
Pyrrha: Congestion-Root-Based Flow Control

to Eliminate Head-of-Line Blocking in Datacenter

Kexin Liu⋆*, Zhaochen Zhang⋆*, Chang Liu⋆, Yizhi Wang⋆, Vamsi Addanki△, Stefan Schmid△,

Qingyue Wang⋆, Wei Chen⋆, Xiaoliang Wang⋆, Jiaqi Zheng⋆, Wenhao Sun+, Tao Wu+, Ke Meng+,

Fei Chen+, Weiguang Wang+, Bingyang Liu+, Wanchun Dou⋆, Guihai Chen⋆, Chen Tian⋆

⋆Nanjing University, △TU Berlin,+Huawei, China

Abstract

In modern datacenters, the effectiveness of end-to-end con-

gestion control (CC) is quickly diminishing with the rapid

bandwidth evolution. Per-hop flow control (FC) can react to

congestion more promptly. However, a coarse-grained FC

can result in Head-Of-Line (HOL) blocking. A fine-grained,

per-flow FC can eliminate HOL blocking caused by flow

control, however, it does not scale well.

This paper presents Pyrrha, a scalable flow control ap-

proach that provably eliminates HOL blocking while using

a minimum number of queues. In Pyrrha, flow control first

takes effect on the root of the congestion, i.e., the port where

congestion occurs. And then flows are controlled accord-

ing to their contributed congestion roots. A prototype of

Pyrrha is implemented on Tofino2 switches. Compared with

state-of-the-art approaches, the average FCT of uncongested

flows is reduced by 42%-98%, and 99th-tail latency can be

1.6×-215× lower, without compromising the performance

of congested flows.

1 Introduction

Given the increasingly stringent performance requirements

on datacenter networks, avoiding congestion and the re-

sulting delays has become critical for many applications.

Indeed, measurement studies show that congestion events

are frequent in today’s datacenters, e.g., bursty key-

value stores [18, 30], web search services with massive

queries [11], and data-parallel/machine-learning systems

with partition/aggregation traffic patterns [29, 90, 92, 13,

26, 91, 4, 70, 33]. Generally, congestion occurs at an

output port when the arrival rate of traffic exceeds its link

bandwidth. Queues build up at congested ports. With an

inflated buffer, flows could endure a long queuing delay or

even face packet loss, hence flows’ completion times (FCT)

can be prolonged [11, 56].

State-of-the-art approaches to handle congestion is end-to-

end congestion control (CC) [11, 95, 65, 56, 19, 55, 61, 15,

∗First author and second author contribute equally to this work.

35, 6, 14, 86, 58]. Congestion can be detected by senders

when congestion signals are sent back or feedback delay

is observed. Usually, it costs senders at least one Round-

Trip Time (RTT) to be aware of the congestion, and then

senders may take several RTTs to converge to an appropriate

transmission rate. In modern datacenters, the effectiveness

of end-to-end CC is quickly diminishing with the rapid

bandwidth evolution [36, 43, 74, 22](§ 2.1).

With the increasing link speed and performance require-

ments of datacenter networks, an intriguing and emerging

alternative is per-hop flow control (FC), which can react

to congestion much more promptly. It suppresses the

transmission of the upstream entity before overwhelming the

downstream queue, which avoids a large buffer occupancy.

Generally, traffic in the same queue is controlled as a whole.

Once the queue length exceeds a given threshold, a pause

frame can be sent to pause the upstream entity [16, 17],

avoiding further buffer build-up where congestion occurs.

However, a coarse-grained flow control might spread the

congestion to the whole network, inducing Head-Of-Line

(HOL) blocking, and hurting the performance of victim

flows [40, 54, 62, 57]. Here HOL blocking refers to flows be-

ing paused innocently (§ 2.2). A naı̈ve approach to eliminate

HOL blocking could be to isolate each flow into different

queues and control each of them separately. However, such

a per-flow granularity flow control is not scalable since

the hardware resources of switches are limited. State-of-

the-art flow control approaches hence aim at reducing the

number of queues required by compromising the granularity

of isolation [36]. Thus, the HOL blocking can not be

eliminated entirely (§ 2.3).

This paper explores how to eliminate HOL blocking in

a scalable manner, i.e., minimizing the required number

of queues. We observe that when congestion occurs, flow

control first takes effect on the root of the congestion, i.e.,

the port where congestion occurs. Then several congestion

hotspots (i.e., output port with buffer build-up) can appear

along the back pressure path of flow control. These involved

hotspots form a congestion tree, where the root of the

tree is the root of the congestion. Simply controlling the

transmission of flows based on hotspots could induce HOL

blocking. Instead, if we separately control the transmission

of flows according to the congestion root they participate

in, flows will not be paused innocently. As the number

of concurrent congestion roots observed on each port is

moderate, only a reasonably small number of queues on each

port are required for traffic isolation in each switch [20].

Based on these insights, this paper presents Pyrrha, a

congestion-root-based per-hop flow control protocol (§ 3).

A framework is constructed for analyzing egress-based flow

control algorithms. We analytically prove that Pyrrha is a

HOL-blocking-free per-hop flow control protocol with the

minimum queue requirements.

In Pyrrha, each switch maintains a snapshot of the con-

gestion status of the downstream network. Flows that would

pass through the same congestion root in their downstream

paths could be pushed into a dedicated congestion queue

locally in each upstream switch. Then, flows passing through

different congestion roots can be controlled separately as

soon as possible. Pyrrha solves a set of challenges.

• How to identify a hotspot’s role? When congestion

occurs, multiple congestion roots may be claimed in suc-

cession. This could occur when an upstream congestion

hotspot claims itself root while its downstream hotspot

disagrees, and vice versa. With a local view, it is hard

to tell which root is the exact root in the upcoming

congestion. Intuitively, given the behavior of flow control,

congestion roots always locate on the most downstream

ports that flows pass through. Inspired by the root-

selection procedure of classic spanning tree algorithms [7,

32], Pyrrha employs a distributed self-stabilizing merge

mechanism. A port can claim itself a self-nominated

congestion root independently when it detects its queue

buildup for the first time. It then abdicates its claim in

favor of a self-nominated downstream root if (part of)

its flows pass through the downstream claimer. Quickly,

participating hotspots can converge to a congestion tree.

Naturally, the congestion root is detected. (§ 4.1).

• How to identify a congested flow upon its arrival?

For each arriving flow to a switch, its entire following

path should be deterministic to the switch to identify a

congested flow. Inspired by recent industrial path control

practice [73, 52], Pyrrha proposes a hash-function-aware

design for switches. Every switch can determine the path

that a flow will take. With that information, the switch

could match the path against the congestion status snap-

shot of the downstream network to determine whether it

is a congested flow (§ 4.2).

• How to handle events-tangling scenarios? Conges-

tion trees could overlap with each other which could

result in a congested flow traversing several conges-

tion roots. Besides, the congestion root in networks

may vary with transient bursty traffic. Without careful

Figure 1: Our vision of labor division between CC/FC.

scheduling among congestion queues, such flows could

be mistakenly paused/resumed or delivered out-of-order.

Pyrrha proposes a resource-efficient hierarchical queue

structure corresponding to the physical topology. The

design ensures both correct flow control semantic and in-

order delivery even in highly dynamic scenarios (§ 4.3).

A prototype of Pyrrha is implemented on Tofino2 [48].

Testbed evaluations and large-scale NS-3 simulations have

been performed. We compare Pyrrha with existing flow

control protocols (e.g., Priority Flow Control (PFC) [46],

and BFC [36]). And we also incorporate Pyrrha with

existing congestion control protocols (e.g., DCQCN [95],

TIMELY [65], and HPCC [56]). We find that the average

FCT of uncongested flows is reduced by 42.8%-98.2%,

and 99th-tail latency can be 1.6×-215× lower, without

compromising the performance of congested flows. In

addition, Pyrrha reduces the maximum buffer occupancy by

up to 1.8×-6.2× (§ 6). As a contribution to the research

community and to ensure reproducibility, our artefacts is

made publicly available online [59]. This work does not raise

any ethical issues.

2 Background and Motivation

2.1 CC is Falling and FC is Rising

A variety of datacenter applications produce bursty traffic,

which can result in different types of congestion, e.g., incast,

and load imbalance. To handle congestion, existing efforts

focus on developing end-to-end congestion control (CC). CC

can be classified into reactive and proactive. With reactive

CC, congestion can be detected by switches (e.g., ECN

in DCTCP [11] and DCQCN [95], INT measurements in

HPCC [56], PINT [19], PowerTCP [6] and Poseidon [86]) or

end-hosts (e.g., Timely [65], Swift [55], and On-Ramp [61]).

After receiving congestion signals or if packet delays are

observed, senders adjust the transmission rate. It may

cost a flow several RTTs to converge to an appropriate

rate even in a stable network condition. With proactive

CC, bandwidth is allocated before the transmission (e.g.,

ExpressPass [25, 58], Homa [67], NDP [41], Aeolus [43],

and pHost [31]). However, whether to transmit in the first

RTT is a dilemma, and proactive CC either wastes the

first RTT or risks reintroducing congestion. Recently there

are CCs [14, 69] which detect congestion at sub-RTT by

(a) PFC. (b) per-flow queue flow control. (c) BFC.

