
Moving a step forward in the quest for
Deterministic Networks (DetNet)

Vamsi Addanki
LTCI, Telecom Paris,

Institut Polytechnique de Paris
vaddanki@telecom-paris.fr

Luigi Iannone
LTCI, Telecom Paris,

Institut Polytechnique de Paris
luigi.iannone@telecom-paris.fr

Abstract---Recent years witnessed a fast-growing demand, in
the context of industrial use-cases, for the so-called Deterministic
Networks (DetNet). IEEE 802.1 TSN architecture provides link-
layer services and IETF DetNet provides network-layer services
for deterministic and reliable forwarding. In such a context, in
the first part of this paper, we tackle the problem of misbehaving
flows and propose a novel queuing and scheduling mechanism,
based on Push-In-First-Out (PIFO) queues. Differently from
the original DetNet/TSN specifications, our solution is able to
guarantee performance of priority flows in spite of misbehaving
flows. In the second part of this paper, we present our simulator
DeNS: DetNet Simulator, based on OMNET++ and NeSTiNG,
providing building blocks for link-layer TSN and network-layer
DetNet. Existing simulators have important limitations that do
not allow simulating the full DetNet/TSN protocol stack. We
overcome these limitations, making easy DetNet/TSN evaluations
possible. Our simulations clearly show that our solution is able to
satisfy constraints of deterministic networks, namely, guarantee
zero packet loss and low latency, while at the same time allowing
best-effort flows to co-exist. Furthermore, we show how our
newly-proposed queuing and scheduling solution successfully
limits the impact of misbehaving flows.

Index Terms---Deterministic Network (DetNet), Time Sensitive
Network (TSN), simulation, queuing.

I. INTRODUCTION

The Internet works as a best-effort service, without guaran-
tees, where end-to-end latency, jitter, and packet-loss probabil-
ity have no fixed bounds. Latest years have witnessed a growing
interest on the so called Deterministic Networks (DetNet) and
Time Sensitive Networks (TSN). In this type of networks, a
bounded latency and zero packet loss is guaranteed to a set
of priority flows. Such requirements are typically of high
importance in industrial control process, audio/video streaming,
vehicular control and so on. At network layer, mechanisms such
as packet and flow replication, explicit bandwidth reservation,
and priority queuing are employed to realize DetNet [1]. At
the link-layer, the IEEE 802.1 Time-sensitive Networking
(TSN) Task Group has specified standards for IEEE 802.3
Ethernet networks enabling bounded latency communication
over standard Ethernet [2].

While TSN standards are able to achieve bounded latency,
they lack mechanisms to ensure reliability in packet delivery.
The most common approach to lower the packet loss probability
to zero is to increase the size of buffers, as well as replicating

the traffic on several independent links, while filtering the
incoming traffic so as to make sure that no bandwidth
allocation is ever violated ([1], [3]). IEEE 802.1Qbv Time
Aware Shaper (TAS), IEEE Std 802.1Qbu and IEEE 802.3br
frame preemption algorithms, IEEE 802.1Qav Credit Based
Shaper (CBS), IEEE 802.1Qch Cyclic Queuing and Forwarding
(CQF) were proposed as part of Time Sensitive networking
(TSN) standard [4]. However, the effects of a misbehaving
TSN/DetNet flow has not been taken into account in the IEEE
standards for TSN, as well as the effects on worst case Quality
of Service (QoS) for best-effort flows. Our first contribution
is to point-out potential problems with current standards and
propose an enhanced queuing and scheduling mechanism with
a traffic shaper designed for DetNet to co-exist with Internet
traffic. Our proposal is able to achieve bounded end-to-end
latency, zero packet-loss for DetNet flows and, at the same
time, provide a better worst-case QoS for best-effort flows.

Recent works ([5], [6]) implement simulation models for
TSN standards, focusing on TAS, frame preemption, CBS,
frame replication and elimination. Although these models sat-
isfy TSN requirements, they fail to satisfy DetNet requirements.
Moreover, the state-of-the-art TSN simulators are only limited
to link-layer and miss the modular flexibility of INET [7] to
extend the models to upper layers or to re-use the presented
modules of TSN simulators in different scenarios. A recent
study concludes an urgent need for DetNet simulators and
rigorous simulations on the standards to better understand the
working of such networks [8]. Our second contribution in this
paper is presenting DeNS: Deterministic Networks Simulator,
based on OMNET++. We incorporate TSN standard IEEE
802.1Qbv from [5] by re-implementing it so as to enable
extensions to upper-layers. Beyond our proposed queuing and
scheduling mechanism, we also implement Cyclic Queuing
and Forwarding (IEEE 802.1Qch), resource allocation and
sharing, classification based on both DSCP (Differentiated
Service Code Point) and 5-tuple to facilitate per-class and per-
flow configuration, and DSCP to VLAN Priority Code Point
(PCP) mapping. We show by simulations that we successfully
included the key aspects of DetNet, such as resource allocation,
queuing and scheduling, scalability to large networks and co-
existence of DetNet with best effort Internet traffic.

The remaining of the paper is organized as follows. In
Sec. II, we describe the key aspects of DetNet. We discuss aISBN 978-3-903176-28-7© 2020 IFIP

potential problem with TSN standards when applied for large
scale DetNet and propose a novel Time Aware queuing and
scheduling in Sec. III. In Sec. V we discuss the related work
on DetNet and TSN in the context of simulation models, while
describing our simulator DeNS in Sec. VI. In Sec. VIII we
present the simulation results showing that DeNS satisfies the
requirements of DetNet. Sec. IX concludes the paper.

