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Abstract—The paper discusses resource sharing in a software
router where both bandwidth and CPU may be bottlenecks.
We propose a novel fair dropping algorithm to realize per-
flow max-min fair sharing of these resources. The algorithm is
compatible with features like batch I/O and batch processing
that tend to make classical scheduling impractical. We describe
an implementation using Vector Packet Processing, part of
the Linux Foundation FD.io project. Preliminary experimental
results prove the efficiency of the algorithm in controlling
bandwidth and CPU sharing at high speed. Performance in
dynamic traffic is evaluated using analysis and simulation,
demonstrating that the proposed approach is both effective and
scalable.

I. INTRODUCTION

Controlling how bandwidth is shared between concurrent
flows is a classical issue in networking. While there are mul-
tiple objectives in this field and many proposed mechanisms,
we concentrate in this paper on max-min fair sharing between
a dynamically changing population of flows in progress.

The advantages of imposing bandwidth fairness have been
repeatedly discussed since Nagle’s pioneering observations
[22]. See [23, Sec. 7] for a very clear summary. Satisfactory
performance is maintained even when end-systems do not
comply with TCP-like congestion control. More efficient
high speed transport protocols can be introduced without
requiring them to be friendly to legacy TCP. Implicit service
differentiation is realized in that low rate streaming flows
naturally experience negligible packet loss and delay.

In emerging high-speed software routers, flow throughput
may additionally be impeded by resources other than band-
width. We concentrate in this paper on the CPU executing
virtualized network functions for packet forwarding and
processing. CPU capacity is measured in cycle/s and flows
may differ widely in their per-packet requirements depending
on the functions they execute. The considered objective here
is max-min fair flow rates in cycle/s, the product of the
packet/s rate and the number of cycles needed to process
each packet.

In Ghodsi et al. [12], fair bit/s bandwidth sharing and fair
cycle/s CPU sharing are coupled in the notion of dominant
resource fairness (DRF). In this work, we propose rather
to control fair sharing of bandwidth and CPU resources
independently (i.e., without using weights that depend on the
dominant resource). This is both simpler to implement than
DRF and fulfils a multi-resource sharing objective that is in
significant ways preferable [8].

The mechanism envisaged in [12] and [8] for imposing fair
shares is a scheduler like start time fair queuing (STFQ) [13].
However, this approach is hardly compatible with the hard-
ware and software optimizations that are necessary to keep up
with line speeds of 10 Gbps and more on a single CPU core.
These optimizations notably require packets to be batched for
both I/O and processing making implementation of classical
scheduling algorithms problematic if not impossible, as ar-
gued in [28]. We therefore propose a more flexible software
oriented solution based on fair packet dropping.

A number of approximate fair dropping algorithms have
already been proposed for fair bandwidth sharing, such as
FRED [17], CHOKe [24], RED-PD [21] and AFD [23]. In a
preliminary evaluation, we found these algorithms imprecise
and difficult to implement, especially in the present context of
a software router. We have preferred to explore an original
exact fair dropping algorithm. This algorithm is shown to
be scalable since it operates only on the limited number of
flows that would currently be backlogged in a fair queuing
scheduler [18].

Despite strong current interest in network function vir-
tualization, there is still little published work on how one
might control CPU sharing between concurrent flows. A
recent paper by Vasilescu et al. recognizes the need for
fair sharing and advocates a differential congestion marking
scheme to account for flows with different cycle/packet
costs [29]. Shin et al. have previously advocated a similar
congestion marking scheme [26]. Marking is less robust than
fair dropping since, to achieve fairness, it is necessary that
end-systems respond correctly to the congestion notification.
In environments where this is a reasonable assumption, our
proposed algorithm could be trivially modified to perform
accurate fair marking instead of fair dropping.

Our main contributions here are to define an original
algorithm to control CPU sharing using fair dropping and
to evaluate its performance by analysis, simulation and ex-
perimentation. Application of the same approach to control
bandwidth sharing is also novel but does not differ radically
from earlier proposals. Successive presentation of algorithms
and results for bandwidth sharing and CPU sharing usefully
highlights the additional complexity in controlling the latter.

We first discuss salient features of software routers (Sec.II)
before introducing the proposed fair dropping algorithms
and illustrating their behavior by simulation (Sec. III). A
prototype implementation in the FD.io software router is



Fig. 1. Sketch of software router: core A forwards flows from input buffer
a, core X handles all packets destined to output x.

then described and experimentally evaluated (Sec.IV). Fi-
nally, simulations in dynamic traffic confirm the scalability
of the proposed approach and demonstrate its throughput
performance (Sec. V).