Figure 2: Performance when incast flows are mixed with non-incast flows.

(a) Throughput (DCQCN). (b) Throughput (DCQCN+Pyrrha). (c) FCT comparison.

Figure 3: Performance comparison under MoE workloads (collided phase).

leveraging switches to send back control frames directly.

However, they can not quickly react to congestion especially

when congestion occurs at the last hop (e.g., incast).

Several trends. The control loop of CC is too long to handle

transient congestion, given the fast evolution of datacenter

networks: (i) The high port bandwidth allows to send out

more flows within the first RTT, even before congestion con-

trol could step in [36, 43]. Transient bursty traffic results in a

large buffer occupancy and at the same time mislead the rate

adjustment of CC. (ii) The buffer size cannot catch up with

the increased speed of its high bandwidth per port [36, 22].

It becomes harder for switches to buffer transient congestion

and wait for end-to-end CC’s intervention. (iii) The growing

scale of datacenter networks and the emerging workloads

(e.g., distributed training) lead to more bursty traffic (e.g.,

a larger scale incast) [74, 42, 75].

Our vision. To handle bursty traffic, per-hop FC protocols

should step in. As shown in Figure 1, we propose a labor

division between CC and FC:

• (i) Per-hop FC handles transient congestion. A switch

can control the traffic transmission quickly by per-hop

flow control frames. It is in a unique position to quickly

manage flows that have already been injected into the

network to avoid performance downgrades.

• (ii) CC takes its part to handle persistent congestion.

CC can adjust the flow rates to increase/decrease the

forthcoming traffic injection into the network when con-

gestion occurs and to handle fairness issues.

2.2 HOL Blocking Problem of Simple FC

In RoCEv2 [16], PFC [46] ensures that the buffer does not

overflow. PFC pauses the upstream entity at a per-port or

per-priority-class queue granularity when the ingress queue

length exceeds a given threshold. Further, when the upstream

ingress queue exceeds the threshold, a pause frame will be

sent to its upstream entities.

However, the intervention of PFC could spread conges-

tion. When PFC is applied, flows that do not contribute to

downstream congestion could be paused when they share

the same queue with congested flows. The congestion scope

can spread from congested ports to piles of innocent ports.

Hence, it could downgrade the performance of uncongested

flows. We define the above congestion spreading phe-

nomenon as the HOL blocking caused by flow control, i.e.,

a flow is paused innocently by the congested port that it does

not pass through. HOL blocking could cause a throughput

downgrade. More severely, PFC is vulnerable to deadlock

with routing loops [40, 54, 62, 57].

Typical incast workloads.To demonstrate the HOL block-

ing problem, we conduct a simulation where incast flows are

mixed with non-incast flows. 720-to-1 incast flows are gen-

erated with an average size of four Bandwidth-Delay Product

(BDP) and non-incast flows are generated with a load of

0.8 following the Poisson arrival process (setting details in

§ 6). Figure 2(a) depicts the real-time throughput. To make

it more clear, we use vulnerable flows to denote uncongested

flows sharing paths with congested flows in the remainder of

the paper since they are more likely to be hurt by congested

flows. Other uncongested flows are denoted as background

flows. Hence, the throughput of vulnerable flows is severely

hurt since they are paused by downstream switches with

congested flows as a whole, leading to a large queuing delay.

Besides, since a PFC pause frame storm occurs, congestion

is spread to the whole network. Consequently, background

flows suffer a throughput downgrade from 1ms to 4ms.

MoE workloads. We investigate the performance of

Pyrrha under the traffic of a popular type of pre-trained large

language model called Mixture-of-Expert (MoE). According

to [42], the traffic pattern can be characterized by an imbal-

anced alltoall where a significant portion of the traffic is sent

to a few ’hot’ experts. Owning to the synchronization nature

of the training process, the traffic exhibits a periodic on-off

pattern [75, 76]. Following [75], two groups of periodic

traffic are generated.

Figure 3 shows the performance of flows with collided

phase, i.e., where their phase overlaps (the results of the

interleaved phase are detailed in Appendix B). In the case

of DCQCN+PFC, two groups of alltoall suffer from HOL-

blocking as they compete for bandwidth, which in turn

triggers PFC. The peak bandwidth lasts for approximately

1 ms during which non-hot experts complete their traffic

reception, followed by hot experts continue receiving their

traffic. The throughput of the alltoall-1 group is notably

suppressed, even dropping to zero upon the arrival of the

alltoall-2 group. Once a portion of the alltoall-2 flows

finishes, alltoall-1 begins to grasp some of the bandwidth,

as indicated by the red rectangle in the figure. While for

DCQCN+Pyrrha, benefiting from the rapid reaction to the

congestion, two groups of flows do not disturb each other,

accelerating the tail latency by a factor of 1.46×.

2.3 State-of-the-art Flow Control is Flawed

To overcome the HOL blocking problem caused by coarse-

grained control on queues, a naı̈ve scheme is per-flow queue

FC scheme. Figure 2(b) demonstrates the simulation results

under the same settings as in Figure 2(a) when the switch

assigns a dedicated queue to each flow passing through

it. Vulnerable and background flows fully utilize the link,

at the same time the throughput of incast flows does not

downgrade (see [59] for theoretical analysis). However, tens

of thousands of flows can be observed on ports [84]. Hence

a per-flow granularity scheme is non-scalable.

Existing flow control approaches try to reduce the number

of queues by compromising the isolation granularity.

Destination-based flow control. This line of work tries

to isolate congestion by separating flows transmitting to

different destinations. Revisiting super-computing litera-

ture decades ago, per-destination Virtual Output Queues

(VOQs) [23, 27, 51] are assigned to separate flows with

different destination addresses [85, 68]. However, per-

destination VOQs are not scalable since the number of

VOQs required scales with the number of hosts in networks.

Floodgate [60] is a per-hop flow control leveraging per-

destination windows to identify incast traffic in datacenter

networks. Then, incast traffic can be isolated from non-

incast traffic. However, it should maintain a per-destination

state of the remaining sending window which demands much

memory resources on switches. In summary, they only

aim at eliminating HOL blocking caused by the last-hop

incast and cannot handle other types of congestion such as

load imbalance. In addition, they require per-destination

resources which build barriers to deployment at scale.

Queue-based flow control. A second line of work targets at

assigning flows into a limited number of queues to alleviate

HOL blocking. Since it cannot isolate congested flows

from uncongested flows entirely, HOL blocking cannot be

avoided. In BFC [36], flows are assigned to a number of

queues (i.e., 32-128 queues per port) according to their flow-

ids and hash functions. A flow is assigned to an empty

queue if possible and could share it with other flows when

all queues are occupied. As shown in Figure 2(c), with

relatively large incast flows, both vulnerable and background

flows maintain a very low throughput from 2ms to 12ms.

The tail latency of flows is prolonged by 6× compared with

the per-flow queue scheme. This is because incast flows can

occupy queues for a long time. Vulnerable and background

flows sharing the same queue with incast flows are severely

hurt, and their transmission rate is mistakenly controlled by

the network bottleneck (i.e., the destination ToR of incast).

To sum up, existing solutions cannot totally avoid HOL-

blocking, and some of them are impractical.

3 Pyrrha Overview

Our target is to eliminate HOL blocking caused by flow

control in the most cost-effective way. In this section, we first

illustrate why congestion root is the appropriate granularity

of flow control along with the basic idea of Pyrrha, followed

by a list of challenges.

3.1 Basic Idea

Before illustrating our basic idea, we introduce several

concepts in flow control when congestion occurs. Figure 4

shows a typical congestion tree rooted at P5.

• Congestion Hotspot. When the congestion occurs, a flow

control scheme starts to pause upstream, inducing several

hotspots along its back-pressuring path. A congestion

hotspot is an output port whose input rate exceeds its

output rate and its queue accumulates.

• Congestion Root. As its name implies, a congestion

root is the root cause of the congestion, where congested

flows finally aggregate. Meanwhile, it is the root of the

corresponding congestion tree.

• Congestion Tree. A congestion tree can be made up of

a root (e.g., P5), non-root hotspots (e.g., P1-P3) and leaf

ports (already controlled by the root but have not paused

its upstream yet). In our paper, a congestion tree is named

after its root (e.g., T5 denotes the tree whose root is P5).

Why congestion-root-based FC? A non-differentiating

treatment of flows passing through congestion roots and

hotspots could result in HOL-blocking since flows passing

through hotspots might not contribute to the congestion. To

avoid involving innocent flows, flow control should decide

the right scope of flows to control. Intuitions are that

if a flow control only applies pause to flows contributing

to the congestion root, HOL-blocking can be eliminated.

Figure 4: Congestion tree illustration.

Meanwhile, flows passing through different congestion roots

should be handled separately to avoid interfering with others.

Quick reaction to congestion: identify congested flows

upon arrival. Once a congestion root is detected, the

congestion root information is propagated to its upstream

switches when it is detected. Then each switch maintains

a congestion status snapshot of its downstream networks. A

congested flow can be detected upon its arrival in networks

by checking whether its path matches existing congestion

roots. Hence, its transmission can be controlled several

hops earlier before it arrives at congestion roots. It reduces

the occurrence of severe congestion and relieves the buffer

pressure on following hops, especially on congestion roots.

