: since the optimal solution
accepts and transmits B packets over time, whereas an online
algorithm only accepts and transmits only B

c packets over time.
We observe that recent works focus on minimizing proactive
unnecessary packet drops by prioritizing bursty traffic to the
extent that they allow burst on a single port to monopolize the
buffer [1, 11, 28]. However, note that competitive ratio is not
defined for a particular arrival sequence, but over all scenarios.
To this end, accepting a larger burst size may be helpful in the
above example but if there were indeed future packet arrivals
on other ports that need buffer, the algorithm incurs excessive
reactive drops (described next) and throughput loss.

Reactive avoidable packet drops→ throughput loss: Any
drop-tail algorithm is forced to drop the incoming packets
once the shared buffer is full. We call such drops reactive
drops. Reactive drops result in throughput loss if the algorithm
fills up significant portion of the buffer on a small set of ports
but reactively drops incoming packets to other ports. Figure 4a
and Figure 4b illustrate an example. Consider that the buffer
is initially empty and four simultaneous bursts each of size

B arrive to four ports. If an algorithm proactively drops a
significant portion of the bursts, it would suffer under arrival
sequences such as in the previous example (Figure 3a). Alter-
natively, the algorithm may choose to accept a larger portion of
the bursts and ends up filling up the entire buffer in aggregate.
At this point, several short bursts arrive to multiple other ports.
An optimal offline algorithm accepts only a fraction of the
large bursts such that it is able to accommodate upcoming
short bursts. In doing so, the optimal algorithm benefits in
throughput since the switch transmits packets from more
number of ports. However, since the online algorithm fills up
the entire buffer due to the initial large bursts, it is forced to
reactively drop the upcoming short bursts, losing throughput.
In fact, a similar arrival pattern for Dynamic Thresholds yields
at least Ω

(√
N

log(N)

)
-competitiveness [26]. The known upper

bound for Dynamic Thresholds is O(N) [26]. Further, it has
been shown in the literature that no deterministic drop-tail
algorithm can be better than Ω

(
log(N)

log(log(N))

)
-competitive [33].

Interestingly, push-out algorithms are not prone to the
problems discussed above, since they can take revocable
decisions i.e., to accept a packet and drop it later. Hence,
push-out algorithms do not have to maintain free space in the
buffer in order to accommodate transient bursts. Instead, such
algorithms can defer the dropping decision until the moment
the drop turns out to be necessary.

■ Takeaway. Traditional drop-tail algorithms are fundamen-
tally limited in throughput-competitiveness as they are unable
to effectively navigate proactive and reactive drops due to the
online nature of the problem i.e., future packet arrivals are
unknown to the algorithm.

2.3 Predictions: A Hope for Competitiveness
Given that the fundamental barrier in improving drop-tail
buffer sharing algorithms is the lack of visibility into the
future arrivals, we turn towards predictions. The recent rise
of algorithms with predictions offers a renewed hope for
competitive buffer sharing. Algorithms with predictions

successfully enabled close to optimal performance for various
classic problems [46]. The core idea is to guide the underlying
online algorithm with certain knowledge about the future
obtained via predictions. The machine-learned oracle that
produces predictions is considered a blackbox with a certain
error. The main challenge is to offer performance guarantees
at the extremes i.e., close to optimal performance under perfect
predictions and a minimum performance guarantee when the
prediction error gets arbitrarily large. Further, it is desirable
that the competitiveness of the algorithm smoothly degrades
as the prediction error grows.

2.3.1 Prediction Model
In the context of the buffer sharing problem, there are several
prediction models that can be considered e.g., drops or packet
arrivals. In this paper, we assume that a blackbox machine-
learned oracle predicts packet drops. Our choice is due to the
fact that packet drops are the basic decisions made by an algo-
rithm. Concretely, we consider an oracle that predicts whether
an incoming packet would eventually be dropped (or pushed
out) by the Longest Queue Drop (LQD) algorithm serving
the same packet arrival sequence. We classify the predictions
into four types: (i) true positive i.e., a correct prediction that
a packet is eventually dropped by LQD, (ii) false negative i.e.,
an incorrect prediction that a packet is eventually transmitted
by LQD, (iii) false positive i.e., an incorrect prediction that
a packet is eventually dropped by LQD and (iv) true negative
i.e., a correct prediction that a packet is eventually transmitted
by LQD. Figure 5 summarizes this classification. Following
the literature [42, 46], our goals for prediction-augmented
buffer sharing are consistency, robustness and smoothness.

α-Consistent buffer sharing algorithm has a competitive
ratio α when the predictions are all true i.e., perfect predictions.

β-Robust buffer sharing algorithm has a competitive ratio β

when the predictions are all false i.e., large prediction error.

Smoothness is a desirable property such that the competitive
ratio degrades smoothly as the prediction error grows i.e.,
a small change in error does not drastically influence the
competitive ratio.

Our goal is to design a prediction-augmented buffer sharing
algorithm that is close to 1-consistent (with perfect predictions)
i.e., near-optimal, at most N-robust (with arbitrarily large
error) i.e., not worse than Complete Sharing algorithm, and
has the desirable property of smoothness.

2.3.2 Common Pitfalls
It is intuitive that predictions can potentially improve the per-
formance of a drop-tail algorithm. For instance, in the examples
from Figure 3 and Figure 4, our prediction-augmented online
algorithm could take nearly the same decisions as a push-out al-
gorithm. However, the main challenge is to ensure robustness
and smoothness. If an algorithm blindly trusts the predictions,
we observe that false positive and false negative predictions

Ground truth: Drop
 Prediction: Drop

Ground truth: Accept
 Prediction: Accept

Ground truth: Accept
 Prediction: Drop

Ground truth: Drop
 Prediction: Accept

True Positive

True Negative

False Negative

False Positive

Figure 5: Confusion matrix for our prediction model.

have a significantly different impact on the performance.
Excessive false positives can lead to starvation: The worst
case for a naive algorithm that blindly trusts predictions is
when all the predictions are false positives. In this case, the
algorithm ends up dropping every incoming packet. Blindly
trusting false predictions could lead to a competitive ratio
worse than the simplest drop-tail algorithm Complete Sharing
i.e., the competitive ratio becomes unbounded (∞-robust) if
the predictions are mostly false positives.

A single false negative can hurt throughput forever: A
naive algorithm that blindly relies on false negative predictions
is susceptible to adverse effects that propagate over time. Con-
sider a packet arrival sequence that hits only one queue initially
and consider that the predictions are all true negatives until the
queue length reaches B−1, where B is the total buffer size. At
this point, one more packet arrives and our prediction is a false
negative. As a result, our naive algorithm has a queue of size
B and the optimal algorithm has a queue of size B−1. Note
that all non-empty queues drain one packet after each timeslot.
From here on, in every timeslot, one packet (first) arrives to the
large queue and one packet (second) arrives to any other queue.
Also consider that all the predictions are true from now on.
The optimal algorithm accepts both first and second packet in
every timeslot. However, in every timeslot our naive approach
can only accept the first packet to the large queue and cannot
accept the second packet since the buffer is full. Notice that
relying on just one false negative resulted in cumulative drops
in this case even though all other predictions were true. In fact,
a tiny error such as just N number of false negatives even with
all other predictions being true could result in a competitive
ratio for a naive approach as worse as Complete Sharing.

■ Takeaway. Augmenting drop-tail algorithms with predic-
tions has the potential to unlock the optimal performance.
Ensuring performance guarantees with inaccurate predictions
remains a challenge.

3 Prediction-Augmented Buffer Sharing
Reflecting on our observations in §2, our goal is to design
a drop-tail buffer sharing algorithm that performs close
to optimal with perfect predictions but also provides a
minimum performance guarantee when the prediction error is

arbitrarily large. In essence, our aim is to enable performance
improvement in terms of throughput and packet drops in
datacenter switches. To this end, we first present an overview
of our algorithm (§3.1). We then present the workings of
CREDENCE (§3.2) and discuss its properties (§3.3). Finally,
we discuss the practicality of CREDENCE (§3.4).

3.1 Overview
In a nutshell, CREDENCE relies on predictions and follows
a push-out algorithm, reaching close to optimal performance
under perfect predictions. CREDENCE cleverly takes certain
decisions independent of the predictions in order to guarantee
a minimum performance. Further, CREDENCE’s competitive-
ness gradually degrades as prediction error grows (a property
known as smoothness [42]), hence the algorithm still performs
near-optimally when predictions are slightly inaccurate.
CREDENCE follows Longest Queue Drop algorithm: Our
design of CREDENCE consists of two key ingredients. First,
CREDENCE uses thresholds as a drop condition irrespective
of the predictions. CREDENCE treats thresholds as queue
lengths of LQD and updates the thresholds based on the
LQD algorithm (simply arithmetic) upon every packet arrival.
Second, CREDENCE relies on predictions as long as the queue
lengths satisfy the corresponding thresholds. The combination
of thresholds and predictions allows CREDENCE to closely
follow the Longest Queue Drop algorithm (LQD) without
requiring push-out operations2.
CREDENCE guarantees performance under extremities:
When all the predictions are perfectly accurate, CREDENCE
achieves a competitive ratio of 1.707 (consistency) due to the
straight-forward argument that the drops by CREDENCE and
LQD are equivalent for true predictions. In order to guarantee
a minimum performance even with arbitrarily large prediction
error (robustness), CREDENCE bypasses the threshold and
predictions as long as the longest queue is within B

N size.
Here, B is the buffer size and N is the number of ports. This
allows CREDENCE to be most N-competitive even under large
prediction error, similar to the Complete Sharing algorithm.
We prove our claim formally in Appendix C.
CREDENCE smoothly degrades with prediction error:
We design our error function in terms of the performance of
LQD and the predicted drops. We analyze the types of drops
incurred by CREDENCE due to false positive and false negative
predictions. This allows us to show that CREDENCE satisfies
the smoothness property i.e., the competitive ratio smoothly
degrades from 1.707 to N as the prediction error grows.

