
Fair dropping for multi-resource fairness
in software routers: extended abstract

Vamsi Addanki, Leonardo Linguaglossa, James Roberts, Dario Rossi

Telecom ParisTech, France

This is the extended abstract for a proposed demo.We demon-

strate that fair dropping is an effective means to realize fair

sharing of bandwidth and CPU in a software router. Analysis

underpinning the effectiveness of the proposed approach is

presented in [1].

1 MULTI-RESOURCE FAIRNESS IN
SOFTWARE ROUTERS

Fair sharing of bandwidth between 5-tuple flows is a classical

issue in networking that has received considerable attention

since Nagle’s pioneering proposal in RFC 970. To impose fair

shares in the network notably brings robust and predictable

network performance and relieves end-systems from im-

plementing a standard, approved congestion control, when

applications might have different requirements.

As software routers are increasingly called to implement a

range of virtualized network functions and their processing

capacity is adjusted dynamically to meet current demand,

additional bottlenecks can arise that limit flow rates. We

concentrate here on the CPU bottleneck. CPU sharing is

complicated by the fact that flows can have widely differ-

ing per-packet processing requirements depending on the

functions they require.

We follow Ghodsi et al. [3] in supposing routers should

simultaneously provide fair shares of bandwidth in bit/s and

CPU in cycles/sec. However, rather than realizing dominant

resource fairness as in [3], we impose max-min fairness inde-

pendently on each resource to yield the form of bottleneck-

based fairness advocated by Bonald and Roberts [2].

2 NEED FOR A NEW APPROACH
To attain required high forwarding speeds, software routers

use a number of optimizations that make it difficult to im-

plement classical fair queuing schedulers [6]. Significant

examples are batch IO, to reduce interrupt pressure in ker-

nel bypass stacks, and batch processing, to maximize hits

in the instruction cache and to minimize the overhead of

processing graph traversal. On the other hand, high-speed

software routers are intrinsically flow-aware, since load bal-

ancing is performed using a hash of header fields (typically

the usual 5-tuple), computed in the NIC and appended to

packet metadata; this facilitates per-flow processing.

Rather than trying to adapt algorithms like start-time fair

queuing or deficit round robin, we maintain the current

packet forwarding scheme (namely, FIFO ring buffers with

polling and batch service) and add a fair dropping function to

reduce flow rates as necessary to achieve max-min fairness.

Of course, packet dropping has previously been used as an

alternative to scheduling to share bandwidth. Our approach
takes account of the specifics of the software router and is

more precise that previous proposals but is not fundamen-

tally different. The main originality of our contribution is

to apply flow-aware dropping to realize fair cycle/s sharing

of CPU capacity. Sharing CPU is more complicated since

buffering takes place before processing (including selective

dropping) and the cycles per packet requirement varies, no-

tably as a function of batch size.

3 FAIR DROPPING
To realize fair dropping we create one virtual scheduler for

each of link bandwidth and CPU, in parallel with the actual

forwarding logic of the software router. On the arrival of a

batch of packets, virtual queues in the form of per-flow coun-

ters are decremented by the max-min fair share of service

capacity (server rate × interval) accumulated since the last

batch arrival. If the virtual queue of an arriving packet then

exceeds a threshold, the packet is dropped. Virtual queues

of admitted packets are incremented by the packet size (in

bytes for bandwidth, cycles for CPU). Packet size in cycles

is estimated by real time measurement of batch processing

times.

The algorithm works on the list of flows that are currently

active in the sense that they have a backlog in the virtual

scheduler. This list is highly dynamic with flows being added

when they receive a “first” packet and removed when their

virtual queue empties. For instance, flows emitting packets

at a rate less than the current fair rate enter and rapidly

leave the active flow list for each packet arrival. Crucially,

under a reasonable stochastic model of flow arrivals, even

though the number of flows in progress can attain hundreds

of thousands, the number of active flows is typically less than
100 for any service rate [4, 5].

4 THE DEMO
To demonstrate feasibility we have implemented the fair

dropping algorithm in the Vector Packet Processing (VPP)
1

software router that is part of the Linux Foundation FD.io

1
https://fd.io/wp-content/uploads/sites/34/2017/07/FDioVPPwhitepaperJuly2017.pdf

1



SIGCOMM’18, August 21-23, 2018, Budapest, Hungary V. Addanki et al.

Figure 1: Comparison of tail drop (left) and fair drop (right) for CPU shared between 20 flows: 2 flows (H) require
10 times more cycle/packet that the others (L).

Figure 2: Example demo screenshot: CPU shared with-
out fair dropping (https://newnet.telecom-paristech.
fr/index.php/fairdrop/)

project. The proposed demo shows how flow rates are mod-

ified in two separate scenarios where bandwidth and CPU

are separately bottlenecks.