Fine-grained isolation: manage traffic according to its

contributed congestion roots. By default, flows are pushed

into a physical output queue (OQ). For separate control,

congested flows passing through the same congestion root

should be pushed into a dedicated isolation queue (IQ)

assigned to the corresponding congestion root. Different

categories of flows, e.g., congested flows contributing to dif-

ferent congestion roots, and uncongested flows are isolated

respectively. Then, the transmission of congested flows can

be controlled precisely by pausing the exact queue assigned

to the congestion root, which avoids congestion spreading.

Based on the above ideas, we propose Pyrrha, a practical

fine-grained flow control scheme based on congestion roots.

Pyrrha achieves good properties, as shown next.

Theorem 3.1. Pyrrha is a HOL-blocking free per-hop flow

control protocol requiring the minimal number of queues.

Proof. Inspired by the gradient graph [78, 77], we represent

flows and queues as vertices, and their traversing relationship

as edges. Congested flows contributing to the congested

queue’s congestion can be represented as its immediate

neighbors. Based on this representation, congested flows

can be identified as the neighbors of a congested queue.

Similarly, potentially paused flows by a congested queue can

be identified in our graph representation. In order to prove

that Pyrrha is HOL-blocking-free, we formally prove that the

set of congested flows and the set of potentially paused flows

are identical for any congested queue. Futhermore, we prove

that any flow control using fewer queues than Pyrrha cannot

avoid HOL blocking. We use Dirichlet’s box principle and

proof by contradiction to establish this impossibility result.

Our formal proof appears in [59].

3.2 Design Challenges

Identify congestion roots. Correctly identifying the con-

gestion root is the prerequisite of proper flow control. In tree

T5 of Figure 4, P1-P3, and P5 should agree that P5 is the

root of incast. Otherwise, if P1 incorrectly identifies itself

as an independent root, vulnerable flow VS→VR becomes a

victim.

Identify congested flows. To control the transmission

of flows separately, congested flows should be identified

precisely. When an uncongested flow is mistakenly identi-

fied (e.g., VS→VR) as a congested flow, it can be paused

innocently. To recognize a congested flow quickly, a switch

should obtain the flow’s path to be traversed in its down-

stream network so that it can check the path against its

downstream network snapshot.

Handle tree-tangling scenarios. Several concurrent con-

gestion trees can be intertwined among themselves. If non-

root ports of trees are overlapped, these ports can play differ-

ent roles in different congestion trees. These ports should

not entangle transmission control received from different

trees. When a tree is covered by another one, it results

in a flow contributing to several congestion roots, which

appear frequently in real systems. One may wonder why

congestion still occurs at a port after part of its passing flows

is controlled by its downstream congestion roots. This is

because the congestion at the port is caused by itself other

than its downstream ports. Figure 5(b) depicts an example

that the path of a flow can first match a congestion root

(P6) and then match another congestion root (P5). The

transmission of the congested flow should be controlled by

both congestion roots, i.e., only when both congestion roots

send a RESUME frame can the flow be transmitted. Besides,

the transmission control of the flow should not interfere other

flows sharing one of the congestion roots.

In addition, when the competing traffic changes, the con-

gestion tree can shrink or expand, leading to congestion roots

varying over time. For P3 in Figure 4, initially, packets of

flows {S4-S5}→R1 are controlled in the IQP5. If flows {S1-

S3}→R1 finish, P3 is likely to become the new congestion

root later. Flows {S4-S5}→R1 are no longer the congested

flows of P5, instead, they are congested flows of P3. Later-

arrived packets of these flows should be carefully scheduled

in case they are transmitted before packets previously queued

into the IQP5, which results in out-of-order delivery.

4 Pyrrha Design

Figure 5 demonstrates the architecture of Pyrrha. The

bottom part of the figure denotes the packet propagation

among Pyrrha switches. And the upper part depicts the

three major components of a Pyrrha switch. Congestion

Figure 5: Pyrrha architecture.

Figure 6: IQ state transitions.

Root Identification (§ 4.1) responds to downstream switches

to detect congestion and identify the corresponding root.

The congestion information is carried in flow control frames

(e.g., PAUSE) and propagated to upstream switches in a

hop-by-hop manner. Congested Flow Identification (§ 4.2)

maintains the snapshot of downstream network congestion

states to help quickly recognize congested flows through

path matching. Isolation queues (IQs) are structured in a

hierarchy corresponding to the topology by Congested Flow

Management (§ 4.3). Besides, details and discussions are put

in § 4.4 and § 4.5.

4.1 Congestion Root Identification

Initial detection. Inspired by the root-election process of

spanning tree protocols, a congested port can claim itself

a self-nominated congestion root candidate independently.

Initially, each port is attached with a OQ and flows are

pushed into the OQ by default. Hence the queue length

increase on the OQ can be regarded as an indication of

congestion. When a data packet arrives at the OQ, a

switch checks whether the queue length exceeds a given

threshold Kpause (e.g., several per-hop BDPs). If so, a hotspot

is detected and the hotspot regards itself as a congestion

root. Subsequent packets that arrive at the hotspot trigger

a PAUSE frame to the corresponding upstream port from

which the packet arrived.

Congestion root identification. According to behavior of

flow control, a root is always the most downstream hotspot

in a tree. Hence, we can identify the real congestion roots by

merging upstream congestion tree into a more downstream

one. As shown in Figure 5(a), when a congestion-root-

candidate hotspot (P1) receives a PAUSE frame from a

downstream root (P5), it indicates that part of its passing-

through flows also traverses this downstream hotspot. Hence

it recognizes itself as a false-positive congestion root. A

new IQ for this new congestion root (P5) is assigned. All

following packets matching the new root will enter the cor-

responding IQ. Then, the old congestion tree is canceled and

merged into the new congestion tree. Note that this process

can be iterative when there exist multiple layers of hotspots

in a congestion tree. The false-positive congestion roots are

eventually merged and the root of the new congestion tree is

the real congestion root.

Merging process. To start merging, the false-positive

congestion root notifies all its child nodes by sending a

control message MERGE. MERGE is sent to all its upstream

entities belonging to the (old) false-positive congestion root,

carrying the ID of both old and new congestion roots. As

shown in Figure 6, switches receiving the MERGE frame

change the state of the corresponding IQ to soft-merging

and propagate the notification to its upstream further. Soft-

merging means that the old IQ now belongs to no congestion

tree and can be unassigned once empty. The packets

queuing in the old IQ are not controlled by the false-positive

congestion root. Instead, only packets passing through the

real congestion root are controlled (§ 4.3). The merging

process finishes within a one-way delay, hence false-positive

congestion roots have a negligible impact on performance.

4.2 Congested Flow Identification

Intuitions are that a congested flow passes through at least

one congestion root.

Determining a flow’s exact path. To determine whether a

data packet belongs to a congested flow, the entire onward-

path of each arriving packet at a switch should be deter-

ministic. Pyrrha is compatible with traffic load balancing

protocols that can locally get deterministic onward paths

for flows [1, 44, 79, 64, 52]. Among those load balancing

protocols, hash-based protocols (e.g., per-flow ECMP and

PLB [73]) are most widely deployed given its no-reordering

properties [87]. Pyrrha proposes a hash-function-aware

design. Pyrrha’s switch calculates a packet’s onward-path

by using its IP tuples, routing hash functions, and seeds of

its downstream switches, together with flow labels carried in

its header if necessary as input. Besides, source routing is

compatible with Pyrrha naturally since Pyrrha’s switch can

derive the onward-path of a packet by parsing its header.

The memory and computation resource to get a flow’s path

is moderate, and following optimizations are facilitated by

leveraging the industry-standard practices in datacenters. (i)

Given that switches in datacenter only support limited types

of hash functions (e.g., CRC or XOR) to conduct efficient

calculation [87, 93, 72], Pyrrha switch only needs to store

the type of the hash function of other switches along with

their hash seeds. (ii) In many widely deployed topologies [8,

37, 62, 82], the multiple equal path property and the up-down

routing strategy can be leveraged to optimize the overhead.

In those topologies, the forwarding tables of all core switches

are identical. Hence, Pyrrha switch only needs to store one

replica for redundant forwarding tables. Furthermore, for

fat-tree, the path from a core switch to a given destination

is unique, hence Pyrrha switch only conducts hash function

calculation for the first two hops.

For other adaptive load balancing approaches, e.g., per-

packet spraying and DRILL [67, 34], which determine the

path of flows through dynamic states, Pyrrha is a comple-

mentary solution to handle the hotspots caused by destina-

tion collision (i.e., incast), where load balancing falls short.

Experiments in Appendix 6.3 show that Pyrrha is compatible

with DRILL and further improves the tail latency by 18.3%

compared to pure Pyrrha. Pyrrha also handles corner cases

where flows are re-routed to different paths due to link

failures (Appendix § A).

Matching and maintaining snapshot. Pyrrha’s switch

maintains the congestion-root table of the downstream net-

works. As shown in Figure 5(b), the table maintains a snap-

shot of the congestion states of its downstream networks.