II. SOFTWARE ROUTERS

We highlight features of emerging high-speed software
routers that are significant for controlled resource sharing. For
a more complete discussion, see [1], [5], [11], for instance.

A. Throughput bottlenecks

Flow throughput may be momentarily impeded by multiple
bottlenecks in a software router. We consider here just two,
output link bandwidth and CPU forwarding capacity. Note
that CPU forwarding includes basic forwarding operations
but also more complex tasks like encryption or a range of
virtualized network functions.

Controlling bandwidth sharing by scheduling and buffer
management is a classical function in networking with many
proposed solutions. In software routers a notable example
is the DPDK QoS framework that includes a variety of
mechanisms ranging from the token bucket to a hierarchical
weighted fair queuing scheduler [2]. These mechanisms are
necessarily implemented in a CPU core that sees all packets
destined for a given output port. In Fig. 1, the core in question
for output port x is labelled X . The fair dropping algorithm
we propose would similarly be implemented in core X (of
course, the same core could process multiple outputs). It is
an efficient alternative to scheduling.

The flexibility of software routers means packet processing
capacity can be more closely matched to demand than in
a hardware router and CPU can be a bottleneck. In Fig. 1
core A handles flows from input buffer a but, depending on
demand, it might handle more buffers from multiple NICs.
A CPU core becomes a bottleneck when flows emit packets
too fast yielding a compute load greater than capacity and
leading therefore to packet drops. In the absence of any
control, the most aggressive flows will seize more CPU
cycle/s than the others. Unfairness is exacerbated by the
unequal per-packet costs of flows with different protocols
[1] or middlebox function requirements [12]. We demonstrate
that a lightweight fair dropping mechanism ensures flows get
their fair share of CPU cycles. Implementing a scheduler like
DRR [27] or STFQ [13] in this context, on the other hand,
appears problematic to say the least.

B. Flow-awareness

High-speed software routers are intrinsically flow-aware.
Flow-awareness is facilitated by NICs implementing receive
side scaling (RSS). RSS performs a hash of packet header
fields (e.g., the usual 5-tuple) and maps this to distinct
queues, mainly for the purpose of load balancing over mul-
tiple CPU cores. Individual threads of packet processing ap-
plications are bound to a CPU core and, using kernel-bypass
stacks (such as DPDK [3], netmap [25], PF_RING [10] or
pfq [9]), threads consume independent streams of packets,
each from a different RSS queue. In Fig. 1, the splitting
of incoming traffic over multiple input buffers is flow-
aware. Importantly for the implementation of flow-aware
functionality, the hash is recorded in packet metadata and
can be accessed by router software.

A significant advantage of flow-awareness in a software
router is that all packets of the same flow are processed by
the same core bringing efficiencies and enabling limited per-
flow state. FIB lookup efficiency is enhanced, for instance,
since only the first packet of a flow will typically require a
RAM memory access while the result will remain in cache for
subsequent packets. Flow state is necessary for mechanisms
like the present fair dropping proposal.

C. Batch-mode processing

It is significant that high-speed software routers and their
NICs generally deal with packets in batches rather than
individually. This is a necessary optimization for line-speed
I/O and greatly improves the efficiency of packet processing.
In kernel bypass stacks, batching significantly reduces in-
terrupt pressure compared to per-packet operation. The CPU
handling an input buffer therefore typically polls for available
packets. It visits the buffer, grabs all waiting packets up to
a maximum number and processes the entire batch before
returning to grab another batch.

The most recent high-speed software routers also perform
forwarding tasks successively on batches of packets [16], [5],
[1]. Each task in the processing graph is performed on all
packets in the batch before the CPU moves to the next task.
Batched processing optimizes the use of the CPU instruction
cache as code for a task only needs to be fetched once for
the entire batch. In addition, the overhead of managing graph
traversal (counters, pointers, calls,...) is minimized since
most operations need be performed once only for the entire
batch. Processing efficiency improves with the size of the
batch and mechanisms beyond simple polling are generally
employed to ensure the batch is large enough. Batching
makes it impossible to implement classical schedulers that
rely on dequeue operations being triggered by individual
packet departures [28].

III. FAIR DROPPING

We present the fair dropping algorithm and numerically
illustrate how it realizes per-flow fair bandwidth and CPU
sharing under static demand.



A. Fair rates by dropping
Suppose packets are handled simultaneously by two ser-

vice systems, one the actual buffer management system
implemented in the router (e.g., FIFO), the other a shadow
system implementing a more sophisticated scheduler (e.g.,
per-flow FQ). Packets that are dropped in one system are
also dropped by the other so that both systems yield exactly
the same rate over the lifetime of a flow.