II. DETNET OVERVIEW

Hereafter, we describe some of the key aspects of the DetNet
architecture as specified in details by RFC 8655 [1], while
in Sec. VI, we describe the components of ‘‘DeNS’’ which
individually or collectively achieve such key aspects.
Resource Allocation: In order to guarantee packet delivery
and to avoid losses due to congestion, explicit reservation of
resources is made for DetNet flows along their path in the
network. Strict reservation of resources is often used due to
simplicity. However, strict reservation of resources leads to
under-utilization of resources when such reserved resources
are not being fully utilized. In Sec. VI-A2, we show how
a combination of bandwidth and buffer reservation allows
maximizing the utilization of bandwidth un-used by DetNet
flows. While configuring bandwidth reservation is straight-
forward, reservation of buffer resources is more complicated.
Often, buffer resources are allocated based on flow priority.
In particular, the TSN standard uses the Priority Code Point
(PCP) value in the VLAN header to prioritize the flows at
link-layer for queuing and scheduling, with an egress queue
completely dedicated to DetNet flows.
Queuing and Scheduling: DetNet achieves bounded latency
and low packet-loss probability by reservation of bandwidth
and buffer resources. However, this is not sufficient. The
fundamental reason is that latency variation may result in the
need for extra buffer space, increasing the worst-case per-hop
latency. Standard queuing and scheduling algorithms allow to
compute the worst case latency contribution of each node to the
end-to-end latency, hence, the buffer space required by DetNet
flows in each node. To achieve this, IEEE 802.1 working group
specified a set of queuing, shaping, and scheduling algorithms,
which include Credit Based Shaper (IEEE 802.1Qav), Timed-
Aware Scheduling (IEEE 802.1Qbv), Frame-Preemption (IEEE
802.1Qbu). As previously explained, priority is determined
by the PCP value, and mapped to a queue using the above-
mentioned algorithms. However, there are several problems
with Time-Aware scheduling in the context of DetNet. We
discuss the issues related to misbehaving flows, and present
our solution, in Sec. III.
Scalability to Large Networks: In order to reserve resources
for individual DetNet flow a large amount of state information
is required. Aggregation of DetNet flows is a technique to
improve scalability in large networks. To this end, flows’
classification based on MPLS hierarchy and IP DiffServ Code
Points (DSCP) are some of the possible techniques described in
RFC 8655. Typically network nodes in the path of DetNet flows
are configured to classify flows at the ingress, based on certain
fields of the packet header (e.g., 5-tuple classification) and

mapped to a DSCP value in the IP header. At the egress, packets
are classified based on the DSCP value, which determines
the priority. Reserved resources are determined and allocated
based on the classification based on the PCP value. However,
is important to note that the PCP field in VLAN header is
limited to 3 bits (8 values). In order to combine classification
based on DSCP (for allocation of resources) and PCP (for
priority queuing and scheduling at lower-layers), there is the
need to map each DSCP value to a PCP value. This enables
flows to be classified into a maximum of 64 classes since
DSCP is only 6 bits.
Co-existence of DetNet and Best Effort traffic: While
DetNet flows are of high priority with reserved resources,
their co-existence with best effort Internet traffic requires
avoiding starvation of non-DetNet flows. At the same time,
it is important that non-DetNet flows do not disrupt DetNet
flows. To achieve this, RFC 8655 states the following rules: a)
Un-used reserved bandwidth is made available to non-DetNet
flows but not to other DetNet flows; b) DetNet flows may be
rate-limited in order to ensure that any highest priority non-
DetNet flows is also ensured a better packet-loss probability
and worst case latency; c) sufficient opportunities for non-
DetNet flows must be allowed by the underlying scheduling
algorithm in order to avoid starvation of other flows in the
network.

III. TSN AND MISBEHAVING FLOWS

Time sensitive networks are relatively small scale networks.
However, DetNet aims at larger scale networks and to co-
exist with the Internet, where there are high chances of a
having misbehaving traffic, which can disrupt DetNet flows.
In this section, we show how misbehaving flows can create
problems in TSN and propose a novel mechanism, which
deviates from the traditional FIFO queuing in the context of
TSN/DetNet. From here on, for the sake of simplicity, we
consider VLAN header field PCP, whose values range from 0
to 7 have increasing priority (7 being the highest priority) and
are mapped to queues namely, queue-[0-7] in TSN queuing
and scheduling architecture. Before describing in details the
impact of misbehaving flows we overview the two main TSN
scheduling algorithms, namely TAS and CFQ.
Time Aware Shaper (TAS): Fig. 1a shows IEEE 802.1Qbv
Time Aware Scheduling mechanism, where there are 8 priority
queues, each corresponding to 0-7 VLAN priorities (PCP)
and each queue is associated with a gate which opens and
closes based on a schedule determined from Gate Control List
(GCL).1 A transmission selection algorithm is used to select
packets to be transmitted from the queues with open gate state.
IEEE 802.1 Qbv ensures that the packets leave the queue only
in a reserved time-slot (determined by GCLs) so as to achieve
deterministic departures from queue.

1Gates control whether or not the content of a queue can be scheduled for
transmission. If the gate of a queue is open, a packet inside this queue may
be selected by the transmission selection algorithm. If the gate is closed, a
packets in the corresponding queue cannot be transmitted even if the outgoing
network link is idle. Each entry of Gate Control List consists of gate states
for each queue and the duration. The GCL entries are repeated in cycle.

GateGate Gate Gate Gate Gate Gate Gate

Transmission Selection

Switching Fabric

Gate Control List
T1: 00000001
T2: 11111110

7 6 5 4 3 2 1 0

(a) Original IEEE Time Aware Shaper.

GateGate Gate Gate Gate Gate Gate Gate

Transmission Selection

GateGate Gate Gate Gate Gate Gate Gate

Switching Fabric

Gate Control List
(Dequeue)

T1: 00000001
T2: 11111110

Gate Control List
(Enqueue)

T1: 11111111
T2: 11111110

7 6 5 4 3 2 1 0

(b) Modified TAS with Tail Queue gates.

GateGate Gate Gate Gate Gate Gate Gate

Transmission Selection

Switching Fabric

Gate Control List
T1: 00000001
T2: 11111110

PIFO

Gate-7 Open?
NO

YES

7 6 5 4 3 2 1 0

(c) Time Aware PIFO Scheduler.

Figure 1: Original and modified TSN Queuing and Scheduling Architectures.