When a PAUSE frame indicating a new congestion root is

received, the congestion root is recorded in the table. When

a packet arrives at the switch, its path can be obtained via

above mentioned methods. The switch checks whether its

path matches any entry in the congestion-root table. For

port P1 in Figure 5(b), packets that will traverse P5 in its

downstream path are identified as belonging to a congested

flow. Hence, it’s enqueued to a separate IQ, which is

paused/resumed based on the state of the corresponding root.

Otherwise, the packet belongs to an uncongested flow and is

put in the OQ.

4.3 Congested Flow Management

To handle tangled scenarios where congestion trees are

intertwined among each other or congestion roots vary over

time, Pyrrha leverages a hierarchical methodology to manage

congested flows corresponding to that of the topology. It

can be supported by a Hierarchical Isolation Queue (HIQ)

architecture, which manages congested flows in a hierar-

chy. Pyrrha installs HIQ during compilation according to

its location in networks and manages the usage of queues

dynamically during runtime through a mapping table. We

also provide single-tier IQs prototype to fully support the

function of HIQ.

Handling congested flow in hierarchy. Congestion trees

are intertwined when non-root ports of trees are overlapped

or a tree is covered by another one. For the first scenario,

IQs on ports can naturally isolate control from different

congestion roots on non-root ports. For the latter one, a

congested flow could pass through multiple congestion roots.

To ensure precise control isolation, a congested flow should

match all corresponding IQs before it is forwarded. A

hierarchical organization of IQs based on the location of

their corresponding congestion roots in the topology enables

a congested flow to match appropriate IQs sequentially.

Especially, when per-flow load balancing is used, a flow at

most encounters one congestion root among switches at the

same level. It ensures in-order delivery when a congested

flow alters its matched IQs.

Hierarchical Isolation Queue (HIQ) architecture. HIQ

consists of several levels of IQs. Each IQ is positioned in

a hierarchy according to its distance to the corresponding

congestion root in the physical topology. Hence, the number

of layers of the HIQ is determined by its location in the

network. As shown in Figure 5(c), in a two-tier network,

an uplink port of a ToR switch maintains two levels of IQs,

since the farthest potential congestion root is two hops from

it. Figure 5(c) depicts the HIQ architecture on P7, i.e.,

the leaf port in Figure 5(b). P7 fully utilizes the two-level

architecture of the HIQ, since the farthest congestion root

P5 is two hops from it. Especially, the OQ is connected to

the last level of the HIQ architecture. A dedicated scheduler

is equipped for each level of queues to schedule the traffic

transmission. Only when an IQ is in a resumed or soft-

merging state can its packet be dequeued and pushed into

the next-level IQs/OQ. From the perspective of a packet,

this process is performed iteratively until it reaches the OQ.

In the scenario depicted in Figure 5, when a flow that will

traverse congestion root P6 and P5 arrives at the upstream

switch of port P6, it matches the HIQ from-near-to-far. After

a packet is dequeued from IQP6, it is pushed into a next-level

IQP5.When there is no more matched IQ, it is pushed into

the OQ. Hence, the packet can be forwarded to the next hop

only after all matched congested roots are resumed. In this

way, congested flows are controlled locally precisely.

IQs in HIQ are arranged by levels, supporting in-order

delivery naturally. Considering the merging procedure in

Figure 5(a), the congestion root is changed from P1 to P5.

IQP1 is in the soft-merging state and packets in it can be

mixed with congested and uncongested traffic. Pyrrha should

handle them separately to avoid HOL blocking. Congested

flows of root P5 are dequeued from IQP1 and then pushed

into the next level IQP5. Uncongested flows are forwarded

to OQ. In this way, precise isolation is achieved without

inducing re-ordering.

Handling secession of the congestion root. Once the OQ

length of the congestion root decreases below the resume

threshold, it sends back RESUME to its upstream. Likewise,

upstream switches could resume their upstream when their

own IQ decreases below the resume threshold. It is an

iterative process that the congestion tree eliminates starting

from the leaf switches to the root. A congestion port

becomes a leaf when it has not sent PAUSE yet, or when the

status of all its upstream entities is set to unassigned. The

IQ of the leaf switch is unassigned when it becomes empty.

When all the upstream IQs of a congestion root are marked

unassigned and the queue length of OQ of the congestion

root is below the resume threshold, the congestion root

disappears naturally. Figure 6 depicts the state transition of

the IQ usage. Only when an empty IQ is in a resumed or

soft-merging state can it be marked as unassigned.

4.4 Miscellaneous Detailed Design
Congestion information propagation. There are three

types of flow control frames in Pyrrha, e.g., PAUSE, RE-

SUME, and MERGE. These control frames carry the conges-

tion information and control the transmission of congested

flows accurately in a hop-by-hop manner. Correspondingly,

there are three states for an IQ, i.e., paused, resumed, or soft-

merging. The state transitions of an IQ are shown in Figure 6.

When a congestion root is detected, a PAUSE frame is

sent back to the upstream port through the ingress port of

which the data packet is just received. Once a data packet is

pushed into the OQ which is attached to the congestion root,

Pyrrha switch checks the packet’s ingress port and sends

back the PAUSE frame. A PAUSE frame carries the ID

of the congestion root (i.e., identified as switch-id:port-id).

Likewise, when the queue length of IQ exceeds the threshold

Kpause, a PAUSE frame carrying the root ID is sent back to

its upstream switch.

Cooperation on end-hosts. To handle persistent congestion,

end-hosts should control the upcoming traffic into networks.

Pyrrha can cooperate with congestion control protocols. And

Pyrrha can perform better if end-hosts can respond to PAUSE

(or RESUME and MERGE) frames. To pause and resume

at a per-flow granularity, end-hosts could leverage a pull-

based transmission model, which can be implemented by

programmable smart NICs in RDMA networks. Especially,

Pyrrha can also handle end-host congestion (e.g., PCIe

congestion) by backpressuring the traffic it receives.

Handling rare packet loss. Pyrrha reduces queuing length

significantly. Hence, buffer overflow rarely occurs. How-

ever, Pyrrha does not guarantee lossless for rare cases where

every port of a switch becomes the victim port of a k-1:1

incast lasting for one-hop RTT in turn, where k denotes

the number of ports on switches. In this certain case,

Pyrrha can start to drop packet and leverage IRN [66] for

fast retransmission.

4.5 Scalability Discussions

Queue consumption. In the most extreme scenario, the

number of congestion roots can be the number of ToRs in the

network. However, the concurrent amount of congestion in

networks is usually moderate. It is reported that only 3% of

the links in edge and aggregation layers appear as a hotspot

Figure 7: Queue usage analysis.

Figure 8: Testbed topology.

for more than 0.1% of time intervals [20, 21]. Moreover, the

concurrent roots can be much less than that of hotspots.

To investigate the IQ usage, evaluations under stressful

workloads where (m− 1) out of m ToRs send traffic simul-

taneously to the left 1/m of the ToRs are conducted. A

k=12 fat-tree topology is employed and each host sends 40

one-BDP flows continuously to create a substantial network

burst. Figure 7 illustrates the IQ usage of Pyrrha as the

fraction of senders varies. The IQ utilization ranges from

6-20, approximately proportional to the number of pods k,

which considered to be relatively moderate. Since commod-

ity switches can support thousands of VOQs [23, 27, 51],

assigning a dedicated queue to each downstream root is

feasible. To handle corner cases where IQs are not enough,

similar to BFC, Pyrrha leverages hash functions [39, 71] to

choose an IQ according to the congestion root ID, at a cost

of sacrificing precise isolation.

Deadlock prevention. Pyrrha is deadlock robust since

OQs never get paused. To prevent cyclic buffer dependen-

cies (CBD) caused by routing loops, Pyrrha switch checks

whether the congestion root carried in the PAUSE frame is

identical to its own identifier. If so, it ignores the PAUSE

frame directly. (see detailed discussions in [59].)

5 Implementation and Testbed Experiments

We implement a Pyrrha prototype on Tofino2, a state-of-

the-art programmable switch ASIC [48] with Reconfigurable

Match Table (RMT) architecture. In this section, we briefly

describe the key modules of the prototype, followed by the

overhead analysis. Testbed evaluations show that Pyrrha can

achieve good performance (§ 5.2). More implementation

details are deferred to Appendix D and E.

5.1 Prototype of Pyrrha

We implement a Pyrrha prototype on Tofino2 with 2.5k lines

of P4 code and 2k lines of Python code. The operations of

Pyrrha is implemented entirely in the data plane at line rate.

Key modules and the pipeline. The Pyrrha prototype is

mainly composed of several modules, i.e., (i) congestion root

matcher, (ii) queue manager, (iii) queue state detector, and

(iv) signal packet module.

(i) Upon arrival, the data packet first undergoes a standard

processing procedure, including forwarding and admission

control. Subsequently, the data packet is forwarded to

the congestion root matcher, an integral component of the

path calculation unit and a congestion root table, facilitating

the congested flow identification. Specifically, the path

calculation unit calculates the packet’s egress ports of its

onward path. The congestion root table records the status

of ports, indicating whether the port is congested or not. (ii)

Then packets enter the queue manager for queue assignment.