3.2 CREDENCE

We now present CREDENCE and explain how it operates.
Algorithm 1 presents the pseudocode of CREDENCE. Our
pseudocode is simplified to discrete time for ease of presenta-
tion and for simplicity of analysis. It can be trivially extended

2Recall that LQD is close to optimal with a competitive ratio of 1.707.

to continuous time, and our implementation incorporates it3.
Arrival: Upon a packet arrival, CREDENCE has three
important steps that are highlighted in Algorithm 1. First,
CREDENCE updates the threshold for the current queue
(highlighted in blue). Second, CREDENCE takes a decision
based on the thresholds and predictions whether or not to
accept the incoming packet (highlighted in yellow). Finally,
the packet is either accepted or dropped. We next describe each
of these steps in detail. Third, depending on the state of the
buffer, CREDENCE bypasses the thresholds and predictions
with a safeguard condition in order to accept or drop the
incoming packet (highlighted in green).
Thresholds: CREDENCE updates its thresholds based on the
longest queue drop algorithm. Specifically, upon a packet
arrival at time t to a queue i, CREDENCE increments the thresh-
old Ti(t) for queue i by the packet size. If upon arrival the sum
of thresholds Γ(t) is equal to the buffer size B, then CREDENCE
first decrements the longest queue threshold by packet size and
then increments the threshold for queue i by the packet size.
Note that upon a packet arrival to a queue, the corresponding
threshold is updated before accepting or dropping the packet.
Drop criterion: Similar to existing threshold-based algo-
rithms, CREDENCE also uses thresholds as a drop criterion.
CREDENCE compares the queue length qi(t) of a queue i
against its threshold Ti(t) and drops an incoming packet if
the queue length is larger than or equal to the corresponding
threshold. If and only if an incoming packet satisfies the thresh-
olds, then CREDENCE takes input from a machine-learned
oracle that predicts whether to accept or drop according to our
prediction model discussed in §2.3.1. Finally, based on the
thresholds and predictions, CREDENCE either accepts or drop
the incoming packet.
Safeguard: In order to bound CREDENCE’s competitiveness
under arbitrarily large prediction error, we bypass the above
drop criterion under certain cases. Specifically, when the
longest queue length is less than B

N , CREDENCE always accepts
a packet irrespective of the thresholds and predictions. This en-
sures that CREDENCE is at least N-competitive even with large
prediction error. Our safeguard is based on the observation that
even the push-out longest queue drop algorithm cannot push
out a packet from a queue less than B

N size since the longest
queue must be at least B

N size when the buffer is full. In essence,
CREDENCE circumvents the impact of large prediction error by
accepting packets until a certain amount of buffer is filled up.
Predictions: CREDENCE can be used with any ML oracle
that predicts whether to accept or drop a packet, according
to our prediction model (see §2.3.1). We do not rely on the
internal details of the oracle. However, certain choices of ML
oracles are better suited to operate within the limited resources
available in a switch hardware. We discuss further on our
choice of oracle later in §3.4.

3Our source code is available is at https://github.com/inet-tub/
ns3-datacenter.

https://github.com/inet-tub/ns3-datacenter
https://github.com/inet-tub/ns3-datacenter

Algorithm 1: CREDENCE

Input : Packet arrivals σ,
Drop predictions φ′(σ)

1 procedure ARRIVAL(σ(t)):
2 for each packet p∈σ(t) do
3 Let i be the destination queue for the packet p
4 UPDATETHRESHOLD(i,arrival)

5

▷ Guarantees N-competitiveness
Let j be the longest queue
if q j(t)< B

N then
qi(t)←qi(t)+1 ▷ Accept
Continue to next packet

6

▷ Enables 1.707 η-competitiveness
if qi(t)<Ti(t) then

if Q(t)<B then
drop = GETPREDICTION()
if drop then

▷ Drop
else

qi(t)←qi(t)+1 ▷ Accept
else

▷ Drop
7 procedure DEPARTURE(i):
8 if qi(t)>0 then
9 qi(t)←qi(t)−1 ▷ Drain one packet

10 UPDATETHRESHOLD(i,departure)
11 procedure UPDATETHRESHOLD(i, event):
12 if event = arrival then

13

▷ Thresholds are treated as LQD queue lengths
if Γ(t)=B then ▷ Sum of thresholds

Let Tj(t) be the highest threshold
Tj(t)←Tj(t)−1 ▷ Decrease
Ti(t)←Ti(t)+1 ▷ Increase

else
Ti(t)←Ti(t)+1 ▷ Increase
Γ(t)←Γ(t)+1

14 if event = departure then
15 if Ti(t)>0 then
16 Ti(t)←Ti(t)−1 ▷ Decrease
17 Γ(t)←Γ(t)−1

3.3 Properties of CREDENCE

CREDENCE offers attractive theoretical guarantees in terms
of competitive ratio. In this section, for simplicity, we refer
an offline optimal algorithm as OPT .

Although we have so far discussed the prediction error
more intuitively, it requires a quantitative measure in order
to analyze the performance of an algorithm relying on predic-
tions. There are two important considerations in defining a
suitable error function. First, following the literature, an error
function must be independent of the state and actions of our
algorithm, so that we can train a predictor without considering
all possible states of the algorithm [29]. Second, it is desirable

that the performance of our algorithm can be related to the
error function in an uncomplicated manner. Taking these into
consideration, we define our error function in Definition 1.
Our definition captures the prediction error in terms of the
performance of LQD (push-out) and the performance of an
algorithm FollowLQD. Here, FollowLQD (Algorithm 2 in
Appendix B) is a deterministic drop-tail algorithm (without
predictions) with thresholds similar to CREDENCE.

Definition 1 (Error function). Let LQD(σ) and FollowLQD(σ)
denote the total number of packets transmitted by the online
push-out algorithm LQD and the online drop-tail algorithm
FollowLQD over the arrival sequence σ. Let φ denote the
sequence indicating drop by LQD for each packet in the
arrival sequence σ. Let φ′ denote the sequence of drops
predicted by the machine-learned oracle. Let φ′T P, φ′FP, φ′T N ,
and φ′FN denote the sequence of true positive, false positive,
true negative and false negative predictions for the arrival
sequence σ. We define the error function η(φ,φ′) as follows:

η(φ,φ′)=
LQD(σ)

FollowLQD
(
σ−φ

′
T P−φ

′
FP

) (1)

Using Definition 1, we analyze the throughput of CRE-
DENCE over an entire packet arrival sequence σ based on the
predictions φ′. In fact, our error function is upper bounded by an
intuitive closed form expression, in terms of the number of true
and false predictions, as follows, that can be easily computed:4

η(φ,φ′)≤ φ′T N+φ′FP

φ
′
T N−min

(
(N−1)·φ′FN ,φ

′
T N

)
The upper bound of our error function indicates intuitively
that (i) the error decreases as the total number of true negative
predictions dominate the total false predictions, (ii) the error
increases with each false positive prediction and (iii) the
error increases with each false negative with a larger weight.
Lemma 1 states the relation between the throughput of
CREDENCE, throughput of LQD and the prediction error.

Lemma 1. The total number of packets transmitted by
CREDENCE for an arrival sequence σ, a drop sequence φ by
LQD and the predicted drop sequence φ′ is given by

CREDENCE(σ)≥ LQD(σ)

η(φ,φ′)︸ ︷︷ ︸
error

(2)

Equation 2 shows that the throughput of CREDENCE
reaches closer to (moves away from) LQD as the prediction
error becomes smaller (larger). We present a sketch of our
proof here. Our full proof appears in Appendix C. We begin
by analyzing the drops incurred by CREDENCE based on the
drop criterion described in §3.2. We argue that for every true
positive and false positive predictions, there is at most one

4We prove our upper bound in Theorem 2 (Appendix C).

drop by CREDENCE. All other drops incurred by CREDENCE
are due to the thresholds. Using these observations, we
show that CREDENCE transmits at least the number of
packets transmitted by FollowLQD over the arrival sequence
σ−φ′T P−φ′FP. This leads us to Equation 2.

Recall that CREDENCE bypasses the drop criterion and
accepts packets through a safeguard condition under certain
cases (see §3.2). Based on this, we obtain another bound
for the throughput of CREDENCE in Lemma 2, which is
independent of the prediction error.

Lemma 2. CREDENCE transmits at least 1
N times the number

of packets transmitted by an offline optimal algorithm OPT
i.e., CREDENCE(σ)≥ 1

N ·OPT (σ).
Lemma 2 shows that irrespective of the prediction error

(even under large error), CREDENCE can always transmit
at least 1

N fraction of the packets transmitted by an optimal
solution. Our proof of Lemma 2 is based on the fact that upon
a drop by CREDENCE, there is at least one queue with length
B
N (the safeguard condition). As a result, for every B packets
transmitted by OPT , there are at least B

N number of packets
transmitted by CREDENCE over the arrival sequence σ. This
leads us to the bound expressed in Lemma 2.

Finally, using the above two results, we prove the compet-
itive ratio of CREDENCE as a function of the prediction error.
CREDENCE’s competitive ratio satisfies the three desirable
properties: 2-consistent, N-robust and exhibits smoothness.

Theorem 1. The competitive ratio of CREDENCE grows
linearly from 1.707 to N based on the prediction error η(φ,φ′),
where N is the number of ports, φ is the drop sequence of LQD
and φ′ is the predicted sequence of drops i.e., the competitive
ratio is at most min(1.707 η(φ,φ′),N).

Our proof follows from Lemmas 1 and 2 (see Appendix C).
Theorem 1 essentially shows how CREDENCE’s competitive
ratio in terms of throughput improves from N to 1.707 as
the prediction error (Definition 1) decreases. Interestingly,
CREDENCE’s competitive ratio is independent of the buffer
size B i.e., CREDENCE is compatible for shallow buffers as
well as deep buffers. We note that our analysis compares
an algorithm against an optimal offline algorithm over a
fixed packet arrival sequence. This allows us to analyze
the competitive ratio via an error function defined over
the corresponding arrival sequence. However, real-world
traffic is responsive in nature due to congestion control and
packet retransmissions. Although we have used η as our error
function to express the competitiveness of CREDENCE, in our
evaluation (§4), we compare CREDENCE with state-of-the-art
approaches under realistic datacenter workloads and we also
present the quality of our predictions using more natural error
functions that are widely used for machine learning models.

3.4 Practicality of CREDENCE

CREDENCE’s algorithm itself is simple and close to com-
plexity of the longest queue drop (push-out). However,

the machine-learned oracle producing the predictions adds
additional complexity in order to deploy CREDENCE on
switches. Overall, there are three main parts of CREDENCE that
contribute to additional complexity in terms of memory and
computation: (i) finding the longest queue (and its threshold),
(ii) remembering thresholds and (iii) obtaining predictions.