The shadow system in our proposal is virtual and makes
dropping decisions based on a measure of per-flow virtual
queue occupancy. This measure is depleted between packet
arrivals, at a rate that varies depending on the number
of active flows, and incremented by packet length on the
arrival of every batch. If we correctly track the virtual queue
occupancies at arrival instants, and make drop decisions in
the shadow system aggressively enough to avoid additional
drops due to buffer overflow in the real system, flow rates are
entirely determined by the shadow system. In particular, if the
shadow system implements per-flow head-of-line processor
sharing, the long-term flow rates will be max-min fair.

Fair dropping, as a software solution, is inherently more
flexible than scheduling. In particular, the shadow system can
be readily turned off when not needed, economizing CPU
usage. If the sum of rates of flows in progress is currently
less than the capacity of the resource in question, there is no
need to impose fairness. This may be the usual case (e.g., for
a backbone link, or a CPU that only performs forwarding)
with fair dropping ready to be turned on as necessary (e.g.,
when a high rate server-to-server flow starts up, or a new
IPSec flow suddenly saturates the CPU).

B. The algorithms
Algorithm 1 is used for fairly sharing either bandwidth or

CPU capacity. It uses a table called ActiveList, containing the
current virtual queue size (flow.vq) for all backlogged flows
(i.e., flow.vq > 0) indexed by identifiers flow (typically a
hash of header fields). Following the arrival of a batch of
packets, ActiveList is updated using lines 3 to 15. Virtual
queue occupancies flow.vq are reduced by their max-min
fair share of service capacity accumulated since the last call.
If flow.vq goes to zero, the flow is removed from ActiveList.

Lines 16 to 28 deal with the newly arrived packet or
packets. Packets are dropped if the virtual queue of their flow
exceeds a threshold θ. New flows are added to ActiveList and
virtual queues are incremented by the size of the new packet.
For bandwidth sharing packet.length is measured in bytes
while for CPU sharing it is an estimate of the number of
cycles needed to process the packet.

For bandwidth sharing Algorithm 1 is sufficient and must
be performed in a CPU receiving all packets destined to the
considered output link. For CPU sharing, it is necessary to
perform additional instructions to account for the fact that
packet.length, the number of cycles needed to process the
packet is not known a priori. Moreover, the number of cycles
used to process a batch includes an overhead accounting for
the cycles expended on dropped packets.

Algorithm 1 Virtual queue updates and dropping performed
on arrival of a batch of packets.

1: Given: ∆t - time since last update, C - service rate,
B - ActiveList of backlogged flows, P - batch of new
packets, θ - a threshold.

2: input P
3: credit = C∆t
4: while credit > 0 and |B| > 0 do
5: share = credit/ |B|
6: credit = 0
7: for each flow ∈ B do
8: if share < flow.vq then
9: flow.vq −= share

10: else
11: credit += share− flow.vq
12: B = B \ flow
13: end if
14: end for
15: end while
16: for each packet ∈ P do
17: if flow(packet) ∈ B then
18: if flow.vq > θ then
19: drop packet
20: P = P \ packet
21: else
22: flow.vq += packet.length
23: end if
24: else
25: B = B ∪ flow
26: flow.vq = packet.length
27: end if
28: end for

Algorithm 2 Cost calculation for CPU sharing for flows of
different types.

1: Given: P - batch of packets, ∆c - cycles consumed to
process P , wk - relative weight of type k

2: sumw =
∑

packet∈P wtype(packet)

3: for each packet ∈ P do
4: packet.cost = (wtype(packet)/sumw)∆c
5: flow.vq = flow.vq + packet.cost− packet.length
6: end for

Algorithm 2 apportions the measured overall batch pro-
cessing cost ∆c in proportion to weights giving the relative
number of cycles needed to process packets of given type
(e.g., a packet needing to consult an ACL may need more
than ten times as many cycles as a packet that is simply
forwarded). This cost calculation can only be performed after
processing is complete while Algorithm 1 uses an assumed
packet.length to make drop decisions. The latter might be
an average cost estimate derived by prior measurement or a
real time updated average based on packet.cost estimated
by Algorithm 2 for packets of the given type for previous



TABLE I
BANDWIDTH SHARING

Utilization breakdown Latency
FQ TD 0.59 / 0.35 / 0.06 47.2 / 3.54 / 2.03
FIFO TD 0.59 / 0.35 / 0.06 29.2 / 29.1 / 28.9
FQ FD 0.45 / 0.45 / 0.10 22.1 / 19.6 / 2.70
FIFO FD 0.45 / 0.45 / 0.10 18.9 / 18.9 / 19.4

batches. The virtual queue lengths must be corrected (line
5) to ensure they accurately track the actual numbers of
expended cycles. Algorithm 2 can be performed at the start
of a new processing cycle, before Algorithm 1, using data
for the packets P processed in the previous cycle. ∆c is the
total number of cycles consumed between successive polling
events.