The queue manager assigns queues to traffic based on the

congestion roots it would pass through. Central to its design

is a multi-segment stack, wherein each segment manages the

available queues for a specific egress port.

(iii) The queue state detector checks whether the length of

the assigned queue exceeds the pause threshold or decreases

below the resume threshold, and then triggers appropriate

signal packets. The queue length is retrieved by utilizing

ghost threads in Tofino2.

(iv) When it is necessary to send a signal packet, the signal

packet module leverages the packet trigger functionality to

construct signal packets, such as PAUSE and RESUME.

Upon receiving a PAUSE or RESUME, the module engages

Tofino2’s AFC (Advanced Flow Control) mechanism to

pause (or resume) the queue.

Feasibility of HIQ The architecture of HIQ is supported

in current Metro Ethernet (MetroE) service routers [3, 2].

And a recent work of implementing multi-level scheduler

on ASIC [94] also verifies its feasibility. According to

private talks with chip vendors, they consider it possible to

implement HIQ in their next-generation switching chips. For

instance, the two-layer HIQ can be obtained by connecting

two traffic manager models in series and specifying the

next-level IQ to be pushed in when a packet is dequeued.

Although HIQ is not supported by the architecture of Tofino2

currently, the features of HIQ can be fully supported via

single-tier queues (Appendix C).

Complexity and overhead. Tofino2 adopts pipeline ar-

chitecture, wherein the resource allocation is determined at

compile time. It enables us to ascertain Pyrrha’s resource

requirements without running it in a large-scale cluster.

According to the statistics reported in megascale [49], the

scale of current data centers can reach up to 10,000 hosts.

Therefore, we use a k=36 fat-tree topology with 11,664 hosts

as a representative case. Pyrrha prototype can easily scale

to it, with around 11 MB (i.e., 44.5% of Tofino2) of the

memory resource consumption. Specifically, the memory

usage of Pyrrha prototype is mainly composed of three units,

i.e., path calculation unit, congestion root table, and queue

manager, overall consuming 9.25 MB. And the processing

logic consumes around 1.88 MB. (i) As analyzed in § 4.2,

(a) Vulnerable flows (Web Server). (b) Vulnerable flows (Web Search).

Figure 9: FCT of testbed experiments.

(a) Pyrrha (b) PFC

Figure 10: Throughput of testbed experiments.

the memory consumption of the path calculation can be

optimized by leveraging the industry standard, occupying

0.44MB SRAM. (ii) The congestion root table is organized

hierarchically, where the nth table records ports that are n hop

away from the switch, and the port is identified as <switch-

id, port-id>. Hence, the storage usage of the congestion

root table is proportional to the number of ports in networks,

occupying 176 KB SRAM. (iii) The queue manager firstly

checks whether the congested flow is assigned with a queue

through a IsAssigned Table and assigns a queue if necessary

by looking up a multi-segment QueueId stack which records

the available queue. Then it updates the QueueId record

table to record the queue assignment status. This module

overall consumes 8.64MB SRAM. Furthermore, leveraging

the rapidly maturating HIQ technology [94], Pyrrha can

scale to topologies that is an order of magnitude larger.

(detailed analysis are deferred to Appendix E).

5.2 Testbed Evaluation

Topology. We use a 2-level leaf-spine topology as shown in

Figure 8, consisting of three ToR, two core switches, and two

hosts per rack, all connected via 100 Gbps links.

Workloads. We evaluate Pyrrha under incast-mix scenarios.

Incast flows are generated by letting hosts S1 and S2 transmit

flows to host R1 simultaneously. Vulnerable flows are

generated by letting host VS send flows to host VR. Flows

S2→R1 and VS→VR share the same port on the core switch.

Web Server and Web Search flows are generated following a

Poisson arrival process (§ 6).

Pyrrha reduces the FCT of vulnerable flows. Figure 9

demonstrates the FCT performance of vulnerable flows. For

PFC, vulnerable flows are HOL blocked by incast flows,

suffering a large queuing delay. Pyrrha quickly detects the

congestion on the destination ToR switch and isolates incast

flows into a dedicated queue. Thus, the FCT of vulnerable

flows is greatly reduced.

Pyrrha improves the throughput. Figure 10(a) shows the

throughput when flows on three hosts S1, S2, and VS start

(a) Memcached (overall performance). (b) Web Server (vulnerable flows). (c) Web Server (uncongested flows).

(d) Web Search (uncongested flows). (e) Web Server (vulnerable flows). (f) Web Server (background flows).

Figure 11: Performance of FC. The deep/light color in the figures represents the average/99th-tail value for each bar.

to arrive at 1s, 4s, and 7s, respectively. Pyrrha improves

the throughput of vulnerable flows to 66.7 Gbps without

compromising the overall throughput of incast flows (100

Gbps). The network throughput is improved by 26.7 Gbps.

6 Simulation Evaluation

Topology. A non-blocking clos-network is used. It contains

4 core switches, 10 ToRs, and 160 hosts, similar to the

topology used in [67]). Each ToR is connected to its hosts

and cores via 100/400 Gbps links, respectively. The per-hop

propagation delay is 600ns. The base RTT is 5.1µs, and the

base BDP is 64KB. A 3-tier fat-tree topology with 1024 hosts

is also leveraged to investigate the scalability of Pyrrha.

Workloads. Under incastmix scenarios, flows following

a Poisson arrival process with a load of 0.8 and periodic

incast flows each composed of 30-40 MTUs with a load of

0.5 are generated. An incast destination does not receive

Poisson arrival flows hence the traffic load does not exceed

link bandwidth. The incast degree is 720-to-1. For Poisson

arrival flows, three workloads are used [67, 80, 11], where

Memcached is composed of small flows, where most of the

flows are smaller than 1KB, and Web Server and Web Search

are large flows mixed with small flows where a small ratio of

large flows dominate the average flow size.

Parameters. There are two parameters of Pyrrha, i.e., the

threshold to pause (i.e., Kpause times one-hop BDP) and the

threshold to resume (i.e., Kresume times one-hop BDP). In our

evaluations, Kpause is set to 2, and Kresume is set to 1. Besides,

the maximum number of IQs can be used is set to 100, but

Pyrrha only uses a dozen of IQs in most cases. A dedicated

subsection discusses why these values are used (§B.1). The

switch buffer capacity is 20MB. Pyrrha uses shared buffer

mode. PFC uses dynamic threshold and α = 2.

Metrics. Average/99th-tail FCTs are evaluated. We monitor

maximum buffer on each hop to investigate the composition

of buffer reallocation that Pyrrha brings.

6.1 Comparing with Flow Control

In this section, we use large-scale NS3 simulations to com-

pare Pyrrha [59] with existing flow control protocols (e.g.,

PFC and BFC). For BFC, two versions with 32 and 128

queues per port are used, as in its paper (e.g., BFC is used to

denote BFC-32). Figure 11 shows the FCT and throughput.

6.1.1 PFC

PFC hurts the performance of uncongested flows since they

can be paused innocently by their downstream ports when

incast occurs. This especially hurts the performance of work-

loads that are composed of small flows (e.g., Memcached).

For Web Server workload, PFC even spreads the congestion

to the whole network thus background flows that do not

share the same destination pods of incast flows also get hurt.

The throughput performance depicted in Figure 11(f) is a

side note to this issue. For background flows, it achieves

stable high throughput until PFC pause frame storm occurs

at 1.5ms. Then background flows endure a significant

throughput loss that lasts for about milliseconds.

6.1.2 BFC

BFC assigns flows to multiple queues according to flow

identifiers (FID) and hash functions. It can partially alleviate

HOL blocking caused by congested flows and improve the

performance of uncongested flows to an extent compared

to PFC. However, HOL blocking occurs when congested

flows and uncongested flows share the same queue, or flows

are hashed into the same flow FIDs. Hence, BFC can not

obtain extremely low latency as Pyrrha does. Along with

the number of queues used by BFC increases, i.e., from

32 to 128, the performance of BFC is improved. For Web

Search workload, the tail latency of BFC is not good because

BFC sets a relatively smaller threshold to detect congestion

compared to PFC. It can risk spreading congestion.

The third group of bars in Figure 11(a) shows the per-

formance of incast (congested) flows. More results of

incast flows are deferred to Appendix B. Pyrrha does not

(a) Memcached (overall flows). (b) Web Server (vulnerable flows). (c) Web Server (uncongested flows). (d) Web Search (uncongested flows).

Figure 12: FCT performance (DCQCN).

(a) HPCC: Memcached (overall

flows).

(b) HPCC: Web Server (uncongested

flows).

Figure 13: FCT performance.

(a) Memcached. (b) Web Server.

Figure 14: Buffer occupancy (DCQCN) is split into three

parts, i.e., queue length on SrcToR, core and DstToR.

compromise the performance of incast flows compared to

PFC. BFC reduces the average FCT of incast flows because

BFC splits different flows into different queues and incast

flows may use several queues simultaneously. Incast flows

can use more bandwidth during the resume phase via the

round-robin scheduling mechanism among queues.