Cyclic Queuing and Forwarding (CQF): Similar to TAS,
CQF (IEEE 802.1Qch) makes use of 8 queues prioritized
based on PCP and gates at the head of the queues to control
transmission time. However, two queues per-priority are used.
During an odd cycle, one queue performs only enqueue
operations (i.e., add packets to the queue), while the other
only dequeues packets (i.e., taking them out of the queue).
During the even cycle, the queue operations are switched. The
advantage of such approach is that, for H hops and T cycle
time, a maximum end-to-end latency of (H + 1) · T and a
minimum of (H − 1) · T is guaranteed.
When Flows Misbehave: We argue that there is a potential
problem when a DetNet flow misbehaves. TAS takes no action
on packets which arrive at the queue out of their reserved time-
slot. In this case, packets are buffered and have to wait until
the queue gate opens. This creates added queuing latency for
subsequent packets which arrive in the reserved time-slot, thus
disrupting the deterministic latency requirement. CQF solves
this problem by synchronized enqueue and dequeue operation.
However, this creates a new problem of congestion when a
scheduled flow misbehaves using high transmission rate. CQF
cannot solve this problem because packets are enqueued in one
cycle and only dequeued in the next cycle, hence, not using the
available bandwidth to reduce the congestion by transmitting
at link rate. Furthermore, with increased queue lengths due
to cyclic dequeue operations, best-effort non-priority flows
observe high RTT, as a result of longer waiting time in the
queue, resulting in starvation, an effect we show by simulation
in Sec. VIII. We conclude that it is important to first separate
periodic DetNet traffic and sporadic best effort traffic. Then,
packets need to be dequeued and scheduled for transmission
without waiting for a whole cycle.

IV. PROTECTION FROM MISBEHAVING FLOWS

A. Tail Queue Gates

As a naive solution, we can enhance TAS with queue tail
gates shown in Fig. 1b, introducing strict control on enqueue
operations. Priority queue 7, which is reserved for periodic
traffic, has head and tail gate states which are time synchronized
so that scheduled traffic is only enqueued during the reserved
time-slot. Packets arriving out-of reserved time slot will be

simply discarded. This solution is only applicable if the time-
critical traffic consists of only periodic traffic, but does not
take into account random (sporadic) traffic, where packets
may be sent in any time interval. Nonetheless, such a naive
solution allows observing the effect of traffic-conditioning and
bandwidth reservations on TAS in the presence of misbehaving
flows (which interfere with periodic flows), without the effects
of packet arrivals during closed gate time-interval.

B. Time Aware PIFO Scheduling (TAPS)

With the understanding from previous solution, we propose
a novel architecture which enhances TAS with Push-In-First-
Out queues [9], which allows to ”push-in” packets in any
position in the queue (not just at the head or tail), and able to
guarantee services for all time-critical traffic. Fig. 1c shows
TAPS architecture, where all the queues are FIFO except queue
6 which is Push-In-First-Out (PIFO). Packets of periodic traffic
are enqueued into queue 7 during reserved time slot (odd cycle)
similar to TAS. However, TAPS enqueues DetNet scheduled
packets which arrive out-of reserved time-slot, into queue
6 shared by other types of traffic. Queue 6 PIFO needs to
maintain only an index position, namely Ip, which divides
queue 6 (Q6) virtually into two parts Qst (for scheduled traffic
st) and Qbe (for best effort traffic be), where Qst corresponds
to the first part of the queue from the head to Ip, while Qbe
the second part from Ip to its tail. Finally, periodic traffic
(PCP=7) is enqueued at the tail of Qst (pushed in at Ip)
and best-effort traffic is enqueued at the tail Qbe. TAPS is
similar to TAS during reserved time-slot. However, during
the unreserved time-slot packets are enqueued into a separate
queue which is PIFO and shared by best-effort traffic. Note
that, this is not an over-complication compared to simply using
a separate dedicated FIFO queue, as such a mechanism will
cause similar problems discussed in Sec. III and causes potential
starvation for best-effort traffic. TAPS allows best-effort traffic
to opportunistically transmit packets during unreserved time-
slot at the same time allows for best-effort packets to be
dropped (instead of over-buffering which increases RTT) when
Qst length increases and finally the division of queue into
Qst and Qbe prioritizes scheduled traffic. A clear limitation of
TAPS, because packet preemption is not allowed, is that the

p1 p2 p3 np1 np2
flows

8

20
32

128

1024
En

d-
to

-E
nd

 L
at

en
cy

 [u
s]

Scenario-1
DeNS
NeSTiNg

p1 p2 m-p3 np1 np2
flows

Scenario-2

Figure 2: End-to-End latency for three priority flows and two
non-priority (best effort) flows. Left hand side shows how
latency is bounded for priority flows when all of them respect
their bandwidth. Right hand side shows how in the case of
TSN (NeSTiNg implementation), when one priority flow uses
more bandwidth than expected (p3 in our case), the latency
of the other priority flows explode, as high as the best effort
traffic.

first packet enqueued into Qst (when Ip is at the head of Q6)
experiences delay due to a best-effort frame in transmission.

V. RELATED WORK

Before going further and introduce the simulator we devel-
oped to evaluate the solutions presented in the previous section,
we discuss here the related research in the area of simulators
for TSN and DetNet.

The current specifications of DetNet evolved as part of
TSN, which in-turn evolved from AVB (Audio-Video bridging)
and real-time Ethernet extensions. To our best knowledge, no
specific simulator has yet been published that fully models
Deterministic Networks. With IETF (Internet Engineering
Task Force) working on DetNet specifications at network-
layer and IEEE working on TSN standards at link-layer, a
simulator bridging the gap between the two, enabling extensive
evaluations of developed models is of a urgent need for the
research community [8].