Finding the longest queue (and its threshold): For every
packet arrival, CREDENCE requires finding the longest queue
for the safeguard condition described in §3.2. Additionally,
CREDENCE requires finding the largest threshold during the
threshold updates upon every packet arrival. The maximum
value search operation has a run-time complexity of O(N),
where N is the number of ports. Note that typical datacenter
switches have a relatively small number of ports e.g., 64 ports
in Broadcom Tomahawk4 [16]. Prior work in the context of
LQD proposes an approximation to further reduce the com-
plexity of finding the longest queue [52] to O(1). The average
case complexity can further be reduced by only maintaining
the list of queue lengths (and their thresholds) that are larger
than B

N . This is sufficient since the safeguard condition checks
whether the longest queue is less than B

N , which is the same as
checking that no queue is longer than B

N . Similarly, the largest
threshold search during the threshold updates is only triggered
when the buffer is full. In this case, the longest queue must be
at least B

N . Given that switches are becoming more and more
computationally capable, we believe that a basic function
such as finding the maximum value in a small list is feasible
to implement within the available resources.
Thresholds memory: In contrast to existing threshold-based
algorithms, CREDENCE’s thresholds depend on their previous
value i.e., thresholds must be remembered. As a result,
CREDENCE adds a small memory overhead of O(N) for
the thresholds. The threshold calculations are in fact much
simpler than existing schemes and do not add any further
computational complexity since CREDENCE only requires
adding and subtracting the threshold values by the packet size.
Predictions: Our prediction model (drop or accept) essentially
boils down to binary classification problem. To this end, nu-
merous ML techniques exist ranging from linear classifiers
to more advanced neural networks. In view of practicality,
we consider random forests as they are implementable in pro-
grammable hardware [4, 17, 31]. In order to reduce the predic-
tion latency,we also limit the number of trees and the maximum
depth of our trained random forest model. We find that, even a
model trained with a maximum depth of four, and as low as four
to eight trees achieves reasonable prediction error (precision≈
0.65). Further, to reduce the complexity of the model, we also
limit the number of features to four: queue length, total shared
buffer occupancy and their corresponding moving averages
(exponentially weighted) over one round-trip time (baseRTT).

The fundamental blocks required for CREDENCE are all
individually practical in today’s hardware. Unfortunately,
modifying the buffer sharing algorithm and integrating it

DT LQD ABM Credence

20 40 60 80
Load (%)

1

10

100

400

95
-p

ct
 F

CT
 sl

ow
do

wn

(a) Incast flows

20 40 60 80
Load (%)

1
2

4

6

8

10

95
-p

ct
 F

CT
 sl

ow
do

wn
(b) Short flows

20 40 60 80
Load (%)

10

20

30

40

95
-p

ct
 F

CT
 sl

ow
do

wn

(c) Long flows

20 40 60 80
Load (%)

20

40

60

80

100

Bu
ffe

r o
cc

up
an

cy
 (%

)

(d) Shared buffer occupancy

Figure 6: Performance of CREDENCE across various loads of websearch workload and incast workload at a burst size 50% of
the buffer size, with DCTCP as the transport protocol. As the load increases, ABM penalizes long flows. DT and ABM are unable
to absorb bursts of size 50% of the buffer size. CREDENCE achieves superior burst absorption and does not penalize long flows.

25 50 75 100
Burst size (% of buffer size)

10

100
400

95
-p

ct
 F

CT
 sl

ow
do

wn

(a) Incast flows

25 50 75 100
Burst size (% of buffer size)

1
2
4
6
8

10

95
-p

ct
 F

CT
 sl

ow
do

wn

(b) Short flows

25 50 75 100
Burst size (% of buffer size)

2
4
6
8

10
12
14

95
-p

ct
 F

CT
 sl

ow
do

wn

(c) Long flows

25 50 75 100
Burst size (% of buffer size)

20
40
60
80

100

Bu
ffe

r o
cc

up
an

cy
 (%

)

(d) Shared buffer occupancy

Figure 7: Performance of CREDENCE across various burst sizes of incast workload and websearch workload at 40% load, with
DCTCP as the transport protocol. At small burst sizes, DT and ABM achieve similar performance compared to CREDENCE but
as the burst size increases, CREDENCE outperforms DT and ABM in terms of FCTs for incast flows (burst absorption).

with predictions requires switch vendor support. Even in pro-
grammable switches, the traffic manager is merely a blackbox
that implements Dynamic Thresholds with a single parameter
exposed to the user [8, 10]. Given the superior performance of
CREDENCE (§4), we wish to gain attention from switch ven-
dors to discuss further on the implementation of CREDENCE.

4 Evaluation
We evaluate the performance of CREDENCE and compare it
against state-of-the-art buffer sharing algorithms in the context
of datacenter networks. Our evaluation aims at answering
three main questions:
(Q1) Does CREDENCE improve the burst absorption?
Our evaluation shows that CREDENCE significantly improves
the burst absorption capabilities of switches. We find that
CREDENCE improves the 95-percentile flow completion
times for incast flows by up to 95.4% compared to Dynamic
Thresholds (DT) and by up to 96.9% compared to ABM.
(Q2) Can CREDENCE improve the flow completion times for
short flows as well as long flows?
We find that CREDENCE performs similar to existing
approaches in terms of 95-percentile flow completion times
for short flows and improves upon ABM by up to 22%
correspondingly for long flows.
Q3 How does prediction error impact the performance of

CREDENCE in terms of flow completion times?
We increase the error of our prediction by artificially
flipping the predictions with a probability. As the probability
increases (error increases), we find that CREDENCE sustains
performance up to 0.01 probability and smoothly degrades
in performance beyond 0.01.

4.1 Setup
Our evaluation is based on packet-level simulations in
NS3 [44]. We embed a Python interpreter within NS3 using
pybind11 [47] in order to obtain predictions from a random
forest model trained with scikit-learn [49].
Topology: We consider a leaf-spine topology with 256 servers
organized into 4 spines and 16 leaves. Each link has a propa-
gation delay of 3µs leading to a round-trip-time of 25.2µs. The
capacity is set to 10Gbps for all the links leading to 4:1 over-
subscription similar to prior works [1, 3, 48]. All the switches
in our topology have 5.12KB buffer-per-port-per-Gbps similar
to Broadcom Tomahawk [16].
Workloads: We generate traffic using websearch [6] flow size
distribution that is based on measurements from real-world
datacenter workloads. We vary the load on the network in
the range 20-80%. We additionally generate traffic using
a synthetic incast workload similar to prior work [1]. Our
incast workload mimics the query-response behavior of a

DT ABM Credence

25 50 75 100
Burst size (% of buffer size)

10

100
400

95
-p

ct
 F

CT
 sl

ow
do

wn

(a) Incast flows

25 50 75 100
Burst size (% of buffer size)
1
2
4
6
8

10

95
-p

ct
 F

CT
 sl

ow
do

wn
(b) Short flows

25 50 75 100
Burst size (% of buffer size)
2
4
6
8

10
12
14

95
-p

ct
 F

CT
 sl

ow
do

wn

(c) Long flows

25 50 75 100
Burst size (% of buffer size)

20
40
60
80

100

Bu
ffe

r o
cc

up
an

cy
 (%

)

(d) Shared buffer occupancy

Figure 8: Performance of CREDENCE across various burst sizes of incast workload and websearch workload at 40% load, with
PowerTCP as the transport protocol. Even with advanced congestion control, DT and ABM only benefit in terms of FCTs for
long flows, but CREDENCE outperforms in terms of FCTs for incast flows (burst absorption) as well as FCTs for long flows.

distributed file storage system where each query results in
a bursty response from multiple servers. We set the query
request rate to 2 per second from each server, and we vary the
burst size in the range 10-100%5 of the switch buffer size. We
use DCTCP [6] and PowerTCP [3] as transport protocols.
Comparisons & metrics: We compare CREDENCE with
Dynamic Thresholds [20] (the default algorithm in datacenter
switches), ABM [1] and LQD (push-out). Hereafter, we refer
to Dynamic Thresholds as DT. We report four performance
metrics: 95-percentile flow completion times for short flows
(≤ 100KB), incast flows (incast workload), long flows
(≥1MB), and the 99-percentile shared buffer occupancy. We
present the CDFs of flow completion times in Appendix D.
Predictions: We collect packet-level traces from each
switch in our topology when using LQD (push-out) as the
buffer sharing algorithm. Each trace consists of five values
corresponding to each packet arrival: (i) queue length, (ii)
average queue length, (iii) shared buffer occupancy, (iv)
average shared buffer occupancy and (v) accept (or drop). We
train a random forest classifier using queue length and shared
buffer occupancy as features and the model predicts packet
drops. We set the maximum depth for each tree to 4 in view
of practicality. At a train-test split 0.6 of our LQD trace, based
on our parameter sweep across the number of trees used for
our classifier (Figure 15 in Appendix D), we set the number of
trees to 4. We observe that the quality of our predictions does
not improve significantly beyond four trees in our datasets.
This gives us an accuracy of 0.99, error score 1

η
0.996 (inverse

of our error function based on Definition 1), precision of 0.65,
recall of 0.35 and F1 score of 0.45. We defer the definitions
of these prediction scores to Appendix C as they are standard
in the literature. We train our model with an LQD trace

5We note that if the burst size exceeds the buffer size (> 100%), then
no buffer sharing algorithm can prevent excessive packet drops. As such,
controlling and mitigating the extent of incast scenarios can be better
addressed by congestion control and scheduling techniques.

6The high values of accuracy and our error score 1
η

are attributed to the
dataset being skewed i.e., congestion is not persistent.

corresponding to websearch workload at 80% load, and a burst
size of 75% buffer size for the incast workload, using DCTCP
as the transport protocol. We use the same trained model in all
our evaluations. We ensure that our test scenarios are different
from the training dataset by using different random seeds in
addition to different traffic conditions (different loads and
different burst sizes) in each experiment in our evaluation.
Configuration: CREDENCE is parameter-less, and it takes
input from an oracle (described above) that predicts packet
drops. We set α = 0.5 for DT and ABM similar to prior
work [1]. ABM uses α= 64 for all the packets which arrive
during the first round-trip-time [1]. We configure DCTCP
according to [6] and PowerTCP according to [3].

4.2 Results
CREDENCE significantly improves burst absorption: In
Figure 6a, using DCTCP as the transport protocol, we generate
websearch traffic across various loads in the range 20-80%
and generate incast traffic with a burst size of 50% buffer size.
We observe that CREDENCE performs close to the optimal
performance of LQD. CREDENCE improves the 95-percentile
flow complete times for incast flows by 95.50% compared
to DT, and by 95.53% compared to ABM. In Figure 7a, we
set the load of websearch traffic at 40% and vary the burst
size for incast workload in the range 10-100% buffer size.
CREDENCE performs similar to DT and ABM for small burst
sizes. As the burst size increases, CREDENCE improves the
95-percentile flow completion times for incast workload by
95% on average compared to DT, and by 96.92% on average
compared to ABM. In Figure 8a, even when using PowerTCP
as the transport protocol, we see that CREDENCE improves
the 95-percentile flow completion times for incast flow
by 93.27% on average compared to DT and by 93.36% on
average compared to ABM. In terms of burst absorption, both
DT and ABM are drop-tail algorithms, hence they face the
drawbacks discussed in §2.2. CREDENCE relies on predictions
and unlocks the performance of LQD (push-out) as shown by
our results in Figure 6a and Figure 7a.