Algorithm 1 realizes per-flow max-min fairness. It could
easily be extended to realize more general objectives like
hierarchical weighted fairness [7], for instance. Parameters
identifying flow classes and weights would be stored in the
flow table along with current virtual queue lengths. These
would be used to derive flow specific shares in place of the
common value computed in line 5.

C. Scalability

It is commonly believed that per-flow fair scheduling is not
scalable since compute time grows with the number of flows
and this number can attain many thousands on high speed
links. This reasoning would apply similarly to Algorithms
1 and 2. In fact, the algorithms are scalable since, though
the number of flows in progress may be very large, the set
of active flows B includes only those that currently have a
backlog. Under reasonable assumptions about the stochastic
process of flow arrivals this number is small with high
probability even for very high speed links, as demonstrated
analytically and by trace driven simulation in [18].

The underlying analytical model is a processor sharing
(PS) system with Poisson flow arrivals that has simple and
robust performance characteristics [6]. Let ρ denote the PS
server load, ρ = flow arrival rate × flow size / server capacity,
with ρ < 1 for stability. The number of active flows has
a geometric distribution (i.e., P[active flows ≥ x] = ρx) and
the expected completion time of a flow of size s is s/(1−ρ).
As a measure of flow throughput we use the reciprocal of the
normalized flow completion time, (1−ρ). These results apply
for a wide range of stochastic demand models, as discussed
in [6]. In particular, they do not depend on any assumption
about the distribution of flow size.

Scalability in the present context is demonstrated by sim-
ulation in Sec. V while in this and the following section we
illustrate algorithm performance for static sets of concurrent
flows.

D. Bandwidth sharing

For bandwidth sharing, fair dropping can be implemented
before buffering packets at the output port. Bandwidth shar-

Fig. 2. Dropper for CPU sharing is placed after the buffer but uses times
packets arrive at the buffer.

ing is then as fair as that realized with fair queuing schedulers
like DRR [27] or STFQ [13].

Table I illustrates through simulation results for a toy
example, that FQ scheduling is not necessary for fairness
while FD is essential. Three flows emit unit size packets as
a Poisson process at respective rates 1, 0.6 and 0.1 and share
a unit rate link using FQ or FIFO. Excess packets suffer
tail drop (TD) in the buffer preceding the link, or fair drop
(FD) using Algorithm 1. ActiveList updates are performed
here after every packet arrival. Buffer capacity is 30 packets
and, for fair dropping, we set threshold θ to 10. Latency is
measured in packet transmission times.

The results confirm that FD is sufficient for fair throughput
while significantly increasing the latency of the low rate
third flow. The negative impact of higher latency, for VoIP
applications say, can be removed by replacing the link FIFO
by a priority scheduler where packets belonging to flows
absent from ActiveList on their arrival are served first [19],
[14]. Latency could also be reduced by operating the drop
algorithm with a rate C somewhat less than the link rate (e.g.,
as in [4]).

E. CPU sharing

To share CPU capacity, dropping can only take place after
the input buffer. To emulate a fair scheduler, the shadow
system must however make drop decisions based on packet
arrival times at the buffer as recorded in a time stamp. These
‘fair drops’, based on the size of the per-flow virtual queues,
are in addition to any ‘tail drops’ due to buffer saturation. The
relative proportions of tail drops and fair drops depends on
the choice of threshold θ. It is also necessary here to account
for the fact that the act of dropping a packet consumes CPU
cycles that are otherwise to be shared fairly.

a) An adaptive threshold: To illustrate how fair drop-
ping realizes fair CPU sharing, consider the toy example of
Fig. 2. N flows (N = 2 in the figure) bring processing
requirements λi (packet/s × cycle/packet) and are served by
a unit capacity CPU. A fraction p of each flow is lost due to
buffer overflow. The remaining (1−p) fractions of each flow
share the CPU in max-min fashion, thanks to fair dropping,
and suffer additional drops at rates di.