Several simulators covering TSN standards were published
in the past. Jiang et al. [10] presented a TSN simulation
model based on CoRE4INET framework [11], which offers
functionality of IEEE802.1Qbv and IEEE802.1AS for traffic
scheduling and time synchronization respectively. The authors
just show by simulations that scheduled traffic is unaffected by
best effort flows. The implementation by Jiang et al. satisfies
one of the key features of DetNet, i.e., co-existence of DetNet
with Internet’s best effort traffic. However, the source code
is not available online, making it inaccessible to the research
community for further development and evaluations. In [12],
Heise et al. propose TSimNet, based on OMNET++. TSimNet
focuses on non-time based aspects of TSN, targeting industrial

p1 p2 p3 np1 np2
flows

0.1

1

10

100

1000

Th
ro

ug
hp

ut
 R

X
[M

bp
s]

Scenario-1
DeNS
NeSTiNg

p1 p2 m-p3 np1 np2
flows

Scenario-2

Figure 3: Throughput for 3 priority flows and 2 non-priority
(best effort) flows. Left hand side shows how throughput is
bounded for priority flows when all of them respect their
bandwidth. Right hand side shows how in the case of TSN
(NeSTiNg implementation), when one priority flow uses more
bandwidth than expected (p3 in our case), the throughput of
the other priority flows is ”eaten” by the misbehaving flow.

and avionic networks use-cases. Frame preemption, frame
replication, per-stream filtering techniques were included in
TSimNet. Although, the authors show that these techniques
significantly reduce latency, the simulator does not include
mechanisms to provide any guaranteed services for priority
flows. Hence, TSimNet is not suitable for simulating DetNet.

In an inspiring recent work, J. Falk et al. [5] propose NeST-
iNg, a simulator based on OMNET++ and INET framework.
NeSTiNg includes TSN standards such as IEEE802.1Qbv
(Time Aware Shaper), IEEE802.1Qav (Credit Based Shaper),
IEEE802.1Qbu (Frame Preemption). It also provides priority
queuing based on the PCP (Priority Code Point) field, in
accordance to IEEE802.1 standards. However, NeSTing is
not suitable for simulating DetNet. Indeed, the protocol stack
implemented in NeSTiNg is limited to the link-layer, and
although the simulator is based on INET framework, we
observed that several NeSTiNg modules could not be used
directly with INET standard modules. More specifically, no
extensions to upper layers to make use of a traffic conditioner
where proposed. As an example of such limitation, we show a
small-scale simulation results in Fig. 2 and Fig. 3 showing end-
to-end latency and throughput. In both figures we show two
scenarios. In Scenario-1 all DetNet flows respect the demanded
bandwidth, while in Scenario-2 one of the DetNet flows start
using more bandwidth than they should. We compare TAS
using NeSTiNg simulator and TAS with traffic conditioner
and with upper layer extensions using our simulator DeNS.
We observe from those figures that TAS with our extensions
does guarantee services for scheduled traffic which arrives in
reserved time-slot even in the presence of misbehaving flows
as a result of traffic conditioning and bandwidth reservation.

Such simulations were not possible with state-of-the-art TSN
simulators, especially for DetNet. In the following section, we
briefly describe the key components of our DeNS simulator.

VI. DENS: DETNET SIMULATOR

In this section, we briefly describe the modules of DeNS, our
simulator based on OMNET++ discrete event simulator [13]
and INET the framework [7]. Due to space constraints, in the
following subsection we only describe some of the important
features which contribute to the realization of the key features
of DeNS. DeNS simulator provides the building blocks for
DetNet services at network-layer and TSN at link-layer,
enabling easy experimentation to understand the overall effect
of combined services. Although not discussed in this paper, we
would like to emphasize the great amount of implementation
work of DeNS in order to facilitate the re-use of modules in
any other scenario and their compatibility with existing INET
modules. We developed several modules, including VLAN
interface with PCP parameters, VLAN encapsulation module,
able to rewrite PCP in VLAN header when requested, all
compatible with INET typenames for the proper functioning.
The source code and a full documentation of DeNS is available
at https://github.com/vamsiDT/DeNS/. We organized our code
in to main modules which, we simply called Traffic Shaper
and Queue Scheduler.

A. Traffic Shaper

Strict reservation is the most simple approach for bandwidth
reservation and guarantees reserved resources to DetNet flows.
However, this leads to low bandwidth available for non-
DetNet (best effort) flows and under-utilization of bandwidth
when DetNet flows are inactive. The Traffic Shaper of DeNS
guarantees reserved bandwidth for DetNet flows, at the same
time maximizes reallocation of the unused bandwidth to best
effort traffic. It consists of a DSCP classifier, Per-Flow-Per-
Class shaper (PFPC), and a PCP Marker module. This module
operates at the network layer of the protocol stack, and packet
go first through the DSCP Classifier, then the PFCP module,
and finally through the PCP Marker module, as described in
the following.

1) DSCP classifier: The DSCP classifier has one input gate
and N + 1 output gates, where N is the number of of possible
classes. This component takes an array of N DSCP values as
parameters and classifies flows by matching the DSCP field in
the IP header. The unclassified flows (or non-DetNet) are sent
out through the gate N+1. Each output of the DSCP classifier
is connected to a corresponding input of the PFPC module.
The use of DSCP classifier allows to scale to large networks,
as described in Sec. II. It also solves the problem of limited
number of priorities in PCP. We use DSCP classification, also
to facilitate per-class resource allocation.

2) PFPC - Per-Flow-Per-Class shaper: PFPC has one input
and one output gate for each of the N + 1 classes. As shown
in Fig. 4, for each class i there are ni bit-buckets and ni token
buckets, where ni is the number of flows (identified with
the classic 5-tuple) of the class with bit-bucket length greater

than zero. Each bit-bucket of size Bmax has an instantaneous
occupancy of Bkj ,where k is class-id and j is 5-tuple flow-id
in the class. Similarly, the token buckets having maximum
Tmax tokens have an instantaneous occupancy of T kj , where
k is class-id and j is 5-tuple flow-id in the class. On packet
arrival at the ith gate of the PFPC component, only the ith

class actually receives the packet of length L, while all the
other classes assume a hypothetical packet with zero packet
length (L = 0). Then, every class k (with k ranging from 1
to N + 1) and for all flow-ids j in each class, the following
steps are performed:

1) If (L < (B − Bk
j) then accept the packet and continue;

otherwise drop the packet.
2) Increment the bit-bucket by the packet length L.
3) Increment token buckets by tkj :

tkj = rk ∗ (Now − LastArrivalj) (1)

where rk is the reserved bandwidth for each flow of class k.
4) If T k

j 5 Bk
j then Bk

j is decremented by T k
j and T k

j is set to
zero; else T k

j is decremented by Bk
j , Bk

j is set to zero.
5) A residual token bucket Tresidual is incremented by a value

tremaining calculated as:

tremaining = tunused + tunreserved (2)

where

tunused =

N∑
k=1

nk∑
j=1

T k
j (3)

tunreserved = runreserved ∗ (Now−LastArrivalN+1) (4)

6) Tresidual can shared among all class N + 1 flows (best effort
traffic) in TN+1

j by any resource sharing algorithm.