ABM Credence

64 32 24 16 8
RTT (μs)

1

10

102

103

95
-p

ct
 F

CT
 sl

ow
do

wn

(a) Incast flows

64 32 24 16 8
RTT (μs)

2
4
6
8

10

95
-p

ct
 F

CT
 sl

ow
do

wn
(b) Short flows

64 32 24 16 8
RTT (μs)

2
4
6
8

10

95
-p

ct
 F

CT
 sl

ow
do

wn

(c) Long flows

64 32 24 16 8
RTT (μs)

20
40
60
80

100

Bu
ffe

r o
cc

up
an

cy
 (%

)

(d) Shared buffer occupancy

Figure 9: ABM is sensitive to RTT and performs significantly worse compared to CREDENCE at low RTTs. At high RTTs, ABM
performs similar to CREDENCE.

LQD Credence

10−3 10−2 10−1

Probability of flipping prediction
1

10

100

1000

95
-p

ct
 F

CT
 sl

ow
do

wn

(a) Incast flows

10−3 10−2 10−1

Probability of flipping prediction
1

10

100

1000

95
-p

ct
 F

CT
 sl

ow
do

wn

(b) Short flows

10−3 10−2 10−1

Probability of flipping prediction
1

50

100

95
-p

ct
 F

CT
 sl

ow
do

wn

(c) Long flows

10−3 10−2 10−1

Probability of flipping prediction
0

20
40
60
80

100

Bu
ffe

r o
cc

up
an

cy
 (%

)

(d) Shared buffer occupancy

Figure 10: Even though the predictions from our random forest classifier are intentionally flipped (to increase error), CREDENCE
performs close to LQD up to 0.005 flipping probability but smoothly diverges from LQD at 0.01 flipping probability.

CREDENCE improves long flows FCTs: CREDENCE not
only improves the burst absorption but also improves the flow
completion times for long flows. In Figure 6c, at 50% burst
size for incast workload and across various loads of websearch
workload, we observe that CREDENCE performs similar to DT
in terms of 95-percentile flow completion times for long flows
and improves upon ABM on average by 28.49%. At 80% load,
CREDENCE improves upon ABM by 49.34%. Across various
burst sizes, and at 40% load of websearch workload, we
observe from Figure 7c that CREDENCE improves upon ABM
by up to 22.02% and by 12.02% on average. With PowerTCP
as the transport protocol (Figure 8c), CREDENCE improves
the 95-percentile flow completion times for long flows by
3.31% on average compared to DT and by 17.35% compared
to ABM. At a burst size of 100% buffer size, CREDENCE
improves the flow completion times by 5.49% compared
to DT and by 24.09% compared to ABM. As described
in §2.2, drop-tail algorithms such as DT and ABM cannot
effectively navigate proactive and reactive drops, resulting
in throughput loss i.e., high flow completion times for long
flows. In contrast, predictions guide CREDENCE to effectively
navigate proactive and reactive drops. This allows CREDENCE
to achieve better flow completion times even for long flows.

CREDENCE does not waste buffer resources: In anticipation
of future burst arrivals, both DT and ABM buffer resources. We

show the 99.99-percentile buffer occupancies7 in Figure 6d for
various loads of websearch workload and at a burst size of 50%
buffer size for incast workload. We observe that, DT (ABM)
utilizes 3.77% (18.68%) lower buffer space on average com-
pared to CREDENCE, at the cost of increased flow completion
times even for long flows. Even as the burst size increases (Fig-
ure 7d), DT and ABM are unable to efficiently utilize the buffer
space. In contrast, CREDENCE efficiently utilizes the available
buffer space as the burst size increases, improving burst absorp-
tion without sacrificing flow completion times for long flows.

ABM is sensitive to RTT: Although ABM is expected to
outperform DT, our evaluation results especially in terms
of flow completion times for incast flows contradict the
results presented in [1]. We ran several simulations varying
all the parameters in our setup in order to better understand
the performance of ABM. We found that ABM is in fact
sensitive to round-trip-time (RTT). We vary the base RTT
of our topology in Figure 9 and compare CREDENCE with
ABM. At high RTTs, we observe that ABM performs close to
CREDENCE, but degrades in performance as RTT decreases.
Specifically, at 8µs RTT, ABM performs 97.73% worse
compared to CREDENCE in terms of flow completion times for
incast flows. Although ABM achieves on-par flow completion

7DT, ABM and CREDENCE have similar tail occupancies (100-percentile)
that occurs at rare congestion events in our simulations.

times for short flows, we observe that ABM degrades in flow
completion times for long times as well as under-utilizes the
buffer as RTT decreases. The poor performance of ABM at
low RTTs is due to the fact that ABM prioritizes the first RTT
packets and considers the rest of the traffic as steady-state
traffic. However, it is not uncommon that datacenter switches
experience bursts for several RTTs [22]. Further, congestion
control algorithms require multiples RTTs to converge to
steady-state. In contrast, CREDENCE is parameter-less and
does not make such assumptions. CREDENCE performs
significantly better than existing approaches even with an
off-the-shelf machine-learned predictor with a simple model.

CREDENCE gradually degrades with prediction error:
Our random forest classifier that we used in our evaluations
so far, has a precision close to 0.65. In order to evaluate the
performance of CREDENCE with even worse prediction error,
we artificially introduce error by flipping every prediction
obtained from our random forest classifier with a certain
probability. We consider LQD (push-out) as a baseline since
CREDENCE is expected to perform close to LQD and degrade
as the prediction error grows large. Figure 10 presents our
evaluation results, under websearch workload at 40% and
burst size 50% of the buffer size for incast workload. At
0.001 flipping probability, CREDENCE performs close to
LQD. However, at 0.01 flipping probability CREDENCE starts
to diverge8 from LQD and gets significantly worse at 0.1
flipping probability. Figure 10 gives practical insights into
smoothness of CREDENCE in addition to our analysis.

5 Related Work
The buffer sharing problem has been widely studied for
many decades. Research works in the literature range from
push-out as well as drop-tail algorithms tailored for ATM
networks [19,20,35,52,54] to more recent drop-tail algorithms
tailored for datacenter networks [1, 2, 8, 11, 28, 50]. While
we focus on the buffer sharing problem in this paper, several
related but orthogonal approaches also tackle buffer problems
in datacenter networks e.g., end-to-end congestion con-
trol [3, 6, 18, 25, 36, 38], AQM [21, 43, 45], scheduling [7, 27],
packet deflection [56] and load-balancing [5, 23, 32]. These
approaches aim at reducing congestion events and the
overall buffer requirements, but they cannot fundamentally
address buffer contention across multiple switch ports sharing
the same buffer. Research on algorithms with predictions
for various problems has recently been an active field of
research [30, 39--42, 46] but ours is the first approach tackling
the buffer sharing problem with predictions. Ongoing research
efforts show the feasibility of deploying machine-learned
predictions in the network data plane [4, 17, 31, 55].

8The extent of divergence in FCT slowdown relates to minRTO (set to 10
ms) due to packet drops that result in timeouts, and is not explicitly bounded
by O(N) similar to throughput. Yet, incast and short flows can be protected
by incorporating packet priorities (discussed in §6).

6 Future Research Directions
CREDENCE is the first approach showing the performance ben-
efits and guarantees by augmenting buffer sharing algorithms
with predictions. This work barely scratches the surface and
leaves intriguing open questions: (i) practically training the
prediction oracle in the real-world, (ii) accounting for packet
priorities in taking buffering decisions, (iii) integrating pre-
dictions with buffer sharing in hardware. We believe that this
paper opens several interesting avenues for future work both
in systems and theory. In this section, we discuss some of the
future work directions to push approaches such as CREDENCE
to be deployed in the real-world (§6.1), as well as to improve
the performance guarantees offered by such approaches (§6.2).

6.1 Systems for In-Network Predictions
In this paper, we show how predictions can improve the
performance of drop-tail buffer sharing. Many interesting
systems research questions remain in order to integrate buffer
sharing and predictions in the network data plane.
Training the model: Training a prediction oracle based
on the model described in §2.3.1 involves collecting the
buffering decisions (ground truth) of Longest Queue Drop
algorithm (LQD), i.e., push-out, along with a set of features
e.g., queue lengths, overall buffer occupancy. We envision two
approaches to collect the training data in practice. First, similar
to our approach in §4, the training data can be obtained from
packet-level simulations that implement LQD on the switches.
While this approach is simple, it has the limitation that the
training data does not necessarily reflect real-world traffic
arrivals and the corresponding buffering decisions of LQD.
However, simulation-based training data could still be suitable
for traffic patterns of a datacenter that can be explicitly mod-
eled e.g., collective communications in GPU clusters [53, 58].
Second, the buffering decisions of the LQD algorithm can be
exported by each switch in a real-world datacenter. This can
be achieved by implementing LQD virtually without taking
any buffering decisions on packets, along side any underlying
buffer sharing algorithm i.e., maintaining per-queue counters
that are incremented and decremented upon packet arrival,
departure and drop (virtually based on LQD) events, similar
to CREDENCE’s thresholds. Any feature values exported must
also correspond to these counter values. Exporting LQD’s
events even in a coarse-grained manner would suffice if the
trace is sufficiently large. We believe that future work on
implementing a virtual LQD (CREDENCE’s thresholds) in
hardware would not only strengthen CREDENCE’s practicality
but also improves the accuracy of the trained model, thereby
also improving the performance. For simplicity, our random
forest model in § 4 uses only four features, yet exploring the
tradeoff between prediction error and model complexity in
terms of space and time would be valuable. Further, the trained
model must be simple enough that fits within the resources
available in the data plane. Developing such trained models
is an important step forward.

Deploying the model: Recent works propose practical
implementations for in-network machine-learning models e.g.,
in the context of traffic classification [17]. P4 implementation
of a model that predicts drops would enhance not only the prac-
ticality but also stimulate further research to design algorithms
with performance guarantees better than CREDENCE.
Alternative predictions: As mentioned in §2.3, there are
several different prediction models that can be considered for
the buffer sharing problem. For instance, instead of predicting
the drops, an oracle could predict packet arrivals just for a
tiny window of the near future. Alternatively, techniques
such as online reinforcement learning can be adopted,
where rewards are based on how closely the queue lengths
track their thresholds9. Systems research on studying the
practicality and deployability of different prediction models is
a valuable future direction that would better guide the design
of algorithms with predictions for the buffer sharing problem.
Understanding push-out complexity: While push-out
algorithms raised much interest initially, over the last years,
research on this approach has been less active. We believe
this is partly due to the lack of support from switch vendors.
It is an open question how the complexity of obtaining drop
predictions and the complexity of push-out fare against each
other. Although we focused on augmenting drop-tail algo-
rithms with predictions, we believe that our approach of using
predictions has much potential also in other types of buffer
algorithms. While switch vendors may be better informed
about the complexity of push-out buffers, an understanding
of this complexity in the scientific community is much needed
in order to navigate the complexity vs performance spectrum.