This queuing system is particularly complicated and we
have no analytic results to determine the impact on p and the
di of particular choices of buffer size b and drop threshold θ.
Note, however, that while b is system dependent and fixed,
θ is simply a program parameter and can be set and reset as
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Fig. 3. CPU flow throughput as a function of load for 3 flows with equal
packet/s rates and respective CPU costs 5, 3 and 1 and drop overhead 0.5;
dotted lines show throughput without fair dropping.

necessary. It is possible, in particular, to adapt θ from one
batch to the next based on observations of a performance
objective.

A first performance objective is to make the probability
of buffer saturation negligibly small. This is necessary to
avoid undue loss for flows emitting at a rate less than the fair
rate or flows consisting of a single packet like DNS queries.
A second objective is to maintain processing efficiency by
making batches as large as possible (cf. Sec. II-C). We
therefore adapt θ as follows: if the polled vector is maximal
(suggesting impending saturation), multiply θ by a factor
α < 1 to induce more fair drops; if the polled vector is
not maximal, multiply θ by β > 1. The choice of parameters
α and β is not highly critical. In our simulations, setting
α = .5 and β = 1.2 gave satisfactory results.

b) Dropping overhead: Any dropped packet consumes
cycles and this overhead reduces flow throughput. The over-
head includes the cycles used to run Algorithms 1 and 2 but
is mainly due to the cost of bringing packets into the CPU,
as is necessary to determine their flow identity.

Fig. 3 presents per-flow cycle/s throughput for a toy system
with 3 flows, each emitting packets as a Poisson process at
the same rate, as a function of load. The flows have different
relative per-packet processing requirements: flow 1 packets
cost 5 units, flow 2 packets 3 and flow 3 packets 1 (the value
of the cost unit in compute cycles is not significant, only their
ratio matters). Dropped packets consume 0.5 units of CPU.
Offered load on the x axis is the sum of the products (packet
rate × cost) divided by the CPU capacity (i.e.,

∑
λi).

The figure plots normalized cycle/s throughputs (the sum
of throughputs is 1 at load 1) against load. Dotted lines show
throughputs realized in the absence of fair dropping. These
results confirm that fair dropping realizes max-min fairness,
e.g., the cost 1 flow suffers no loss until its input rate exceeds
the fair rate when all flows have the same throughput. On the
other hand, the sum of throughputs decreases with increasing
load due to the cost of dropping. Throughputs go to zero
at load 6 when the CPU is entirely busy dropping packets.
Throughput can be bounded away from zero by setting a

minimum threshold at the cost, however, of significant loss
for low rate and single-packet flows.

IV. IMPLEMENTATION

We have implemented the fair dropping algorithms on a
real software router. In the following we describe the testbed,
outline the software architecture and present experimental
results.

A. Experimental setup

Algorithms 1 and 2 run in the Vector Packet Processing
(VPP) software router that is part of the Linux Foundation’s
FD.io project [1]. The VPP router is deployed in a server
platform based on two Intel Xeon E52690 processors, each
with 24 cores running at 2.60 GHz, equipped with two
10 Gbps Intel X520 NICs directly connected with SFP+
interfaces. The two processors and two line cards are isolated
to logically create two independent nodes. This is realized
using non-uniform memory access, to make portions of RAM
accessible to only one line card, and CPU core binding
where particular cores are mapped to a specific process and
interrupts are deactivated.

Of the two nodes, one acts as traffic generator and sink
(TGS) while the other is the system under test (SUT), the
software router equipped with our FD algorithms. The TGS
continuously sends a stream of packets to the SUT which
processes them and sends them back to the TGS. We can
measure the throughput of the SUT as the return input rate to
the TGS. To validate the FD algorithm and its scalability, the
TGS sends traffic consisting of 64-byte packets at 10 Gbps
(corresponding to an input rate of 14.88 Mpps). IP addresses
and port numbers are set to emulate a number of distinct
constant rate flows. To stress the system, the FD algorithms
are executed on a single core handling all traffic.

B. Software architecture

Our implementation1 works on bandwidth and CPU shar-
ing. The fair dropper is currently implemented within an
FD.io node [1], but could alternatively be implemented as
a lower-level primitive of the DPDK QoS framework [2].
Porting Algorithm 1 to DPDK is straightforward and would
be sufficient for bandwidth sharing. However, per-packet cost
estimates derived in Algorithm 2, as necessary for CPU
sharing, must be made available to DPDK and this requires
further work. Thus, while the experimental results presented
below are specific to the FD.io implementation, they may be
considered as a more general proof-of-concept for a software
line-rate implementation of fair dropping.