After the above calculation, the packet is sent out from the
i gate where the PFPC had received it. The PFPC component
takes the bandwidth reservations as configuration parameters.
The bandwidth reservation has to be specified for each of
the N classes and this is reserved and guaranteed by an
enforcing mechanism, for each flow belonging to a class. All
the unclassified flows are sent to the N + 1th class. As the
unused tokens from all the classes are collected, essentially,
the N + 1th class is able to use all the unused and unreserved
bandwidth. Although we collect unused tokens at every step
to maximize the link utilization, we are still able to allow for
all the classes, a maximum burst of Bmax, the size of the
bit-bucket. This way, we guarantee the reserved bandwidth and
also be able to accept short duration of bursts which is typical
for short-flows. The PFPC component realizes the following
keys features of DetNet (as described in Sec. II) a) Resource
Allocation; b) Co-existence of DetNet with best effort traffic.
Essentially, this component helps in satisfying the requirement
of bandwidth reservation while allowing non-DetNet flow and
denying other DetNet flows to utilize the unused bandwidth.

3) PCP Marker: As described in Sec. II, there is a need
for mapping DSCP to PCP values, in order to facilitate
classification based on PCP at lower layers, for priority queuing
and scheduling. For this reason, we develop a PCP Marker
module, which has N + 1 input gates and one output gate.
Based on the DSCP classification, a packet arrives at one of

Q1 Q2 Q3 Qn

Unused
tokens are
collected

Class-1

Q1 Q2 Q3 Qn

At packet arrival, queue length
increased by packet length in bits

Token arrival rate per Flow in
bits/sec = Bandwidth reservation

Unused
tokens are
collected

Class-N

Q1 Q2 Q3 Qn

Token arrival rate in bits/sec to be
shared by all Flows

Non-DetNet

Token arrival rate in
bits/sec =
unreserved
bandwidth

At packet arrival, queue length
increased by packet length in bits

At packet arrival, queue length
increased by packet length in bits

Token arrival rate per Flow in
bits/sec = Bandwidth reservation

Figure 4: PFPC - Per-Flow-Per-Class Traffic Shaper.

Router-A Router-B

Switch-A

Switch-B

Switch-C

Switch-D

HP[0-9] SP[0-9]

HX[0-2]
SX[0-2]

HO[0-9] SO[0-9]

Figure 5: Simulation Topology.

the input gates of the PCP Marker. Each gate of PCP Marker is
configured with a PCP value. When a packet arrives at ith gate,
a VLAN tag with PCP value equal to pi (set by configuration),
is attached to the packet.

B. Queue Scheduler

The Queue Scheduler module complements the Traffic
Shaper module by further implementing key DetNet features
such as queuing and scheduling, resource allocation, and co-
existence of DetNet with Internet traffic. The Traffic Shaper
module operates at network layer, while the Queue Scheduler
module guarantees bandwidth reservations and other features of
DetNet at layer 2. This module includes transmission algorithm,
queue head gates, and transmission selection, all three of which
taken from NeSTiNg [5], to extend the functionality of Time
Aware Shaper. We also provide PIFO queue [9] modules in
order to configure TAPS, described in Sec. III. Furthermore, it
adds two new components, namely the Layer 2 PFPC Dropper
and the Tail Gates.

1) Layer 2 PFPC Dropper: The algorithm executed by the
L2 dropper is similar to the PFPC component described in
Sec. VI-A2. However, unlike that component, the L2 dropper
has only two classes, high-priority (if PCP is 7) and low-
priority (if PCP < 7). The dropper component has 8 input
and 8 output gates, where the 8th input/output is connected to
high-priority class and the rest to low-priority class. Although
flows have reserved bandwidth and are also rate-limited in
PFPC at network layer, it is still possible for DetNet flows to
experience unwanted delay due to queue saturation at lower
layers as they share a queue with other priority flows. A L2
dropper component is introduced here to avoid saturation for
the priority queue, which is shared by high priority DetNet
flows. All the queues are FIFO or PIFO which are length-aware
and the components connected to it can access the state of the
queue (for example, instantaneous length of queue in packets
or bits). This component has access to queues and can take
additional drop actions also based on the queue state (e.g.,

using ARED [14] or FRED [15] algorithms) only for non-
DetNet flows, which do not have reserved bandwidth. Similar
to the PFPC component, any DetNet flow will be limited to
the configured maximum of reserved bandwidth.

2) Tail Gates: The Tail Gates component (discussed in
Sec. III) provides gating mechanism at the tail of queues,
to control enqueue operations. This component includes an
enqueue-switch function providing cyclic enqueue operations
in-order to simulate IEEE 802.1Qch or TAPS, where packets
are enqueued in one queue during odd cycle and another queue
during even cycle.

VII. DENS SIMULATOR PERFORMANCE EVALUATION

Before diving in the evaluation of the TAPS algorithm
presented in Sec. IV-B, we made a preliminary evaluation of
the overhead of DeNS simulator in comparison with standard
INET framework and state-of-the-art TSN simulator NeSTiNg.