6.2 Cooperating with Congestion Control

In this section, we incorporate Pyrrha with state-of-the-

art CC (e.g., DCQCN and HPCC). Experiment results of

TIMELY is left in Appendix B. The authors’ contributed

simulation codes, if available, are used in our evalua-

tions [10, 53]. Following [56, 61], a per-flow sending

window on hosts is added to all approaches, limiting the in-

flight packets of a flow. PFC is used to provide a lossless

network for CC by default. Besides, to fully understand

the performance of CC, we also evaluate pure CC and use

IRN [66] to handle packet loss. IRN leverages selective

retransmission to perform an efficient loss recovery.

6.2.1 DCQCN

Since Pyrrha reduces the buffer occupancy by a large extent,

we set Kmin = 50KB and Kmax = 200KB to cooperate with

DCQCN. Figure 12 depicts the average and 99th-tail FCT

across different workloads. DCQCN alone can not handle

incast flows quickly thus PFC is triggered. Particularly,

under Web Server, a PFC pause frame storm occurs. PFC

is triggered from the destination ToR of incast and finally

reaches the hosts that the source ToR switches connected to,

which affects background flows.

Given that PFC has some side effects, one may wonder

how DCQCN performs when leveraging IRN for retransmis-

sion instead of relying on PFC. However, IRN is not a cure

for DCQCN. As shown in Figure 26(b), although DCQCN

with IRN reduces the FCTs of small flows compared to

DCQCN with PFC, FCTs of larger flows are prolonged.

Packet loss hurts the goodput of networks. Besides, when all

inflight packets are lost, loss recovery can only get triggered

via timeouts. Timeout retransmission hurts the performance

of small flows and the tail latency of large flows.

When adding Pyrrha to DCQCN, Pyrrha can significantly

benefit uncongested flows (e.g., vulnerable and background

flows) by quickly recognizing and isolating incast flows.

Pyrrha reacts quickly on in-network congestion by handling

it locally, which is especially beneficial to small flows.

Therefore, Pyrrha’s performance improvement on small

flows is the most significant. When the flow size increases,

the improvement becomes relatively less obvious. Because

large flows give more time for DCQCN to take effect.

Figure 14 shows the maximum buffer occupancy among

different hops. Instead of letting congested flows over-

flow the congestion root, Pyrrha can quickly control their

transmission locally. Then the buffer occupancy on the

congestion root, i.e., the destination ToR switch, can be

greatly reduced. Since Pyrrha pushes back congested flows,

the buffer occupancy on the source ToR switch is increased.

From another perspective, when adding DCQCN to

Pyrrha, the FCT of small flows can be improved further

compared to pure Pyrrha. This is because DCQCN can

control the transmission of flows based on a finer granularity

than a pause-resume manner. For flows sharing the same

path, DCQCN can adjust the rate of each flow individually

while Pyrrha controls them as a whole. And congestion

control favors small flows since large flows are more likely

to be marked and convey the congestion signals back to

senders. In addition, the buffer occupancy on the core switch

can be further reduced, as shown in Figure 14(b).

6.2.2 HPCC

When adding Pyrrha to HPCC, uncongested flows carry the

queue length of the OQ to avoid unnecessary rate reduction

on them. And congested flows carry the queue length of

(a) Web Server (vulnerable flows). (b) Web Server (uncongested flows). (c) Web Server (vulnerable flows). (d) Web Server (uncongested flows).

Figure 15: FCT performance under k=16 fat-tree.

(a) FCT performance. (b) Buffer occcupancy.

Figure 16: Cooperating Pyrrha with DRILL.

IQs. For clarity, Figure 13 shows the FCT distribution of

HPCC. Pyrrha helps improve the performance of HPCC.

While HPCC achieves good performance on a portion of

small flows, as shown in Figure 26(g), this is because HPCC

leverages INT to get the in-network information to reduce the

queue length aggressively, which benefits small flows. As a

cost, its tail latency is prolonged since the transient small

flows could interfere with the rate adjustment process and

influence the network throughput.

6.3 Additional evaluations and Discussions

Performance under Large-scale Topology. To investigate

the scalability of Pyrrha, evaluations under k=16 fat-tree

topology (i.e., 1024 hosts) is conducted. Figure 15 shows

the performance of different protocols under Web Server.

The trend of performance differences between different algo-

rithms is very similar to that of the results in § 6. We analyze

the results from two perspectives: (i) When comparing FC

with CC protocols, especially for flows smaller than 100KB,

fine-grained FC protocols such as BFC and Pyrrha out-

perform PFC as well as CC protocols. This advantage is

attributed to the rapid response of fine-grained FC to network

congestion, which provides a degree of mitigation against

HOL blocking. (ii) In terms of cooperation between FC and

CC, as depicted in Figure 15(c), when Pyrrha is integrated

with CC, small flows can achieve the lowest latency. This

is because Pyrrha rapidly reacts to the network congestion,

preventing HOL blocking for traffic that has already been

injected into the network. Concurrently, CC address the

persistent congestion associated with larger flows.

Cooperating with adaptive load balancing scheme. Load

balancing schemes handle congestion by re-arranging the

traffic to avoid path collision. However, they can not handle

congestion caused by destination collision (i.e., incast),

and Pyrrha acts as a complementary solution to handle

it. Pyrrha works together with adaptive routing by only

recognizing and handling the congestion of incast.

We investigate the performance when Pyrrha works with

DRILL, an adaptive load scheme that chooses the forwarding

port according to the queue length dynamically. Simi-

lar to § 6, incast-mix traffic is generated and a k=8 fat-

tree topology is used. Results in Figure 16 show that

Pyrrha works well with DRILL. The integration of DRILL

with Pyrrha further reduces the latency of Poisson flows

compared to pure Pyrrha. The performance gain is attributed

to DRILL’s ability to distribute traffic effectively, thereby

preventing queue buildup at the upstream (e.g., SrcToR,

SrcAgg, and Core), as shown in Figure 16(b). However, this

optimization comes with a trade-off in the latency of incast

flows, which is higher compared to the pure Pyrrha.

Additional evaluations. In Appendix B, we further explore

the performance of Pyrrha under several scenarios, (i) when

the size of incast flows varies, (ii) when facing multiple

congestion roots, (iii) MoE traffic with interleaved phase,

and (iv) when the congestion roots vary. We also compare

Pyrrha with per-flow queue scheme and CC without sending

window. Besides, the parameter selection and merging

mechanism of Pyrrha is evaluated. A variant of Pyrrha using

single-tier queues is investigated (§ C.2).

Discussions. Discussions regarding how Pyrrha handles link

failures, as well as a review of related works, are put in the

Appendix A.

7 Conclusion

This paper was motivated for a labor division between con-

gestion control and flow control. It is time to embrace per-

hop flow control in datacenter networks to react to conges-

tion promptly. We presented Pyrrha, a congestion-root-based

per-hop flow control. It controls the transmission of flows at

a fine granularity without congestion spreading, requiring a

minimum number of queues. The performance of flows can

be significantly improved. We are currently discussing with

a major vendor the implementation of Pyrrha in its products.

Acknowledgments

We sincerely thank our shepherd Gianni Antichi and the

anonymous reviewers for their valuable feedback on this

paper. This research is supported by the National Nat-

ural Science Foundation of China under Grant Numbers

62325205, 62072228, and 62172204, and the Fundamental

Research Funds for the Central Universities.

References

[1] Source routing. http://en.wikipedia.org/wiki/

Sourcerouting, 2018.

[2] Hierarchical class of service overview. https://www.juniper.

net/documentation/us/en/software/junos/cos/topics/

concept/hierarchical-cos-overview.html, 2021.

[3] Introduction to hqos. https://support.huawei.com/

hedex/hdx.do?docid=EDOC1100168821&id=EN-US_TASK_

0172371452&lang=en, 2022.

[4] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS, A., DEAN,

J., DEVIN, M., GHEMAWAT, S., IRVING, G., ISARD, M., ET AL.

Tensorflow: A system for large-scale machine learning. In USENIX

OSDI (2016), pp. 265–283.

[5] ADDANKI, V., APOSTOLAKI, M., GHOBADI, M., SCHMID, S., AND

VANBEVER, L. Abm: active buffer management in datacenters. In

Proceedings of the ACM SIGCOMM 2022 Conference (2022), pp. 36–

52.

[6] ADDANKI, V., MICHEL, O., AND SCHMID, S. PowerTCP: Pushing

the performance limits of datacenter networks. In 19th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

22) (2022), USENIX Association.

[7] AFEK, Y., KUTTEN, S., AND YUNG, M. Memory-efficient self

stabilizing protocols for general networks. In International Workshop

on Distributed Algorithms (1990), Springer, pp. 15–28.

[8] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A scalable, com-

modity data center network architecture. ACM SIGCOMM computer

communication review 38, 4 (2008), 63–74.

[9] ALCOZ, A. G., DIETMÜLLER, A., AND VANBEVER, L. SP-PIFO:

Approximating Push-In First-Out Behaviors using Strict-Priority

Queues. In 17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 20) (2020), pp. 59–76.

[10] ALIBABA. HPCC simulator. https://github.com/

alibaba-edu/High-Precision-Congestion-Control, 2019.