Vector Packet Processing (VPP) [20], is a kernel-bypass
application that reads and processes packets in batches. VPP
consists of a set of software functions that logically abstract
network operations of different layers of the protocol stack
(examples of functions are l2_input or ip4_lookup).
VPP links such functions to form a processing graph and

1https://github.com/TeamRossi/vpp-bench



each function (represented by a node in the graph) is ap-
plied to packets as necessary in order to implement packet
processing and forwarding. Batched reads are performed
by DPDK drivers accessing NIC hardware and significantly
reduce interrupt pressure (I/O batching). Processing is also
performed in batches of packets – called vectors – optimizing
usage of the underlying CPU architecture. In other words,
during graph traversal, each node function is applied to a
full vector of packets (compute batching) before continuing
to the next node. For bandwidth sharing, Algorithm 1 runs in
the final output nodes of the VPP processing graph while, for
CPU sharing, both algorithms are implemented in the initial
node called dpdk-input.

In our implementation, FD operations are performed once
per batch thus matching the typical work-flow of a VPP
router. This reduces the induced overhead without unduly
impacting realized fairness (cf. Sec. III). To reduce computa-
tional complexity, we identify the flow using the 5-tuple hash
computed by the NIC for RSS queues. This is accessible via
the hash.rss variable within the mbuf DPDK structure.

Flows are stored in a flow table. The data structure used
is a hash-table with 4K rows each receiving up to 4 24-
byte flow records. The row is addressed by 12 bits of the
RSS hash and the flow record uses 8 more bits of the hash
to distinguish up to 4 flows mapped to the same row. The
row size is aligned to fit two cache lines in our platform.
In view of the scalability results discussed in Sec. III-C, the
flow table size is largely sufficient to ensure the probability
of misidentifying a flow is negligible.

We additionally maintain a separate data structure identi-
fying the active flows, that is, the flows that currently have
a positive virtual queue. This structure has two roles: it
identifies the small set of flows to which the FD algorithm
must be applied, and it enables data for this set to be
maintained in CPU L1 or L2 cache. Flow state in the present
implementation is confined to the flow identifier and the
current virtual queue length. However, space remains for
additional state needed by more complex objectives, like
hierarchical weighted fairness for instance.

Implementation of Algorithm 1 for CPU sharing requires
access to packet arrival times using a timestamp. NIC
time stamping is currently available through the DPDK
rxtx_callback function. When the callback is executed,
the Time Stamp Counter (TSC) is accessed2 and the TSC
register value is written to the DPDK mbuf user data field
udata64.

C. Bandwidth sharing

To illustrate FD induced bandwidth sharing we generate a
workload consisting of 20 flows with progressively decreas-
ing arrival rates: the flow with rank 1 has an arrival rate 10
times higher than that of flow 20. We produce a bottleneck
by rate limiting the output port to a fraction α of the input
rate.

2TSC is a 64-bit register whose purpose is to count the CPU clock cycles
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packet rates).

Fig. 4 presents experimental results for 3 values of α. Per-
flow output rates are plotted with either FD or TD (i.e.,
without differential dropping). With α = 0.1, all flows
are able to attain the fair rate under FD while rates are
proportional to input rates under TD. With α = 0.4 the
available bandwidth increases and FD affects only those flows
(of rank 1 to 10) that exceed the fair rate. In both cases, the
overall drop rate under TD and FD is exactly the same, only
which packets are dropped differs.

With α = 0.6 the output link is no longer a bottleneck
and flow rates are limited by the CPU processing capacity3.
This implies flow rates are reduced proportionally due to
input buffer saturation. The difference between the top two
black lines in the figure is due to the overhead of our current
non-optimized implementation of the FD algorithm (which
doesn’t actually drop any packets in this case).

D. CPU sharing

In our experiments on CPU sharing, the TGS creates 20
equal packet rate flows belonging to one of two different
types: packets of type-L flows require “light” processing,
while packets of type-H flows have a “heavy” cost, con-
suming r times more cycles than type-L. Per-packet cost
depends on the amount of processing in the VPP graph
for both I/O and computation and can be readily measured
using VPP primitives [20]. In the experiments, 18 type-
L flows send IPv4 packets requiring standard processing:
longest prefix matching and next hop forwarding. Two high-
cost flows additionally pass via a busy loop whose length
can be precisely controlled to modulate the ratio r of H to
L type costs.

Experimental results are represented as Sankey diagrams
in Figure 5 where TD and FD are compared for r = 10 with
an input rate of 14.88 Mpps. With tail drop, 11.02 Mpps are
dropped at the NIC interface, and the rest is processed by
the SUT. Tail drop makes no explicit decision as to which

3This corresponds to about 8.5 Mpps IPv4 forwarding throughput



(a) TailDrop

(b) FairDrop

Fig. 5. Sankey diagrams for Tail Drop (a) and Fair Drop (b) experiments

packets should be dropped and, since packet rates are equal
among flows, drops affect equally the H and L classes (74%).
It follows that all flows have the same bit rate while each of
the H flows individually consumes 25% of the CPU cycles.