We show several performance metrics in Table. I for
the simulations whose results are shown in Sec. VIII. We
use the performance of INET as baseline and we show the
deviation from this baseline for both DeNS and NeSTiNG. The
performance metrics are averaged over 10 runs each lasting
1s (simulation time). In order to fairly make a comparison
with INET and NeSTiNG, we use UDP only traffic type
(instead of the TCP flows used in Sec. VIII), so that the
transmission of packets is same for all simulators throughout
the simulation time. It is very clear from Table. I that
DeNS simulator has better performance compared to NeSTiNg
simulator, specifically lower memory usage, less time required
for a simulation, resulting in higher simulated-seconds per
second. However, this is an effect due do packet-dropping by
DeNS simulator at earlier stages, which reduces the number
of events for several packets, leading to lower number of total
events in the simulation. Indeed, we can see that NeSTiNg
simulator, which has no traffic conditioner, has more number
of total events for the same simulation, most of which are
unnecessary for packets which get dropped at queues due

Table I: Performance Evaluation of DeNS in comparison with Standard INET framework and NeSTiNg

Simulator Memory (MB) Cpu-Time (s) Total-Events Avg. events/sec Avg. sim-sec/sec Avg. # Events Avg.FES
(Future Event Set)

DeNS 580.3 (+97.89%) 746.2 (-12.31%) 22723010 (+78.35%) 233186.9 (+103.37%) 0.0013 (+14.02%) 1671.9 (-1.53%) 194.2 (+201.84%)
NeSTiNg 620.4 (+111.56%) 852.5 (+0.16%) 25398116 (+97.76%) 226473.9 (+97.51%) 0.0011 (-0.12%) 1681.1 (-0.99%) 193.0 (+199.98%)
INET 293.2 851.1 18710510 114660.1 0.0011 1698.0 64.3

Table II: Detailed Configuration of the Simulated Network

End-
Host

Flow Type Link
BW

Application Traffic Packet Transmission
Cycle-Interval: 200µs
(50µs/150µs) (odd/even)

Priority
(PCP)

DSCP-Marker/PFPC-
class/Bandwidth-
Reservation/PCP-rewrite

Queue gate open/close
(200µs Cycle)

HP[0-8] DetNet 1Gbps Time scheduled 350B packet
every 200µs (UDP) until 1s

odd cycle 7 AF11/Class-0/0.02Gbps/7 switch&router: Queue-7
50µs/150µs

HP[9] DetNet 1Gbps Time scheduled 350B packet
every 200µs (UDP) until 1s

even cycle 7 AF11/Class-0/0.02Gbps/7 switch&router: Queue-7
50µs/150µs

HX[0] DetNet 10Gbps 1Gbps (UDP) for 50µs in
every 200µs cycle until 1s

even cycle 7 AF11/Class-0/1Gbps/7 switch&router: Queue-7
50µs/150µs

HX[1] Misbehaving
DetNet

10Gbps 10Gbps (UDP) until 1s entire-time 7 AF12/Class-1/1Gbps/7 switch&router: Queue-7
50µs/150µs

HX[2] High-load
Best-effort

10Gbps 10Gbps (UDP) until 1s entire-time 6 AF12/Class-1/1Gbps/5 switch: Queue-6 150µs/50µs
router: Queue-5 150µs/50µs

HO[0-9] Best-effort 1Gbps TCP with 43.75MB of Appli-
cation Data

n/a 6 BE/Class-3(class-
N+1)/No-reservation/6

switch: Queue-6 150µs/50µs
router: Queue-6 150µs/50µs

to congestion at later stages in the packet processing path.
Therefore, we conclude that DeNS simulator scales similar to
NeSTiNg simulator, with a better performance in the case of
congestion at the level of priority queues. The comparison of
performance with standard INET framework shows that, the
ratio (simulator against INET) of performance metrics are in
the range of well known simulators based on OMNET++ ([5],
[12]).

With very wide configuration space of DeNS simulator,
we leave it for our future work to investigate on the effects
of various possible configurations on the performance of the
DeNS simulator.

VIII. SIMULATION RESULTS

In this section, we present the simulation results obtained
using our DeNS simulator. We compare five mechanisms,
namely: i) IEEE 802.1Qbv (TAS); ii) DeNS simulator with
IEEE 802.1Qbv and a Traffic-Conditioner (TAS+TC); iii)
DeNS with IEEE 802.1Qbv, Traffic-Conditioner, and Tail
Queue Gates (TAS+TATC); iv) Time Aware PIFO Scheduling
with a Traffic-Conditioner (TAPS+TC); v) IEEE 802.1Qch
with Traffic-Conditioner (CQF+TC). The comparisons show
the performance of combined services of IETF DetNet network
layer and IEEE TSN link-layer.

The topology used throughout our simulations is shown
in Fig. 5. It is consistent with the DetNet network topology
examples in RFC 8655 [1]. There are three categories of
hosts (left hand side) and sinks (right hand side) which are
classified as: Priority (HP[0-9]) which generate DetNet flows;
X (HX[0-2]) which generate either DetNet or UDP flows; Other
(HO[0-9]) which generate best effort TCP flows. The class X
is intended to emulate flows such as a misbehaving DetNet
flow (violating time-schedule or throughput) or a high-load
non-priority flow masked with a high-priority header value.
The detailed configuration of DeNS module and the traffic
model is shown in Table. II. All switch-router and router-router

links have 10Gbps bandwidth, while host to switch links are
as shown in Table. II. All the links have a propagation delay
of 0.1µs. All the switches and routers have a processing delay
of 5µs. The cycle time for all mechanisms are as shown in
Table II, except CQF for which a cycle of 100µs (50µs/50µs)
is used. We reduced the cycle time for CQF as we observed
that a 200µs cycle simply increased the end-to-end latency
without any benefits. Nevertheless, accurately determining the
cycle time is one of the challenges faced by CQF [8]. Our
traffic-model consists of a mixture of DetNet periodic and
sporadic traffic, high-throughput sporadic traffic, misbehaving
DetNet traffic, and best-effort UDP or TCP traffic.