[11] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE, J.,

PATEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHARAN, M.

Data center TCP (DCTCP). In ACM SIGCOMM (2011).

[12] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCKEOWN,

N., PRABHAKAR, B., AND SHENKER, S. pfabric: Minimal near-

optimal datacenter transport. In ACM SIGCOMM 2013 (2013),

vol. 43, ACM, pp. 435–446.

[13] ANANTHANARAYANAN, G., KANDULA, S., GREENBERG, A., STO-

ICA, I., LU, Y., SAHA, B., AND HARRIS, E. Reining in the Outliers

in Map-Reduce Clusters using Mantri. In OSDI (2010).

[14] ARSLAN, S., LI, Y., KUMAR, G., AND DUKKIPATI, N. Bolt:Sub-

RTT congestion control for Ultra-Low latency. In 20th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

23) (2023), pp. 219–236.

[15] ARUN, V., ALIZADEH, M., AND BALAKRISHNAN, H. Starvation in

end-to-end congestion control. In Proceedings of the ACM SIGCOMM

2022 Conference (2022), pp. 177–192.

[16] ASSOCIATION., I. T. Supplement to InfiniBand architecture spec-

ification volume 1 release 1.2.2 annex A17: RoCEv2 (IP routable

RoCE), 2014.

[17] ASSOCIATION., I. T. InfiniBandTM Architecture Specification

Volume 1 Release 1.4. (2020). https://cw.infinibandta.org/

document/dl/8567, 2020.

[18] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND

PALECZNY, M. Workload analysis of a large-scale key-value store.

In ACM SIGMETRICS (2012).

[19] BEN BASAT, R., RAMANATHAN, S., LI, Y., ANTICHI, G., YU, M.,

AND MITZENMACHER, M. PINT: Probabilistic In-Band Network

Telemetry. In ACM SIGCOMM (2020).

[20] BENSON, T., AKELLA, A., AND MALTZ, D. A. Network traffic

characteristics of data centers in the wild. In ACM IMC (2010).

[21] BENSON, T., ANAND, A., AKELLA, A., AND ZHANG, M. Un-

derstanding data center traffic characteristics. ACM SIGCOMM

Computer Communication Review 40, 1 (2010), 92–99.

[22] BROADCOM. Bcm56990 series. https://www.broadcom.com/

products/ethernet-connectivity/switching/strataxgs/

bcm56990-series, 2019.

[23] BROADCOM. Bcm88800 traffic management architecture. https:

//docs.broadcom.com/doc/88800-DG1-PUB, 2021.

[24] CAI, Q., ARASHLOO, M. T., AND AGARWAL, R. dcpim: Near-

optimal proactive datacenter transport. In Proceedings of the ACM

SIGCOMM 2022 Conference (2022), pp. 53–65.

[25] CHO, I., JANG, K., AND HAN, D. Credit-scheduled delay-bounded

congestion control for datacenters. In ACM SIGCOMM (2017).

[26] CHOWDHURY, M., ZAHARIA, M., MA, J., JORDAN, M. I., AND

STOICA, I. Managing data transfers in computer clusters with

orchestra.

[27] CISCO. Cisco nexus 5548p switch architecture. https://

www.cisco.com/c/en/us/products/collateral/switches/

nexus-5548p-switch/white_paper_c11-622479.html, 2010.

[28] CISCO. Cef polarization. https://www.cisco.com/c/

en/us/support/docs/ip/express-forwarding-cef/

116376-technote-cef-00.html, 2013.

[29] DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified data pro-

cessing on large clusters. Communications of the ACM 51, 1 (2008),

107–113.

[30] FITZPATRICK, B. Memcached: a Distributed Memory Object

Caching System. http://www.memcached.org/, 2011.

[31] GAO, P. X., NARAYAN, A., KUMAR, G., AGARWAL, R., RAT-

NASAMY, S., AND SHENKER, S. phost: Distributed near-optimal dat-

acenter transport over commodity network fabric. In ACM CoNEXT

(2015).

[32] GÄRTNER, F. C. A survey of self-stabilizing spanning-tree construc-

tion algorithms.

[33] GHABASHNEH, E., ZHAO, Y., LUMEZANU, C., SPRING, N., SUN-

DARESAN, S., AND RAO, S. A microscopic view of bursts, buffer

contention, and loss in data centers. In Proceedings of the 22nd ACM

Internet Measurement Conference (2022), IMC ’22, Association for

Computing Machinery.

[34] GHORBANI, S., YANG, Z., GODFREY, P., GANJALI, Y., AND

FIROOZSHAHIAN, A. Drill: Micro load balancing for low-latency

data center networks. In Proceedings of the Conference of the

ACM Special Interest Group on Data Communication (2017), ACM,

pp. 225–238.

[35] GOYAL, P., NARAYAN, A., CANGIALOSI, F., NARAYANA, S.,

ALIZADEH, M., AND BALAKRISHNAN, H. Elasticity detection: A

building block for internet congestion control. In Proceedings of the

ACM SIGCOMM 2022 Conference (2022), pp. 158–176.

[36] GOYAL, P., SHAH, P., SHARMA, N. K., ALIZADEH, M., AND

ANDERSON, T. E. Backpressure flow control. In NSDI (2022).

[37] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA, S., KIM,

C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND SENGUPTA, S.

Vl2: A scalable and flexible data center network. In ACM SIGCOMM

(2009).

[38] GROSVENOR, M. P., SCHWARZKOPF, M., GOG, I., WATSON,

R. N., MOORE, A. W., HAND, S., AND CROWCROFT, J. Queues

don’t matter when you can jump them! In NSDI (2015), USENIX.

http://en.wikipedia.org/wiki/Source routing
http://en.wikipedia.org/wiki/Source routing
https://www.juniper.net/documentation/us/en/software/junos/cos/topics/concept/hierarchical-cos-overview.html
https://www.juniper.net/documentation/us/en/software/junos/cos/topics/concept/hierarchical-cos-overview.html
https://www.juniper.net/documentation/us/en/software/junos/cos/topics/concept/hierarchical-cos-overview.html
https://support.huawei.com/hedex/hdx.do?docid=EDOC1100168821&id=EN-US_TASK_0172371452&lang=en
https://support.huawei.com/hedex/hdx.do?docid=EDOC1100168821&id=EN-US_TASK_0172371452&lang=en
https://support.huawei.com/hedex/hdx.do?docid=EDOC1100168821&id=EN-US_TASK_0172371452&lang=en
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://cw.infinibandta.org/document/dl/8567
https://cw.infinibandta.org/document/dl/8567
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://docs.broadcom.com/doc/88800-DG1-PUB
https://docs.broadcom.com/doc/88800-DG1-PUB
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-5548p-switch/white_paper_c11-622479.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-5548p-switch/white_paper_c11-622479.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-5548p-switch/white_paper_c11-622479.html
https://www.cisco.com/c/en/us/support/docs/ip/express-forwarding-cef/116376-technote-cef-00.html
https://www.cisco.com/c/en/us/support/docs/ip/express-forwarding-cef/116376-technote-cef-00.html
https://www.cisco.com/c/en/us/support/docs/ip/express-forwarding-cef/116376-technote-cef-00.html
http://www.memcached.org/

[39] GROUP, T. P. A. W. P416 portable switch architecture (psa). https:

//p4lang.github.io/p4-spec/docs/PSA.pdf, 2021.

[40] GUO, C., WU, H., DENG, Z., SONI, G., YE, J., PADHYE, J., AND

LIPSHTEYN, M. Rdma over commodity ethernet at scale. In ACM

SIGCOMM (2016).

[41] HANDLEY, M., RAICIU, C., AGACHE, A., VOINESCU, A., MOORE,

A. W., ANTICHI, G., AND WÓJCIK, M. Re-architecting datacenter

networks and stacks for low latency and high performance. In ACM

SIGCOMM (2017).

[42] HE, J., ZHAI, J., ANTUNES, T., WANG, H., LUO, F., SHI, S., AND

LI, Q. Fastermoe: modeling and optimizing training of large-scale

dynamic pre-trained models. In PPoP (2022).

[43] HU, S., BAI, W., ZENG, G., WANG, Z., QIAO, B., CHEN, K., TAN,

K., AND WANG, Y. Aeolus: A building block for proactive transport

in datacenters. In ACM SIGCOMM (2020), ACM.

[44] HU, S., CHEN, K., WU, H., BAI, W., LAN, C., WANG, H., ZHAO,

H., AND GUO, C. Explicit path control in commodity data centers:

Design and applications. In 12th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 15) (2015), pp. 15–28.

[45] HU, S., ZHU, Y., CHENG, P., GUO, C., TAN, K., PADHYE, J., AND

CHEN, K. Tagger: Practical pfc deadlock prevention in data center

networks. In Proceedings of the 13th International Conference on

emerging Networking EXperiments and Technologies (2017), ACM,

pp. 451–463.

[46] IEEE. 802.11qbb. priority based flow control. https://1.

ieee802.org/dcb/802-1qbb/, 2011.

[47] IEEE. P802.1qcz – congestion isolation. https://1.ieee802.

org/tsn/802-1qcz/, 2023.