FD radically changes the operational point. The NIC drops
8.19 Mpps (55%) increasing the traffic processed by the SUT
to 6.69 Mpps. The FD decision consumes 0.17 G cycle/sec
(the overhead of the FD algorithm) and affects 0.74 Mpps
of packets. As expected, 98% of the dropped packets are of
type-H. This differentiation realizes fairness in terms of CPU
cycles, since each of the 20 flows now receives exactly the
5% fair share of CPU. Notice also that, in this particular
scenario, the overall rate of packets forwarded by the SUT
increases: throughput is 5.95 Mpps with FD, compared to
3.86 Mpps with TD).

The drop threshold θ is fixed in these experiments. The
packet arrival rate is such that it is not possible to eliminate
buffer saturation. With respect to the overhead due to drop-
ping packets, we measured the following average costs. To
successfully send a type-L packet requires 350 cycles while
a dropped packet costs 208 cycles made up of 120 for I/O,
50 for freeing packet memory and 38 for executing the drop
algorithms.

To further illustrate the difference in fairness between FD
and TD we repeat the above experiment with the value
of r ranging from 1 to 14. For each value we compute
the Jain fairness index between types L and H for both
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Fig. 6. Throughput and CPU fairness indices for FD (left) and TD (right)
as a function of the ratio r of type-H to type-L costs.

average flow cycle/s and packet/s throughputs [15]. With 2
types and respective metrics xL and xH , the Jain index is
(xL + xH)2/(2(x2L + x2H)). Results for FD and TD, with
x representing cycle/s and packet/s throughputs, are shown
in Figure 6. The figure confirms that FD fairly shares CPU
cycles while TD is fair in terms of packets/s (only because the
input rates are equal). In contrast, FD packet/s throughputs
and TD cycle/s throughputs are unfair in the ratio r with
index (r + 1)2/2(r2 + 1).

V. PERFORMANCE IN DYNAMIC TRAFFIC

We evaluate throughput performance in dynamic traffic and
demonstrate scalability by simulation.

A. Demand model

Traffic demand is modeled as a Poisson process of flows
of finite size of different types. Packets have constant size in
bytes. Per-packet processing cost depends on the flow type
and is assumed constant for all packets of the same flow.

We distinguish full-rate flows and single-packet flows.
Full-rate flows last until 30000 unit size packets are suc-
cessfully transmitted. As noted in Sec. III-C, we expect per-
formance to be insensitive to the size distribution. Constant
size is chosen for faster convergence of the simulations. The
stream of single-packet flows is intended to include traffic
from flows emitting packets at a rate less than the typical
fair rate, possibly because of other bottlenecks on their path.
The packets of such flows appear to buffer management as a
succession of distinct single-packet flows.

Rather than simulating a transport protocol like TCP, we
suppose full-rate flows emit packets as a Poisson process.
They continue emitting packets until the number of success-
fully transmitted packets equals the flow size. The Poisson
rate may be large and constant when flows are assumed
unresponsive to congestion. To represent responsive flows
we assume the Poisson rate is set to a value somewhat
larger (10% here) than the rate that would be realized by
a hypothetical ideal transport protocol. This simplification
facilitates the evaluation of salient features of the considered
algorithms, as presented below.
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B. Bandwidth bottleneck

Let λf be the arrival rate of full-rate flows and λs the
arrival rate of single-packet flows. The load of the unit
capacity link is then ρ = 30000λf + λs. Given ρ, λf and
λs are set so that full-rate flows contribute 80% of link load
while single-packet flows make up the remaining 20%. Full-
rate flows are unresponsive and emit packets at a constant
rate such that total instantaneous demand largely exceeds link
capacity.

Fig. 7 plots throughput (left y-axis) and the 99thpercentile
of the distribution of the number of flows in ActiveList (right
y-axis) as functions of load ρ (flow arrival rate × mean
flow size / link capacity). The measure of throughput is the
ratio of average flow size to average flow duration (equal to
1− ρ for processor sharing, as discussed in Sec. III-C). The
99th percentile of the PS model is d−2/ log10 ρe. The close
agreement between analysis and simulation confirms that fair
dropping is an effective control for bandwidth sharing even
when flows are unresponsive.