6.2 Theory for Performance Guarantees
We believe the performance guarantees offered by CREDENCE
can be improved in the future. Further, considering packet
priorities and traffic classes in the competitive analysis is an
open question.
Improving consistency and robustness: An open question
is whether an algorithm could be designed to improve the
competitive ratio under perfect predictions (consistency) better
than 1.707, while also improving the ratio under large error
(robustness) better than N. Further research in this direction
would enable a better understanding whether a consistency-
robustness tradeoff exists for the buffer sharing problem.
Competitive analysis with packet priorities: Literature in
theory considers that all packets are of the same priority in the
context of competitive analysis. One of the current limitations
of CREDENCE is its obliviousness to packet priorities. It is
well-known that preferential treatment of packets has various
performance benefits, especially in terms of flow completion
times when short flow packets are prioritized. The perfor-
mance degradation of CREDENCE for short flows and incast

9CREDENCE’s thresholds are equivalent to LQD’s (push-out) queue
lengths for the same packet arrivals (see §3.2).

flows (Figure 10a, 10b) can potentially be shielded from pre-
diction errors by employing packet priorities. We believe that
defining throughput (objective function) as the weighted sum
of the number of transmitted packets of different priorities
would enable the design of online algorithms that prioritize
higher-priority packets, e.g., bursts or short flows, in order
to be competitive. For instance, throughput can be defined as
∑αp ·np, where αp is the relative importance of a priority p and
np is the number of transmitted packets of priority p by a buffer
sharing algorithm. To this end, developing analysis techniques
for such a setup is an interesting future research direction.

7 Conclusion
We presented CREDENCE, the first buffer sharing algorithm
augmented with predictions that not only reaches close to
optimal performance given low prediction error but also
guarantees performance with arbitrarily large prediction error,
while maintaining smoothness. We analytically proved our
claims and our evaluations show the superior performance
of CREDENCE even with an off-the-shelf machine-learned
predictor, compared to the state-of-the-art buffer sharing
algorithms. The building blocks required for CREDENCE are
all individually practical in today’s hardware. In future, we
plan to pursue switch vendors to further discuss the integration
of predictions with buffer sharing algorithm in hardware.

Acknowledgements
We would like to thank our shepherd, Marco Chiesa, as
well as the anonymous reviewers for their useful feedback.
This work is part of a project that has received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme,
consolidator project Self-Adjusting Networks (AdjustNet),
grant agreement No. 864228, Horizon 2020, 2020-2025.

References
[1] Vamsi Addanki, Maria Apostolaki, Manya Ghobadi, Ste-

fan Schmid, and Laurent Vanbever. Abm: Active buffer
management in datacenters. In Proceedings of the ACM
SIGCOMM 2022 Conference, SIGCOMM ’22, page
36–52, New York, NY, USA, 2022. Association for Com-
puting Machinery. doi:10.1145/3544216.3544252.

[2] Vamsi Addanki, Wei Bai, Stefan Schmid, and Maria
Apostolaki. Reverie: Low pass filter-based switch
buffer sharing for datacenters with rdma and tcp
traffic. In 21th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24),
Santa Clara, CA, 2024. USENIX Association. URL:
https://www.usenix.org/conference/nsdi24/
presentation/addanki-reverie.

[3] Vamsi Addanki, Oliver Michel, and Stefan Schmid.
PowerTCP: Pushing the performance limits of datacenter
networks. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
51--70, Renton, WA, April 2022. USENIX Association.
URL: https://www.usenix.org/conference/
nsdi22/presentation/addanki.

[4] Aristide Tanyi-Jong Akem, Michele Gucciardo,
and Marco Fiore. Flowrest: Practical flow-level
inference in programmable switches with random
forests. In IEEE INFOCOM 2023 - IEEE Conference
on Computer Communications, pages 1--10, 2023.
doi:10.1109/INFOCOM53939.2023.10229100.

[5] Mohammad Alizadeh, Tom Edsall, Sarang Dharma-
purikar, Ramanan Vaidyanathan, Kevin Chu, Andy
Fingerhut, Vinh The Lam, Francis Matus, Rong Pan,
Navindra Yadav, and George Varghese. Conga: Dis-
tributed congestion-aware load balancing for datacenters.
In Proceedings of the 2014 ACM Conference on
SIGCOMM, SIGCOMM ’14, page 503–514, New York,
NY, USA, 2014. Association for Computing Machinery.
doi:10.1145/2619239.2626316.

[6] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center tcp
(dctcp). In Proceedings of the ACM SIGCOMM 2010
Conference, SIGCOMM ’10, page 63–74, New York,
NY, USA, 2010. Association for Computing Machinery.
doi:10.1145/1851182.1851192.

[7] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar,
and Scott Shenker. Pfabric: Minimal near-optimal
datacenter transport. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM,
SIGCOMM ’13, page 435–446, New York, NY,

USA, 2013. Association for Computing Machinery.
doi:10.1145/2486001.2486031.

[8] Hamidreza Almasi, Rohan Vardekar, and Bala-
jee Vamanan. Protean: Adaptive management
of shared-memory in datacenter switches. In
IEEE INFOCOM 2023 - IEEE Conference on
Computer Communications, pages 1--10, 2023.
doi:10.1109/INFOCOM53939.2023.10229046.

[9] Antonios Antoniadis, Matthias Englert, Nicolaos Mat-
sakis, and Pavel Veselý. Breaking the Barrier Of 2 for
the Competitiveness of Longest Queue Drop. In Nikhil
Bansal, Emanuela Merelli, and James Worrell, editors,
48th International Colloquium on Automata, Languages,
and Programming (ICALP 2021), volume 198 of Leibniz
International Proceedings in Informatics (LIPIcs), pages
17:1--17:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl
-- Leibniz-Zentrum für Informatik. URL: https:
//drops.dagstuhl.de/opus/volltexte/2021/
14086, doi:10.4230/LIPIcs.ICALP.2021.17.

[10] Maria Apostolaki, Vamsi Addanki, Manya Ghobadi,
and Laurent Vanbever. Fb: A flexible buffer
management scheme for data center switches.
arXiv preprint arXiv:2105.10553, 2021. URL:
https://arxiv.org/abs/2105.10553.

[11] Maria Apostolaki, Laurent Vanbever, and Manya
Ghobadi. Fab: Toward flow-aware buffer sharing on
programmable switches. In Proceedings of the 2019
Workshop on Buffer Sizing, BS ’19, New York, NY,
USA, 2020. Association for Computing Machinery.
doi:10.1145/3375235.3375237.

[12] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Kris-
han Kumar Attre, Paramvir Bahl, Ameya Bhagat, Gowri
Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,
Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad, Vivek
Ette, Igal Figlin, Daniel Firestone, Mathew George, Ilya
German, Lakhmeet Ghai, Eric Green, Albert Greenberg,
Manish Gupta, Randy Haagens, Matthew Hendel,
Ridwan Howlader, Neetha John, Julia Johnstone, Tom
Jolly, Greg Kramer, David Kruse, Ankit Kumar, Erica
Lan, Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu,
Chen Liu, Guohan Lu, Yuemin Lu, Xiakun Lu, Vadim
Makhervaks, Ulad Malashanka, David A. Maltz, Ilias
Marinos, Rohan Mehta, Sharda Murthi, Anup Namdhari,
Aaron Ogus, Jitendra Padhye, Madhav Pandya, Douglas
Phillips, Adrian Power, Suraj Puri, Shachar Raindel,
Jordan Rhee, Anthony Russo, Maneesh Sah, Ali Sheriff,
Chris Sparacino, Ashutosh Srivastava, Weixiang Sun,
Nick Swanson, Fuhou Tian, Lukasz Tomczyk, Vamsi
Vadlamuri, Alec Wolman, Ying Xie, Joyce Yom, Lihua
Yuan, Yanzhao Zhang, and Brian Zill. Empowering
azure storage with RDMA. In 20th USENIX Symposium

https://doi.org/10.1145/3544216.3544252
https://www.usenix.org/conference/nsdi24/presentation/addanki-reverie
https://www.usenix.org/conference/nsdi24/presentation/addanki-reverie
https://www.usenix.org/conference/nsdi22/presentation/addanki
https://www.usenix.org/conference/nsdi22/presentation/addanki
https://doi.org/10.1109/INFOCOM53939.2023.10229100
https://doi.org/10.1145/2619239.2626316
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/2486001.2486031
https://doi.org/10.1109/INFOCOM53939.2023.10229046
https://drops.dagstuhl.de/opus/volltexte/2021/14086
https://drops.dagstuhl.de/opus/volltexte/2021/14086
https://drops.dagstuhl.de/opus/volltexte/2021/14086
https://doi.org/10.4230/LIPIcs.ICALP.2021.17
https://arxiv.org/abs/2105.10553
https://doi.org/10.1145/3375235.3375237

on Networked Systems Design and Implementation
(NSDI 23), pages 49--67, Boston, MA, April 2023.
USENIX Association. URL: https://www.usenix.
org/conference/nsdi23/presentation/bai.

[13] Wei Bai, Shuihai Hu, Kai Chen, Kun Tan, and Yongqiang
Xiong. One more config is enough: Saving (dc)tcp
for high-speed extremely shallow-buffered datacenters.
IEEE/ACM Transactions on Networking, 29(2):489--
502, 2021. doi:10.1109/TNET.2020.3032999.

[14] Ivan A. Bochkov, Alex Davydow, Nikita Gaevoy, and
Sergey I. Nikolenko. New competitiveness bounds for
the shared memory switch. CoRR, abs/1907.04399,
2019. URL: http://arxiv.org/abs/1907.04399.

[15] Allan Borodin and Ran El-Yaniv. Online Computation
and Competitive Analysis. 1998.

[16] Broadcom. StrataXGS® Switch Solutions.
https://www.broadcom.com/products/
ethernet-connectivity/switching/strataxgs.

[17] Coralie Busse-Grawitz, Roland Meier, Alexander
Dietmüller, Tobias Bühler, and Laurent Vanbever.
pforest: In-network inference with random forests.
arXiv preprint arXiv:1909.05680, 2019. URL:
http://arxiv.org/abs/1909.05680.

[18] Qizhe Cai, Mina Tahmasbi Arashloo, and Rachit
Agarwal. Dcpim: Near-optimal proactive datacenter
transport. In Proceedings of the ACM SIGCOMM 2022
Conference, SIGCOMM ’22, page 53–65, New York,
NY, USA, 2022. Association for Computing Machinery.
doi:10.1145/3544216.3544235.

[19] J.W. Causey and H.S. Kim. Comparison of buffer alloca-
tion schemes in atm switches: complete sharing, partial
sharing, and dedicated allocation. In Proceedings of
ICC/SUPERCOMM’94 - 1994 International Conference
on Communications, pages 1164--1168 vol.2, 1994.
doi:10.1109/ICC.1994.368919.

[20] A.K. Choudhury and E.L. Hahne. Dynamic queue
length thresholds for shared-memory packet switches.
IEEE/ACM Transactions on Networking, 6(2):130--140,
1998. doi:10.1109/90.664262.