The experimental platform is based on two Intel Xeon

E52690 processors, each with 24 cores running at 2.60 GHz,

equipped with two 10 Gbps Intel X520 NICs and running

DPDK. Two independent nodes are formed, one acting as

traffic generator and sink (TGS), the other constituting the

system under test (SUT), namely the VPP router modified to

perform fair dropping. The TGS continuously sends a stream

of packets to the SUT which processes them and sends them

back to the TGS for rate monitoring. In the demo, 64-byte

packets are sent at 10 Gbps, an input rate of 14.88 Mpps. IP

addresses and port numbers are set to emulate a number

of distinct constant rate flows. Flows are identified using

the 5-tuple hash computed by the NIC and accessible via

DPDK mbuf. For the demo, the fair dropping algorithms are

executed on a single core handling all traffic.

Flow state is stored in a hash-table with 4K rows. An

additional data structure identifies the active flows enabling

data for this set to be maintained in CPU L1 or L2 cache.

Timestamps, needed for CPU sharing, are obtained through

the DPDK rxtx_callback function.

Figure 1 displays results from one experiment. CPU is

shared between 2 flows with high (H) cycle/packet require-

ment and 18 low (L) requirement flows: this Sankey diagram

shows how fair dropping reduces buffer overflows while

equalizing the cycle/sec rate of all flows.

We have recorded sample videos for both CPU and band-

width sharing: Figure 2 is a screenshot from the demo and

illustrates CPU sharing without fair dropping when 14 L-

flows compete with 2 H-flows. The bit/s flow rates are equal

but each H-low seizes the same cycle/sec rate as all the L-

flows combined. With fair dropping enabled, the cycle/sec

rates of L-flows and H-flows are equal.

ACKNOWLEDGMENTS
This workwas funded byNewNet@Paris, Cisco’s Chair “Net-

works for the Future” at Telecom ParisTech.

REFERENCES
[1] V. Addanki, L. Leonardo, J. Roberts, and D. Rossi. 2018. Controlling soft-

ware router resource sharing by fair packet dropping. In IFIP Networking
2018.

[2] T. Bonald and J. Roberts. 2015. Multi-Resource Fairness: Objectives,

Algorithms and Performance. In ACM SIGMETRICS.
[3] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. 2012. Multi-

resource Fair Queueing for Packet Processing. In ACM SIGCOMM.

[4] A. Kortebi, L. Muscariello, S. Oueslati, and J. Roberts. 2005. Evaluating

the Number of Active Flows in a Scheduler Realizing Fair Statistical

Bandwidth Sharing. In ACM SIGMETRICS.
[5] N. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy. 2018. Approxi-

mating Fair Queueing on Reconfigurable Switches. In NSDI 18.
[6] K. To, D. Firestone, G. Varghese, and J. Padhye. 2016. Measurement

Based Fair Queuing for Allocating Bandwidth to Virtual Machines. In

ACM HotMiddlebox.

2

https://newnet.telecom-paristech.fr/index.php/fairdrop/
https://newnet.telecom-paristech.fr/index.php/fairdrop/


Fair dropping for multi-resource fairness
in software routers: extended abstract SIGCOMM’18, August 21-23, 2018, Budapest, Hungary

DEMO REQUIREMENTS
Networking
• The demo relies on Internet access to our server platform located in France. We therefore require a reliable Internet

connection.

• The demo runs at10Gbps per line card; however, statistics are aggregated and exported at 1 second granularity so that a

low transmission rate is sufficient.

Equipment
A large screen is required for optimal visibility (≥40" screen, ideally). We use our own laptop to pilot the demo.

Space needed
Nothing beyond standard table, screen and poster space.

Set-up time
30 minutes

VIDEOS
For the time being, we have made two videos, available at https://newnet.telecom-paristech.fr/index.php/fairdrop/, that show

scenarios where the system bottleneck is CPU and bandwidth, respectively. The following describes the CPU video.

The video at https://perso.telecom-paristech.fr/drossi/data/videos/fairdrop-cpu-demo.mp4 presents a recorded demo for

CPU sharing. This and the similar video showing bandwidth sharing with and without fair dropping will be used as backup in

case of technical problems. The video has no soundtrack and needs commentary by the presenter. Its timeline is as follows:

time frame comment

0 sec scenarios to be compared red packets require 10× more cycles per packet than blue

8 sec traffic generator is launched (top left) DPDK Pktgen

17 sec flow monitor is launched (top right)

26 sec unmodified VPP is launched (bottom right)

40 sec real time plots of flow rates appear packet/s (top left) and cycle/s (top right)

2 red flows and 14 blue flows start together

red flows run for 10 s, stop and start again after 10s

flows have equal packet rates while red flows

grab 10 times more CPU than blue flows

80 sec modified VPP with fair dropping launched

100 sec plots of flow rates appear flows have equal cycle/s rates as red packets are

dropped aggressively

140 sec the end!

3

https://newnet.telecom-paristech.fr/index.php/fairdrop/
https://perso.telecom-paristech.fr/drossi/data/videos/fairdrop-cpu-demo.mp4

	1 Multi-resource fairness in software routers
	2 Need for a new approach
	3 Fair dropping
	4 The demo
	References