1) End-to-End Latency: The theoretical minimum end-to-
end latency in our topology for DetNet flows is the sum
of transmission delays and propagation delays from a host
HP[·] to sink SP[·] amounting to 28.081µs. In Fig. 6, we
present boxplots of the end-to-end latency for DetNet and
misbehaving DetNet flows in our simulations. With the original
TAS, we can observe that there is no guaranteed service due
to congestion. When adding a traffic conditioner (TAS+TC),
we can observe that latency is bounded (with slightly higher
bounds) for only scheduled periodic flows. Fig. 6 clearly
shows the well-known problem of TAS, the waiting time
for packet arrivals out-of reserved time-slot (HP[9]) and high
variation in latency for high-throughput random scheduled
flows (HX[0]) as described in Sec. III. For TAS+TATC,
where all the packets arriving out-of the reserved time-slot are
dropped, low bounded latency can be guaranteed for periodic
flows. This clearly shows the need for separate queues. We
can observe that cyclic queuing and forwarding with traffic-
conditioner (CQF+TC), achieves bounded latency for all the
scheduled flows. However, CQF+TC has higher bounds due
to non-deterministic packet arrivals from HX[0] and HX[1].
Finally, with our proposed TAPS+TC, packets of DetNet flows
(including scheduled periodic; sporadic, and sporadic high-

En
d-

to
-E

nd
 L

at
en

cy
 (µ

s)

Figure 6: End-to-End latency for DetNet flows: periodic odd-cycle (HP[0-8],
showing only HP[0], the other flows having the same behavior), periodic
even-cycle (HP[9]), periodic even-cycle max-reserved bandwidth (HX[0])
and misbehaving periodic (HX[1]).

HP[0
]

HP[1
]

HP[2
]

HP[3
]

HP[4
]

HP[5
]

HP[6
]

HP[7
]

HP[8
]

HP[9
]

HX[0]
HX[1]

HX[2]

0

20

40

60

80

100

Pa
ck

et
-L

os
s %

TAS
TAS+TC
TAS+TATC
TAPS+TC
CQF+TC

Figure 7: Throughput and packet loss for DetNet
and other UDP flows in the network, showing
zero packet loss for all DetNet flows with DeNS
simulator traffic-conditioning.

throughput flows) have very low end-to-end latency with mean
∼28.176µs and bounded to ∼0.740µs variation, which is close
to the theoretical minimum. The misbehaving flow although
rate-limited, experiences high variation in end-to-end latency
due to a limitation of TAPS+TC, i.e., when packets arrive close
to the end of a cycle, they are enqueued in a queue for which
the gate closes before its transmission. However, this effect
can be reduced by changing to asynchronous enqueue/dequeue
operations, similarly as for CQF [4], only for a short duration
∆t before every cycle change. This allows additional ∆t time
for last enqueued scheduled packet to be dequeued. However,
choosing ∆t requires further evaluations as it adds to latency
bounds. Solving this issue is left as future work.

2) Throughput and Packet-Loss: One of the key aspects of
DetNet is to achieve zero packet loss. In Fig. 7, we see that the
traffic conditioner of DeNS simulator is able to guarantee zero
packet loss for all the DetNet flows, even in the presence of
congestion due to misbehaving flows. This is achieved through
packet dropping enforcing guaranteed reserved bandwidth
for priority flows. As a result, all the DetNet flows have
a guaranteed packet delivery when traffic-conditioner is used.
This shows the effectiveness of our PFPC module. We can
also see that the misbehaving DetNet flow HX[1] is limited
in throughput due to violation of DetNet policies and non-
DetNet flow HX[2] is limited in throughput due to violation of
maximum allowed bandwidth (1Gbps). On the other hand, we
can see that TAS without traffic-conditioner cannot guarantee
zero packet loss for DetNet flows.

3) TCP Performance: TCP flows in our simulations have a
PCP value of 6, hence, all experiencing congestion at Router-A
(cf., Fig. 5). TCP flows are seen as unknown flows by the
classifier and arrive at Class N+1 of the PFPC module, where
the unused bandwidth tokens are shared among all TCP flows.
In particular we use Weighted-Round-Robin (WRR) algorithm
to share the tokens among the token buckets of all TCP flows.
The PCP value of 6 for TCP flows remain unchanged, while
the PCP value for UDP flow HX[2] is changed to 5 in the PCP
Marker. This ensures priority for TCP flows, at the same time
not affecting the requirements for HX[2] as it is classified into

class 1 with 1Gbps bandwidth limitation. Thanks to the PFPC
module, TCP flows have some available bandwidth, while
thanks to the PCP Marker it is possible to separate TCP and
UDP flows (or any high-load non-responsive flows). Due to the
queue gating mechanism at lower-layers (IEEE 802.1Qbv), it
is not possible to avoid losses for packets transmitted when the
gates are closed and the queue length is full. We expect TCP
to adjust its transmission rate based its congestion avoidance
mechanism.

Fig. 8 and Fig. 9 show the variation of throughput (measured
at application layer of sinks SO[0-9]) and RTT variation
measured by TCP at Hosts HO[0-9]. In Fig. 8, we can see that
with DeNS simulator (TAPS+TC, TAS+TATC, TAS+TC), all
the TCP flows never experience starvation due to low RTO
value calculated based on the RTT measurements. We conclude
that our traffic conditioner of DeNS simulator is not only able
to guarantee bandwidth reservation for DetNet flows but also
able to fairly share the remaining bandwidth among other flows.
In the case of TAS without traffic-conditioner, all the TCP
flows attempt to transmit and measure a very high RTTVAR,
due to congestion at queue 6 of Router-A, which is shared
by a non-responsive UDP flow HX[1]. As a result, all the
TCP flows back-off with a high RTO leading to temporary
starvation. As pointed out in Sec. III, in the case of CQF+TC,
even with a traffic-conditioner, one TCP flow experiences
temporary starvation due to high RTT variance.