[21] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM
Transactions on Networking, 1(4):397--413, Aug 1993.
doi:10.1109/90.251892.

[22] Ehab Ghabashneh, Yimeng Zhao, Cristian Lumezanu,
Neil Spring, Srikanth Sundaresan, and Sanjay Rao. A
microscopic view of bursts, buffer contention, and loss
in data centers. In Proceedings of the 22nd ACM Internet
Measurement Conference, IMC ’22, page 567–580,

New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3517745.3561430.

[23] Soudeh Ghorbani, Zibin Yang, P. Brighten Godfrey,
Yashar Ganjali, and Amin Firoozshahian. Drill:
Micro load balancing for low-latency data center
networks. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’17, page 225–238, New York, NY,
USA, 2017. Association for Computing Machinery.
doi:10.1145/3098822.3098839.

[24] Michael H. Goldwasser. A survey of buffer
management policies for packet switches.
SIGACT News, 41(1):100–128, mar 2010.
doi:10.1145/1753171.1753195.

[25] Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Niko-
laidis, Mohammad Alizadeh, and Thomas E. Anderson.
Backpressure flow control. In 19th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 22), pages 779--805, Renton, WA, April 2022.
USENIX Association. URL: https://www.usenix.
org/conference/nsdi22/presentation/goyal.

[26] Ellen L. Hahne, Alexander Kesselman, and Yishay
Mansour. Competitve buffer management for shared-
memory switches. In Proceedings of the Thirteenth
Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA ’01, page 53–58, New York, NY,
USA, 2001. Association for Computing Machinery.
doi:10.1145/378580.378589.

[27] Chi-Yao Hong, Matthew Caesar, and P. Brighten God-
frey. Finishing flows quickly with preemptive schedul-
ing. SIGCOMM Comput. Commun. Rev., 42(4):127–138,
aug 2012. doi:10.1145/2377677.2377710.

[28] Sijiang Huang, Mowei Wang, and Yong Cui. Traffic-
aware buffer management in shared memory switches.
IEEE/ACM Transactions on Networking, 30(6):2559-
-2573, 2022. doi:10.1109/TNET.2022.3173930.

[29] Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem,
and Manish Purohit. Non-clairvoyant scheduling
with predictions. In Proceedings of the 33rd ACM
Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA ’21, page 285–294, New York, NY,
USA, 2021. Association for Computing Machinery.
doi:10.1145/3409964.3461790.

[30] Sungjin Im, Benjamin Moseley, Chenyang Xu, and
Ruilong Zhang. Online dynamic acknowledgement with
learned predictions. arXiv preprint arXiv:2305.18227,
2023. URL: https://arxiv.org/abs/2305.18227.

https://www.usenix.org/conference/nsdi23/presentation/bai
https://www.usenix.org/conference/nsdi23/presentation/bai
https://doi.org/10.1109/TNET.2020.3032999
http://arxiv.org/abs/1907.04399
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs
http://arxiv.org/abs/1909.05680
https://doi.org/10.1145/3544216.3544235
https://doi.org/10.1109/ICC.1994.368919
https://doi.org/10.1109/90.664262
https://doi.org/10.1109/90.251892
https://doi.org/10.1145/3517745.3561430
https://doi.org/10.1145/3098822.3098839
https://doi.org/10.1145/1753171.1753195
https://www.usenix.org/conference/nsdi22/presentation/goyal
https://www.usenix.org/conference/nsdi22/presentation/goyal
https://doi.org/10.1145/378580.378589
https://doi.org/10.1145/2377677.2377710
https://doi.org/10.1109/TNET.2022.3173930
https://doi.org/10.1145/3409964.3461790
https://arxiv.org/abs/2305.18227

[31] Syed Usman Jafri, Sanjay Rao, Vishal Shrivastav, and
Mohit Tawarmalani. Leo: Online traffic classification at
Multi-Terabit line rate. In 21th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
24), Santa Clara, CA, 2024. USENIX Association.

[32] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh
Sivaraman, and Jennifer Rexford. Hula: Scalable load
balancing using programmable data planes. In Proceed-
ings of the Symposium on SDN Research, SOSR ’16,
New York, NY, USA, 2016. Association for Computing
Machinery. doi:10.1145/2890955.2890968.

[33] Alexander Kesselman and Yishay Mansour. Harmonic
buffer management policy for shared memory switches.
Theoretical Computer Science, 324(2):161--182, 2004.
Online Algorithms: In Memoriam, Steve Seiden.
URL: https://www.sciencedirect.com/science/
article/pii/S0304397504003779, doi:https:
//doi.org/10.1016/j.tcs.2004.05.014.

[34] Koji Kobayashi, Shuichi Miyazaki, and Yasuo Okabe.
A tight bound on online buffer management for two-port
shared-memory switches. In Proceedings of the Nine-
teenth Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA ’07, page 358–364, New York,
NY, USA, 2007. Association for Computing Machinery.
doi:10.1145/1248377.1248437.

[35] S. Krishnan, A.K. Choudhury, and F.M. Chiussi.
Dynamic partitioning: a mechanism for shared memory
management. In IEEE INFOCOM ’99. Conference on
Computer Communications. Proceedings. Eighteenth
Annual Joint Conference of the IEEE Computer and
Communications Societies. The Future is Now (Cat.
No.99CH36320), volume 1, pages 144--152 vol.1, 1999.
doi:10.1109/INFCOM.1999.749262.

[36] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift:
Delay is simple and effective for congestion control
in the datacenter. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Commu-
nication, SIGCOMM ’20, page 514–528, New York,
NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3387514.3406591.

[37] Jason Lei and Vishal Shrivastav. Seer: Future-Aware
caching system for network processors. In 21th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24), Santa Clara, CA, 2024.
USENIX Association.

[38] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan
Yu. Hpcc: High precision congestion control. In
Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM ’19, page 44–58,
New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3341302.3342085.

[39] Michael Mitzenmacher. A model for learned bloom
filters and optimizing by sandwiching. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL: https://proceedings.
neurips.cc/paper_files/paper/2018/file/
0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf.

[40] Michael Mitzenmacher. Scheduling with pre-
dictions and the price of misprediction. arXiv
preprint arXiv:1902.00732, 2019. URL:
http://arxiv.org/abs/1902.00732.

[41] Michael Mitzenmacher. Queues with small ad-
vice. In Proceedings of the 2021 SIAM Con-
ference on Applied and Computational Discrete
Algorithms (ACDA21), pages 1--12. SIAM, 2021.
doi:10.1137/1.9781611976830.1.

[42] Michael Mitzenmacher and Sergei Vassilvitskii. Algo-
rithms with predictions. Commun. ACM, 65(7):33–35,
jun 2022. doi:10.1145/3528087.

[43] Kathleen Nichols and Van Jacobson. Controlling
queue delay: A modern aqm is just one piece of the
solution to bufferbloat. Queue, 10(5):20–34, may 2012.
doi:10.1145/2208917.2209336.

[44] ns-3. Network Simulator. https://www.nsnam.org/.

[45] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Sub-
ramanian, F. Baker, and B. VerSteeg. Pie: A lightweight
control scheme to address the bufferbloat problem. In
2013 IEEE 14th International Conference on High
Performance Switching and Routing (HPSR), pages 148-
-155, July 2013. doi:10.1109/HPSR.2013.6602305.

[46] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improv-
ing online algorithms via ml predictions. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL: https://proceedings.
neurips.cc/paper_files/paper/2018/file/
73a427badebe0e32caa2e1fc7530b7f3-Paper.pdf.

https://doi.org/10.1145/2890955.2890968
https://www.sciencedirect.com/science/article/pii/S0304397504003779
https://www.sciencedirect.com/science/article/pii/S0304397504003779
https://doi.org/https://doi.org/10.1016/j.tcs.2004.05.014
https://doi.org/https://doi.org/10.1016/j.tcs.2004.05.014
https://doi.org/10.1145/1248377.1248437
https://doi.org/10.1109/INFCOM.1999.749262
https://doi.org/10.1145/3387514.3406591
https://doi.org/10.1145/3341302.3342085
https://proceedings.neurips.cc/paper_files/paper/2018/file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf
http://arxiv.org/abs/1902.00732
https://doi.org/10.1137/1.9781611976830.1
https://doi.org/10.1145/3528087
https://doi.org/10.1145/2208917.2209336
https://www.nsnam.org/
https://doi.org/10.1109/HPSR.2013.6602305
https://proceedings.neurips.cc/paper_files/paper/2018/file/73a427badebe0e32caa2e1fc7530b7f3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/73a427badebe0e32caa2e1fc7530b7f3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/73a427badebe0e32caa2e1fc7530b7f3-Paper.pdf

[47] Pybind11. Seamless operability between C++11 and
Python. https://pybind11.readthedocs.io/en/
stable/.

[48] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad
Sharif, Rong Pan, Mostafa Ammar, Ellen Zegura,
Keon Jang, Mohammad Alizadeh, Abdul Kabbani,
and Amin Vahdat. Annulus: A dual congestion
control loop for datacenter and wan traffic aggregates.
SIGCOMM ’20, page 735–749, New York, NY,
USA, 2020. Association for Computing Machinery.
doi:10.1145/3387514.3405899.

[49] scikit-learn. Machine Learning in Python.
https://scikit-learn.org/stable/.

[50] Danfeng Shan, Wanchun Jiang, and Fengyuan Ren.
Analyzing and enhancing dynamic threshold policy of
data center switches. IEEE Transactions on Parallel
and Distributed Systems, 28(9):2454--2470, 2017.
doi:10.1109/TPDS.2017.2671429.

[51] Vishal Shrivastav. Fast, scalable, and programmable
packet scheduler in hardware. In Proceedings of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’19, page 367–379, New York, NY,
USA, 2019. Association for Computing Machinery.
doi:10.1145/3341302.3342090.

[52] B. Suter, T.V. Lakshman, D. Stiliadis, and A.K. Choud-
hury. Buffer management schemes for supporting tcp in
gigabit routers with per-flow queueing. IEEE Journal on
Selected Areas in Communications, 17(6):1159--1169,
1999. doi:10.1109/49.772451.

[53] Weiyang Wang, Moein Khazraee, Zhizhen Zhong,
Manya Ghobadi, Zhihao Jia, Dheevatsa Mudigere,
Ying Zhang, and Anthony Kewitsch. TopoOpt:
Co-optimizing network topology and paralleliza-
tion strategy for distributed training jobs. In 20th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 739--767,
Boston, MA, April 2023. USENIX Association. URL:
https://www.usenix.org/conference/nsdi23/
presentation/wang-weiyang.

[54] Guo-Liang Wu and J.W. Mark. A buffer allocation
scheme for atm networks: complete sharing based on vir-
tual partition. IEEE/ACM Transactions on Networking,
3(6):660--670, 1995. doi:10.1109/90.477712.