C. CPU bottleneck

To evaluate the effectiveness of fair dropping in sharing
a CPU bottleneck we simulate a mix of single-packet flows
with unit per-packet cost and two types of full-rate flows

with respective per-packet costs 1 and 10. The relative cost
of dropping a packet of any type is 0.5. Single-packet flows
contribute 20% of load while the full-rate flow types each
contribute 40%. The buffer size is 512 packets and maximum
batch size is 256. Fair dropping threshold θ is adaptive
between 20 and 50000 cost units using multipliers α = .5
and β = 1.2 (cf. Sec. III-E).

If the cost of dropping were null, our simulation results
(not shown here) confirm that, as for bandwidth sharing, fair
dropping yields a common cycle/s flow throughput equal to
1− ρ, even when all flows are unresponsive. Unfortunately,
this is not the case when the drop overhead is not negligible.
In dynamic traffic, at some point the number of active flows
will attain a level at which the CPU is saturated even when
all packets are dropped (cf. Sec. III-E). Flow throughput then
goes to zero and cannot recover since flows in progress do
not complete while new flows continue to arrive. The impact
can be mitigated by imposing a minimum threshold θ but at
the cost of significant tail drops affecting single-packet flows.

It is important to note that this instability would occur with
any active queue management or scheduling algorithm that
selectively drops packets within the CPU. To effectively con-
trol unresponsive flows it would be necessary to selectively
discard packets before they are polled by the CPU. We intend
in future work to investigate the possibility of piloting such a
mechanism using the fair dropping algorithm to identify the
unresponsive flows in question.

Fair dropping remains an effective means for controlling
CPU sharing between responsive flows with different per-
packet costs. When fair dropping is employed, we know
concurrent flows are allocated the same cycle/s throughput.
We therefore assume responsive flows emit packets at a rate
such that their cycle/s rate (packet/s × cost/packet) is 10%
greater than the current fair rate. When fair dropping is
absent, all packet loss is through tail drop and concurrent
flows experience the same drop rate. As flow packet rate
is determined by this drop rate (e.g., by TCP congestion
control), we therefore derive a common packet/s rate for
flows such that the sum of cycle/s rates is 10% greater than
capacity. The 10% excess is meant to approximately capture
the impact of a transport protocol like TCP that progressively
increases flow rate until drops occur.

Fig. 8 plots throughput on the left y-axis, for tail dropping
(red) and fair dropping (black), and the ActiveList 99th

percentile on the right y-axis for fair dropping as functions
of load (ρ = flow arrival rate × mean flow cycles cost / CPU
capacity). Throughput behavior is broadly as expected: fair
dropping yields almost ideal PS throughput for both flow
types while tail dropping severely degrades the performance
of the flows with lower CPU cycle cost, especially at high
loads.

To explain observed unfairness of FD at low load, consider
the throughput of an isolated full-rate flow emitting packets
at 10% above the nominal CPU rate. The drop rate d1 for
cost-1 flows would be such that 1.1(.5d1 + (1 − d1)) = 1,



i.e., the drop rate is such that packet arrival rate × average
cost is equal to CPU capacity. This yields d1 = 2/11 and a
corresponding flow throughput of 0.9. A similar calculation
for cost-10 flows yields a throughput of 0.99. The loss rate
for single-packet flows is negligible with fair dropping but
rises to around 10% with tail dropping.

Results for the ActiveList 99thpercentile are quite different
to those of Fig. 7. This is due to batch processing and the
impact of single-packet flows. All single-packet flows in a
batch bring a new ActiveList flow (that will be removed on
the next batch arrival). The number of such flows depends on
the batch size and is added to the small number of active full-
rate flows that is accurately predicted by the PS model. Fair
dropping remains scalable in that the number of active flows
remains very small compared to the possibly large number
of flows in progress.

VI. CONCLUSION

Applying proposed fair dropping algorithms in a software
router has been shown to realize per-flow fair sharing of both
bandwidth and CPU. The algorithms are scalable because
the number of flows to be managed is small (less than 200
with high probability at normal loads) whatever the link
speed or CPU capacity. It is compatible with batch I/O and
batch processing, optimizations which significantly impede
the implementation of classical schedulers.

The algorithms have been successfully implemented in
the VPP software router that is part of the FD.io Linux
Foundation project. Preliminary experimental results show
them to be effective and relatively lightweight in terms of
induced overhead.

There is, however, a significant overhead involved in
selectively dropping packets within the CPU, due mainly to
packet I/O, whatever the algorithm employed. This overhead
can compromise performance when flows are non-responsive
to congestion. We are currently investigating extensions to
our approach where non-responsive flows can be effectively
dealt with before their packets are polled by the CPU.
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