IX. CONCLUSION

Recent years have shown a growing interest in networks able
to accommodate real-time constrains, with IEEE developing
the TSN technology at layer 2, while the IETF works on the
DetNet at network layer. However, the impact of misbehaving
flows in TSN/DetNet has been overlooked insofar and lacks
an appropriate solution. To this end, and as a first contribution
of this paper, we proposed TAPS, a novel queuing and
scheduling mechanism using Push-In-First-Out (PIFO) queues
and able to partially solve the problem of misbehaving
flows. We implemented our proposal on OMNET++ adding
code that actually allows to simulate the full DetNet/TSN

108

tcp flow-0 tcp flow-1 tcp flow-2 tcp flow-3 tcp flow-4

0 2 4

108

tcp flow-5

0 2 4

tcp flow-6

0 2 4

tcp flow-7

0 2 4

tcp flow-8

0 2 4

tcp flow-9

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

5

1e8 tcp flow-3 (Closer look)

Simulation Time (t)

Th
ro

ug
hp

ut
 (b

ps
)

TAS TAS+TC TAS+TATC TAPS+TC CQF+TC

Figure 8: Throughput variation of TCP flows in the presence
of DetNet, misbehaving DetNet, and non-DetNet flows.

protocol stack, creating DeNS, the second main contribution
of this paper. DeNS simulator provides the functionalities of
IEEE 802.1Qav, IEEE 802.1Qbv, IEEE 802.1Qch and the
building blocks necessary to develop any general queuing
and scheduling algorithm in the context of TSN link-layer
and provides extensions to network-layer services such as
traffic-conditioning, resource allocation, classification based
on DSCP and mapping to PCP etc., providing a framework for
easy evaluations of DetNet. The performance of DeNS is in
line with the INET framework and TSN simulator NeSTiNg,
showing that it is scalable and has an overhead similar to other
Time Sensitive Networks simulators based on OMNET++.

We clearly show with simulation results that our solution is
able to satisfy key aspects of DetNet, i.e., guarantee zero packet
loss, low latency and jitter for DetNet flows, while at the same
time allowing other flows to co-exist with DetNet without
resulting in starvation. We also show by simulations that our
proposed mechanism TAPS is able to guarantee services for
all the scheduled flows even in the presence of misbehaving
scheduled flow.

Our simulator currently misses some DetNet features, such
as packet and flow replication and elimination, fault mitigation,
which are left for future work. The source code and full
documentation of DeNS simulator is made available online on
GitHub (https://github.com/vamsiDT/DeNS).

Acknowledgments: The work presented in this article benefited from the
support of NewNet@Paris, Cisco‘s Chair ’’Networks for the Future’’ at Tele-
com ParisTech (https://newnet.telecom-paristech.fr). Any opinions, findings or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of partners of the Chair.

REFERENCES

[1] N. J. Farkas, Finn, P. Thubert, and B. Varga, Deterministic Networking
Architecture, ser. RFC 8655. Internet Engineering Task Force - (IETF),
October 2019.

[2] ‘‘Time-sensitive networking task group,’’ 2019. [Online]. Available:
http://www.ieee802.org/1/pages/tsn.html

[3] F. Norman, ‘‘Time-sensitive and deterministic networking
whitepaper,’’ Tech. Rep., July 2017. [Online]. Available: https:

10 5

tcp flow-0 tcp flow-1 tcp flow-2 tcp flow-3 tcp flow-4

0 2 4

10 5

tcp flow-5

0 2 4

tcp flow-6

0 2 4

tcp flow-7

0 2 4

tcp flow-8

0 2 4

tcp flow-9

0.0 0.5 1.0 1.5 2.0 2.5

10 5

tcp flow-3 (Closer look)

Simulation Time (t)

RT
TV

AR
 (s

)

TAS TAS+TC TAS+TATC TAPS+TC CQF+TC

Figure 9: RTT variation of TCP flows in the presence of
DetNet, misbehaving DetNet, and non-DetNet flows.

//mentor.ieee.org/802.24/dcn/17/24-17-0020-00-sgtg-contribution-time-
sensitive-and-deterministic-networking-whitepaper.pdf

[4] ‘‘Ieee standard for local and metropolitan area network--bridges and
bridged networks,’’ IEEE Std 802.1Q-2018 (Revision of IEEE Std 802.1Q-
2014), pp. 1--1993, July 2018.

[5] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Dürr, S. Kehrer, and
K. Rothermel, ‘‘Nesting: Simulating ieee time-sensitive networking (tsn)
in omnet++,’’ in 2019 International Conference on Networked Systems
(NetSys). IEEE, 2019, pp. 1--8.

[6] M. Pahlevan and R. Obermaisser, ‘‘Evaluation of time-triggered traffic
in time-sensitive networks using the opnet simulation framework,’’ in
2018 26th Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP). IEEE, 2018, pp. 283--287.

[7] ‘‘Inet framework,’’ 2019. [Online]. Available: https://inet.omnetpp.org/
[8] A. Nasrallah, V. Balasubramanian, A. S. Thyagaturu, M. Reisslein,

and H. Elbakoury, ‘‘Cyclic queuing and forwarding for large scale
deterministic networks: A survey,’’ CoRR, vol. abs/1905.08478, 2019.
[Online]. Available: http://arxiv.org/abs/1905.08478

[9] A. Sivaraman, S. Subramanian, A. Agrawal, S. Chole, S.-T. Chuang,
T. Edsall, M. Alizadeh, S. Katti, N. McKeown, and H. Balakrishnan,
‘‘Towards programmable packet scheduling,’’ in Proceedings of the 14th
ACM workshop on hot topics in networks. ACM, 2015, p. 23.

[10] J. Jiang, Y. Li, S. H. Hong, A. Xu, and K. Wang, ‘‘A time-sensitive
networking (tsn) simulation model based on omnet++,’’ in 2018 IEEE
International Conference on Mechatronics and Automation (ICMA).
IEEE, 2018, pp. 643--648.

[11] ‘‘Core4inet background – core simulation models for real-time
networks,’’ 2019. [Online]. Available: http://core4inet.core-rg.de/trac/
wiki/CoRE4INET\ Background

[12] P. Heise, F. Geyer, and R. Obermaisser, ‘‘Tsimnet: An industrial time
sensitive networking simulation framework based on omnet++,’’ in 2016
8th IFIP International Conference on New Technologies, Mobility and
Security (NTMS). IEEE, 2016, pp. 1--5.

[13] ‘‘Omnet++ discrete event simulator,’’ 2019. [Online]. Available:
https://www.omnetpp.org/

[14] S. Floyd, R. Gummadi, S. Shenker et al., ‘‘Adaptive red: An algorithm
for increasing the robustness of red’s active queue management,’’ 2001.

[15] W.-J. Kim and B. G. Lee, ‘‘Fred-fair random early detection algorithm
for tcp over atm networks,’’ Electronics Letters, vol. 34, no. 2, pp.
152--154, Jan 1998.