[55] Zhaoqi Xiong and Noa Zilberman. Do switches dream of
machine learning? toward in-network classification. In
Proceedings of the 18th ACM Workshop on Hot Topics
in Networks, HotNets ’19, page 25–33, New York, NY,
USA, 2019. Association for Computing Machinery.
doi:10.1145/3365609.3365864.

[56] Kyriakos Zarifis, Rui Miao, Matt Calder, Ethan
Katz-Bassett, Minlan Yu, and Jitendra Padhye. Dibs:
Just-in-time congestion mitigation for data centers.
In Proceedings of the Ninth European Conference
on Computer Systems, EuroSys ’14, New York, NY,
USA, 2014. Association for Computing Machinery.
doi:10.1145/2592798.2592806.

[57] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind
Krishnamurthy. High-resolution measurement of data
center microbursts. In Proceedings of the 2017 Internet
Measurement Conference, IMC ’17, page 78–85, New
York, NY, USA, 2017. Association for Computing
Machinery. doi:10.1145/3131365.3131375.

[58] Liangyu Zhao, Siddharth Pal, Tapan Chugh, Weiyang
Wang, Prithwish Basu, Joud Khoury, and Arvind
Krishnamurthy. Optimal direct-connect topologies for
collective communications. CoRR, abs/2202.03356,
2022. URL: https://arxiv.org/abs/2202.03356,
arXiv:2202.03356.

A Model and Definitions
We consider a network switch equipped with an on-chip buffer
size of B units shared by N ports. We mainly follow the widely
used model in the literature [9, 26, 33]. Time is discrete, and
we refer to each step as timeslot. Packets (each of size unit 1)
arrive in an online manner as time progresses. Each timeslot
is divided into two phases, arrival phase and departure phase.
During each arrival phase, at most N number of packets (in
aggregate) arrive destined to N ports. During each departure
phase, every queue drains out one packet unless the queue is
empty. A buffer sharing algorithm manages the shared buffer
allocation across the N ports. We next define preemptive
(push-out) and non-preemptive (drop-tail) buffer sharing.

Definition 2 (Preemptive buffer sharing). During every
arrival phase, the buffer sharing algorithm is allowed to
preempt i.e., drop any number of existing packets in the buffer.

Definition 3 (Non-preemptive buffer sharing). During every
arrival phase, the buffer sharing algorithm is only allowed
to accept or drop the incoming packet. Every accepted packet
must eventually be drained out from the corresponding queue.

We denote by σ(t) = (σi(t),σi(t), ...,σN(t)), an N-tuple,
where σi(t) denotes the number of packets arriving at time
t to queue i. We study the performance of a buffer sharing
algorithm in terms of throughput i.e., our objective is to
maximize the total number of packets transmitted over the
entire arrival sequence. We compare the performance of
our online algorithms against an offline optimal algorithm,
which has access to the entire arrival sequence at t=0 and has
infinite computational capacity.

https://pybind11.readthedocs.io/en/stable/
https://pybind11.readthedocs.io/en/stable/
https://doi.org/10.1145/3387514.3405899
https://scikit-learn.org/stable/
https://doi.org/10.1109/TPDS.2017.2671429
https://doi.org/10.1145/3341302.3342090
https://doi.org/10.1109/49.772451
https://www.usenix.org/conference/nsdi23/presentation/wang-weiyang
https://www.usenix.org/conference/nsdi23/presentation/wang-weiyang
https://doi.org/10.1109/90.477712
https://doi.org/10.1145/3365609.3365864
https://doi.org/10.1145/2592798.2592806
https://doi.org/10.1145/3131365.3131375
https://arxiv.org/abs/2202.03356
http://arxiv.org/abs/2202.03356

Definition 4 (Competitive ratio). Let ALG be an online
algorithm and OPT be an offline optimal algorithm for the
buffer sharing problem. Let ALG(σ) and OPT(σ) be the total
number of packets transmitted by ALG and OPT for the arrival
sequence σ. We say ALG is c-competitive if it satisfies the
following condition for any arrival sequence σ.

OPT (σ)≤c·ALG(σ) (3)

B FollowLQD: A Deterministic Algorithm
In this section we propose a new online deterministic
algorithm FollowLQD in the non-preemptive case which is
a non-predictive building block of CREDENCE. Intuitively,
FollowLQD simply follows the Longest Queue Drop (LQD)
queues in the preemptive model. In particular, FollowLQD
maintains a threshold Ti(t) for each queue at time t. The
thresholds are updated for every packet arrival and departure
according to LQD in the preemptive model. We present
the pseudocode for FollowLQD in Algorithm 2. While
FollowLQD tries to follow LQD queue lengths by accepting
packets as long as the queue lengths are smaller than the
thresholds, it may happen that FollowLQD queues are larger
than their thresholds. This is since FollowLQD cannot preempt
(remove) existing packets in the buffer whereas LQD can pre-
empt and correspondingly the thresholds may drop below the
queue lengths. FollowLQD simply drops an incoming packet
if it finds that the corresponding queue exceeds its threshold.

Although LQD is known to be 1.707-competitive, we show
that FollowLQD is still at least N+1

2 -competitive. We present
our lower bound based on a simple arrival sequence.

Observation 1. FollowLQD is at least N+1
2 -competitive.

Proof. We construct an arrival sequence such that for every
two packets transmitted by FollowLQD, the offline optimal
algorithm OPT transmits N+1 packets. Consider that all the
queues are empty at time t = 0. We then burst packets to a
single queue say i until its queue length reaches B. Note that
this is possible since the threshold for queue i that follows the
corresponding LQD queue also grows up to B. At the end of
the departure phase, FollowLQD transmits one packet and the
queue length becomes B−1. At this point, we send N packets,
one packet to each of the N queues. The thresholds are updated
based on LQD, which has the following actions: (i) preempt
N − 1 packets from queue i and (ii) accept all N packets to
N queues. Correspondingly, the threshold for queue i of Fol-
lowLQD drops to B−N + 1 but it still has B− 1 packets in
queue i. As a result, it can only accept one packet out of the
N incoming packets. At the end of the departure phase during
this timeslot, FollowLQD has B−1 packets in queue i and has
transmitted 1 packet in total. In the next timeslot, we send N
packets to the queue i so that LQD’s queue i now gets back to
size B again. As the threshold is larger than the queue length
(B−1), FollowLQD accepts 1 packet. At the end of the depar-
ture phase, FollowLQD transmits 1 packet from the queue i.

Algorithm 2: FollowLQD
Input : σ(t)

1 procedure ARRIVAL(σ(t)):
2 for each packet p∈σ(t) do
3 Let i be the destination queue for the packet p
4 UPDATETHRESHOLD(i, arrival)
5 if qi(t)<Ti(t) then
6 if Q(t)<B then
7 qi(t)←qi(t)+1 ▷ accept
8 else
9 ▷ Drop

10 procedure DEPARTURE(i):
11 if qi(t)>0 then
12 qi(t)←qi(t)−1 ▷ Drain one packet
13 UPDATETHRESHOLD(i, departure)
14 function UPDATETHRESHOLD(i,event):
15 if event = arrival then
16 if Γ(t)=B then ▷ Sum of thresholds
17 Let Tj(t) be the largest threshold
18 Tj(t)←Tj(t)−1 ▷ Decrease
19 Ti(t)←Ti(t)+1 ▷ Increase
20 else
21 Ti(t)←Ti(t)+1 ▷ Increase
22 Γ(t)←Γ(t)+1
23 if event = departure then
24 if Ti(t)>0 then
25 Ti(t)←Ti(t)−1 ▷ Decrease
26 Γ(t)←Γ(t)−1

Overall, FollowLQD transmitted 2 packets but OPT transmit-
ted N+1 packets. We then repeat the sequence such that for
every N+1 packets transmitted by OPT, FollowLQD transmits
2 packets. The competitive ratio is then at least N+1

2 .

C Buffer Sharing Algorithms with Predictions
In this section, we introduce our model for buffer sharing
where there exists an oracle that predicts packet drop (or
accept) for each packet in the arrival sequence σ, according
to the prediction model introduced in §2.3.1. We denote the
drop sequence of LQD for the arrival sequence σ by φ(σ), and
the predicted drop sequence by φ′(σ). We classify prediction
for each packet in to four types: true positive, false positive,
true negative and false negative (see Figure 5. We denote the
sequence of true positive predictions by φ′T P(σ), false positive
predictions by φ′FP(σ), true negative predictions by φ′T N(σ)
and false negative predictions by φ′T P(σ). We drop σ in our
notations when the context is clear.

Hereafter, we mainly compare our online non-preemptive
algorithm with predictions against online LQD (preemptive).
We define the error made by the oracle by the following error
function.

Definition 1 (Error function). Let LQD(σ) and FollowLQD(σ)

(a) Burst size = 12.5% (b) Burst size = 25% (c) Burst size = 50% (d) Burst size = 75%

Figure 11: CDF of flow completion times (slowdown) for CREDENCE, DT, ABM and LQD across various burst sizes of incast
workload and websearch workload at 40% load, with DCTCP as the transport protocol. Burst size is expressed as a percentage
of the buffer size.

denote the total number of packets transmitted by the online
push-out algorithm LQD and the online drop-tail algorithm
FollowLQD over the arrival sequence σ. Let φ denote the
sequence indicating drop by LQD for each packet in the
arrival sequence σ. Let φ′ denote the sequence of drops
predicted by the machine-learned oracle. Let φ′T P, φ′FP, φ′T N ,
and φ′FN denote the sequence of true positive, false positive,
true negative and false negative predictions for the arrival
sequence σ. We define the error function η(φ,φ′) as follows:

η(φ,φ′)=
LQD(σ)

FollowLQD
(
σ−φ

′
T P−φ

′
FP

) (1)

We now analyze CREDENCE that relies on drop predictions
φ′ and takes decisions in pursuit of following LQD more accu-
rately. Algorithm 1 presents the pseudocode for our algorithm.

In essence, perfect predictions allows us to perfectly follow
LQD queues, essentially transmitting as many packets as
LQD. However, we are also concerned about the performance
of the algorithm when the oracle makes mispredictions. In the
following, we study the competitive ratio of CREDENCE as the
error grows. We obtain the competitive ratio as a function of
the error η: we show that CREDENCE is 1-competitive against
LQD with perfect predictions but at most N-competitive when
the error is arbitrarily large.

Theorem 1. The competitive ratio of CREDENCE grows
linearly from 1.707 to N based on the prediction error η(φ,φ′),
where N is the number of ports, φ is the drop sequence of LQD
and φ′ is the predicted sequence of drops i.e., the competitive
ratio is at most min(1.707 η(φ,φ′),N).

Lemma 1. The total number of packets transmitted by
CREDENCE for an arrival sequence σ, a drop sequence φ by
LQD and the predicted drop sequence φ′ is given by

CREDENCE(σ)≥ LQD(σ)

η(φ,φ′)︸ ︷︷ ︸
error

(2)

Proof. For simplicity, we refer to CREDENCE as ALG in the
following. We prove our claim by analyzing the drops of ALG
and relating the transmitted packets by ALG(σ) to LQD(σ′).
Every drop of ALG arises from three types of situations. First,
ALG can drop a packet due to the thresholds. Note that the
thresholds used by ALG correspond to the queue lengths of
preemptive LQD over the same arrival sequence σ. As a
result, both ALG and FollowLQD algorithm have the same
thresholds at any time instance. Second, ALG drops a packet if
the prediction is either true positive or false positive if and only
if the queue length satisfies the corresponding thresholds. This
type of drops are at most the total number of true positive and
false positive predictions. Third, ALG drops a packet when
the buffer is full which is the same condition for FollowLQD.
In essence, ALG drops at most all the positive predictions and
drops at most the number of packets dropped by FollowLQD
serving the arrival sequence σ− φ′T P − φ′FP i.e., the arrival
sequence in which all the packets predicted as positive are
removed from σ. In order to prove our main claim, it remains
to argue that the extra packets accepted by ALG due to the
safeguard condition do not result in additional drops compared
to FollowLQD with the arrival sequence σ−φ′T P−φ′FP. For
every packet that fails to satisfy the threshold but gets accepted

(a) Load = 20% (b) Load = 40% (c) Load = 60% (d) Load = 80%

Figure 12: CDF of flow completion times (slowdown) for CREDENCE, DT, ABM and LQD across various loads of websearch
workload and incast workload at a burst size 50% of the buffer size, with DCTCP as the transport protocol.

due to the safeguard condition by ALG, could cause at most
one extra drop due to the thresholds before the buffer full
again compared to FollowLQD. This is since, if FollowLQD
accepts a packet, then its queue length is certainly less that
the corresponding threshold (that is same for ALG). However,
the queue length of ALG may have some extra packets that are
accepted due to the safeguard condition. As a result, each such
extra packet (dropped by FollowLQD) contributes to at most
one drop compared compared to FollowLQD and the trans-
mitted packets remains equivalent. Further, by the time the
buffer is full in ALG, all the extra packets accepted due to the
safeguard condition would have been drained out of the buffer.
This is due to the fact that any such extra packet is at a queue
length of at most B

N (the safeguard condition) that drains out be-
fore the buffer fills up i.e., it takes at least B

N timeslots to fill the
buffer (only N packets can arrive in each timeslot). As a result,
ALG transmits at least the total number of packets transmitted
by FollowLQD over the arrival sequence σ−φ′T P−φ′FP i.e.,

ALG(σ)≥FollowLQD(σ−φ
′
T P−φ

′
FP)

Using Definition 1, we express FollowLQD in terms of LQD
and the error function η(φ,φ′), and obtain Equation 2.

Lemma 2. CREDENCE transmits at least 1
N times the number

of packets transmitted by an offline optimal algorithm OPT
i.e., CREDENCE(σ)≥ 1

N ·OPT (σ).

Proof. Irrespective of the predictions, CREDENCE always
accepts an incoming packet if the longest queue is less than
or equal to B

N . When CREDENCE drops a packet, there is at
least one queue that has at least B

N number of packets. Hence,

every packet in OPT can be matched to at least B
N number of

packets. Consequently, the competitive ratio is at most N.

We are now ready to prove our main claim (Theorem 1)
using the above results.

Proof of Theorem 1. From Definition 4, in order to prove
the competitive ratio of our CREDENCE, we are mainly
concerned with the upper bound of OPT (σ)

CREDENCE(σ) for any

arrival sequence σ. Since OPT (σ)
LQD(σ) ≤ 1.707 is known from

literature [9, 26], we use this result to compare CREDENCE
and LQD in order to argue about the competitive ratio i.e,

OPT (σ)
CREDENCE(σ) ≤ 1.707 · LQD(σ)

CREDENCE(σ) for any request sequence
σ. From Lemma 1, we have the following:

LQD(σ)

CREDENCE(σ)
≤η(φ,φ′)

From Lemma 2, irrespective of the predicted sequence,we have
that OPT (σ)

CREDENCE(σ) ≤ N. Finally, since OPT (σ)
CREDENCE(σ) ≤ 1.707 ·

LQD(σ)
CREDENCE(σ) , the competitive ratio of CREDENCE is given by:

OPT (σ)
CREDENCE(σ)

≤min
(
1.707 η(φ,φ′), N

)
The proof follows by Definition 4.

Theorem 2. Let φ′ denote the sequence of drops predicted
by the machine-learned oracle. Let φ′T P, φ′FP, φ′T N , and
φ′FN denote the sequence of true positive, false positive,
true negative and false negative predictions for the arrival

(a) Burst size = 12.5% (b) Burst size = 25% (c) Burst size = 50% (d) Burst size = 75%

Figure 13: CDF of flow completion times (slowdown) for CREDENCE, DT, ABM and LQD across various burst sizes of incast
workload and websearch workload at 40% load, with PowerTCP as the transport protocol. Burst size is expressed as a percentage
of the buffer size.

sequence σ. The error function η(φ,φ′) (Definition 1) is upper
upper bounded as follows:

η(φ,φ′)≤ φ′T N+φ′FP

φ
′
T N−min

(
(N−1)·φ′FN ,φ

′
T N

)
Proof. Our proof is based on two arguments: (i)
LQD(σ)=φ′T N +φ′FP and (ii) FollowLQD(σ−φ′T P−φ′FP)≥
φ′T N−min

(
(N−1)·φ′FN ,φ

′
T N

)
.

First, LQD(σ) is the total number of transmitted packets by
LQD. Recall that the ground-truth (transmitted by LQD) for
a prediction is an accept if and only if the prediction is either
true negative or a false positive. Hence, the total number of
packets transmitted by LQD i.e., LQD(σ) is the sum of true
negative predictions and the false positive predictions.

Second, FollowLQD(σ − φ′T P − φ′FP) transmits at
least φ′T N + φ′FN − Y , where Y is the total number of
drops caused by false negative predictions. Note that
σ = φ′T N +φ′FN +φ′FP +φ′T P. The proof follows by showing
that each false negative results in at most N extra drops due
to the buffer limit. Further, these extra drops must be true
negative predictions since we have already removed positive
predictions from our arrival sequences (i.e., we assume at most
all the positive predictions have be dropped). Additionally,
since the extra drops are true negative predictions, it implies
that LQD transmits those packets but although our prediction
is true, we incur additional drop due to the buffer limit. For
each false negative, there can be at most one drop in a single
timeslot for up to N−1 distinct timeslots such drops that LQD
accepts and transmits those packets but FollowLQD drops
them. Beyond N−1 drops, there can only be at most 1 other
drop upon which the existence of an additional packet (false
negative) in FollowLQD’s buffer would be nullified. This is
since, during the initial N− 1 drops, FollowLQD could not
accept the incoming packet but after the transmission phase,
the queues having false negative predictions decrement their

size by 1. This leaves at least N − 1 packets free space in
FollowLQD after N − 1 drops and LQD also has the same
remaining space after those extra N−1 accepted by LQD are
also transmitted. At this time, both LQD and FollowLQD have
the same remaining space and they also transmit the same
number of packets in each timeslot. One additional drop by
FollowLQD corresponding to a false negative is still possible
due the thresholds i.e., if there exists a packet arrival to the
queue having false negative, the incoming packet is dropped
since the existence of false negatives implies that the queue
length is large than the threshold. As a result, there are at most
N drops by FollowLQD for each false negative prediction.

The proof follows by the above two arguments.

For completeness, although well-known in the literature,
we define accuracy, precision, recall and f1 score below (used
in Figure 15 in §4).

Accuracy=
φ′T P+φ′T N

φ′T P+φ′T N+φ′FP+φ′FN

Precision=
φ′T P

φ′T P+φ′FP

Recall=
φ′T P

φ′T P+φ′FN

F1 score=
2·φ′T P

2·φ′T P+φ′FP+φ′FN

D Additional Results
In this section, we present additional results from our
evaluations. Figures 11, 12, 13 present the CDF of flow
completion times for each experiment in our evaluations (§4),
showing the complete performance profile of each algorithm.

Figure 14 presents our numerical results based on a custom
simulator in discrete time. Note that Figure 14 shows the

0.0 0.2 0.4 0.6 0.8 1.0
Probability of a false prediction

1.0

1.5

2.0

2.5
Th

ro
ug

hp
ut

 ra
tio

 LQ
D

AL
G Credence

DT
LQD

Figure 14: As the probability of false predictions increases,
CREDENCE’s throughput compared to LQD (push-out) i.e.,
the ratio LQD

ALG increases from 1 to 2.9 (lower values are better).
CREDENCE performs significantly better than DT even when
the probability of false predictions is as high as 0.7.

1 2 4 8 16 32 64 128
Number of trees

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Accuracy
Precision
Recall

F1 score
Error score 1η

Figure 15: The quality of our predictions does not improve
significantly beyond 4 trees in our random forest classifier.

throughput ratio of an algorithm vs LQD. We perform this
experiment using custom simulator in order to fully control
the prediction error (artificially).

We generate large bursts of the size of the total buffer,
where each such burst arrives according to a poisson process
(which is fixed in subsequent runs). We then collect a trace
of per-packet drop (or accept) trace using LQD as the buffer
sharing algorithm. This trace serves as the ground-truth as well
as the case for perfect predictions for CREDENCE. We then
run CREDENCE over the same packet arrival sequence from
above, and use the drop trace of LQD as predictions. With full
access to this trace i.e., perfect predictions case, CREDENCE
performs exactly as LQD as expected. However, in order to

study the performance of CREDENCE with increasing error, in
a controlled manner, we flip each packet drop (or accept) from
our LQD’s drop trace i.e., each flip becomes a false prediction.
We control the error via the flipping probability i.e., the false
prediction rate. We observe from Figure 14 that CREDENCE
degrade in throughput as the probability of false predictions
increases i.e., as the prediction error increases. However, even
at as high as 0.7 probability of false predictions, CREDENCE
still out-performs DT.

In Figure 15, we present our results obtained from a
parameter sweep across the number of trees used for random
forest model vs prediction scores.

	Introduction
	Motivation
	Buffer Sharing from Online Perspective
	Drawbacks of Traditional Approaches
	Predictions: A Hope for Competitiveness
	Prediction Model
	Common Pitfalls

	Prediction-Augmented Buffer Sharing
	Overview
	Credence
	Properties of Credence
	Practicality of Credence

	Evaluation
	Setup
	Results

	Related Work
	Future Research Directions
	Systems for In-Network Predictions
	Theory for Performance Guarantees

	Conclusion
	Model and Definitions
	FollowLQD: A Deterministic Algorithm
	Buffer Sharing Algorithms with Predictions
	Additional Results