[48] INTEL. Intel tofino2 – a 12.9tbps p4-programmable ethernet switch.

https://ieeexplore.ieee.org/document/9220636, 2020.

[49] JIANG, Z., LIN, H., ZHONG, Y., HUANG, Q., CHEN, Y., ZHANG,

Z., PENG, Y., LI, X., XIE, C., NONG, S., ET AL. {MegaScale}:

Scaling large language model training to more than 10,000 {GPUs}.

In 21st USENIX Symposium on Networked Systems Design and

Implementation (NSDI 24) (2024), pp. 745–760.

[50] JOGLEKAR, A., KOUNAVIS, M. E., AND BERRY, F. L. A scalable

and high performance software iscsi implementation. In FAST (2005),

vol. 5, pp. 20–20.

[51] JUNIPER. Understanding cos virtual output queues

(voqs) on qfx10000 switches. https://www.juniper.

net/documentation/en_US/junos/topics/concept/

cos-qfx-series-voq-understanding.html, 2017.

[52] KABBANI, A., VAMANAN, B., HASAN, J., AND DUCHENE, F.

Flowbender: Flow-level adaptive routing for improved latency and

throughput in datacenter networks. In Proceedings of the 10th ACM

International on Conference on emerging Networking Experiments

and Technologies (2014), pp. 149–160.

[53] KAIST. Expresspass simulator. https://github.com/

kaist-ina/ns2-xpass, 2017.

[54] KAROL, M., GOLESTANI, S. J., AND LEE, D. Prevention of

deadlocks and livelocks in lossless backpressured packet networks.

IEEE/ACM Transactions on Networking (2003).

[55] KUMAR, G., DUKKIPATI, N., JANG, K., WASSEL, H., WU, X.,

MONTAZERI, B., WANG, Y., SPRINGBORN, K., ALFELD, C.,

RYAN, M., WETHERALL, D., AND VAHDAT, A. Swift: Delay is

simple and effective for congestion control in the datacenter. In ACM

SIGCOMM (2020).

[56] LI, Y., MIAO, R., LIU, H. H., ZHUANG, Y., FENG, F., TANG, L.,

CAO, Z., ZHANG, M., KELLY, F., ALIZADEH, M., ET AL. Hpcc:

High precision congestion control. In ACM SIGCOMM (2019).

[57] LIM, H., BAI, W., ZHU, Y., JUNG, Y., AND HAN, D. Towards

timeout-less transport in commodity datacenter networks. In Pro-

ceedings of the Sixteenth European Conference on Computer Systems

(2021).

[58] LIM, H., KIM, J., CHO, I., JANG, K., BAI, W., AND HAN, D.

Flexpass: A case for flexible credit-based transport for datacenter

networks. In Proceedings of the Eighteenth European Conference on

Computer Systems (2023), pp. 606–622.

[59] LIU, K. Online resource of Pyrrha. https://github.com/

NASA-NJU/Pyrrha, 2024.

[60] LIU, K., TIAN, C., WANG, Q., ZHENG, H., YU, P., SUN, W.,

XU, Y., MENG, K., HAN, L., FU, J., DOU, W., AND CHEN, G.

Floodgate: Taming incast in datacenter networks. CoNEXT ’21.

[61] LIU, S., GHALAYINI, A., ALIZADEH, M., PRABHAKAR, B.,

ROSENBLUM, M., AND SIVARAMAN, A. Breaking the transience-

equilibrium nexus: A new approach to datacenter packet transport. In

NSDI (2021).

[62] LIU, V., HALPERIN, D., KRISHNAMURTHY, A., AND ANDERSON,

T. F10: A fault-tolerant engineered network. In NSDI 13 (2013),

USENIX Association.

[63] LIU, V., HALPERIN, D., KRISHNAMURTHY, A., AND ANDERSON,

T. F10: A Fault-Tolerant engineered network. In 10th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

13) (2013), pp. 399–412.

[64] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H., PARULKAR,

G., PETERSON, L., REXFORD, J., SHENKER, S., AND TURNER, J.

Openflow: enabling innovation in campus networks. ACM SIGCOMM

computer communication review (2008).

[65] MITTAL, R., DUKKIPATI, N., BLEM, E., WASSEL, H., GHOBADI,

M., VAHDAT, A., WANG, Y., WETHERALL, D., ZATS, D., ET AL.

Timely: Rtt-based congestion control for the datacenter. In ACM

SIGCOMM (2015).

[66] MITTAL, R., SHPINER, A., PANDA, A., ZAHAVI, E., KRISHNA-

MURTHY, A., RATNASAMY, S., AND SHENKER, S. Revisiting

network support for rdma. In Proceedings of the 2018 Conference

of the ACM Special Interest Group on Data Communication (2018),

ACM, pp. 313–326.

[67] MONTAZERI, B., LI, Y., ALIZADEH, M., AND OUSTERHOUT,

J. Homa: A receiver-driven low-latency transport protocol using

network priorities. In ACM SIGCOMM (2018).

[68] NACHIONDO, T., FLICH, J., AND DUATO, J. Buffer management

strategies to reduce hol blocking. IEEE Trans. Parallel Distrib. Syst.

(2010).

[69] PAN, R., PRABHAKAR, B., AND LAXMIKANTHA, A. Qcn: Quan-

tized congestion notification. IEEE802 1 (2007), 52–83.

[70] PENG, Y., ZHU, Y., CHEN, Y., BAO, Y., YI, B., LAN, C., WU, C.,

AND GUO, C. A generic communication scheduler for distributed dnn

training acceleration. In Proceedings of the 27th ACM Symposium on

Operating Systems Principles (2019), pp. 16–29.

[71] PETERSON, W. W., AND BROWN, D. T. Cyclic codes for error

detection. Proceedings of the IRE (1961).

[72] QIAN, K., XI, Y., CAO, J., GAO, J., XU, Y., GUAN, Y., FU, B.,

SHI, X., ZHU, F., MIAO, R., WANG, C., WANG, P., ZHANG, P.,

ZENG, X., RUAN, E., YAO, Z., ZHAI, E., AND CAI, D. Alibaba

hpn: A data center network for large language model training. In

SIGCOMM (2024).

[73] QURESHI, M. A., CHENG, Y., YIN, Q., FU, Q., KUMAR, G.,

MOSHREF, M., YAN, J., JACOBSON, V., WETHERALL, D., AND

KABBANI, A. PLB: congestion signals are simple and effective for

network load balancing. In ACM SIGCOMM (2022), pp. 207–218.

[74] RACKSOLUTIONS. How many servers does a data cen-

ter have? https://www.racksolutions.com/news/blog/

how-many-servers-does-a-data-center-have/, 2020.

https://p4lang.github.io/p4-spec/docs/PSA.pdf
https://p4lang.github.io/p4-spec/docs/PSA.pdf
https://1.ieee802.org/dcb/802-1qbb/
https://1.ieee802.org/dcb/802-1qbb/
https://1.ieee802.org/tsn/802-1qcz/
https://1.ieee802.org/tsn/802-1qcz/
https://ieeexplore.ieee.org/document/9220636
https://www.juniper.net/documentation/en_US/junos/topics/concept/cos-qfx-series-voq-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/cos-qfx-series-voq-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/cos-qfx-series-voq-understanding.html
https://github.com/kaist-ina/ns2-xpass
https://github.com/kaist-ina/ns2-xpass
https://github.com/NASA-NJU/Pyrrha
https://github.com/NASA-NJU/Pyrrha
https://www.racksolutions.com/news/blog/how-many-servers-does-a-data-center-have/
https://www.racksolutions.com/news/blog/how-many-servers-does-a-data-center-have/

[75] RAJASEKARAN, S., GHOBADI, M., AND AKELLA, A. CASSINI:

Network-Aware job scheduling in machine learning clusters. In NSDI

24 (Santa Clara, CA, 2024), USENIX Association.

[76] RAJASEKARAN, S., GHOBADI, M., KUMAR, G., AND AKELLA, A.

Congestion control in machine learning clusters. In HotNets (2022).

[77] ROS-GIRALT, J., AMSEL, N., YELLAMRAJU, S., EZICK, J.,

LETHIN, R., JIANG, Y., FENG, A., AND TASSIULAS, L. A

quantitative theory of bottleneck structures for data networks. arXiv

preprint arXiv:2210.03534 (2022).

[78] ROS-GIRALT, J., AMSEL, N., YELLAMRAJU, S., EZICK, J.,

LETHIN, R., JIANG, Y., FENG, A., TASSIULAS, L., WU, Z., TEH,

M. Y., ET AL. Designing data center networks using bottleneck

structures. In SIGCOMM (2021).

[79] ROSEN, E., VISWANATHAN, A., AND CALLON, R. Rfc3031:

Multiprotocol label switching architecture, 2001.

[80] ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND SNOEREN, A. C.

Inside the social network’s (datacenter) network. In Proceedings of the

2014 ACM conference on SIGCOMM (2015).

[81] SHARMA, N. K., LIU, M., ATREYA, K., AND KRISHNAMURTHY,

A. Approximating fair queueing on reconfigurable switches.

NSDI’18, USENIX Association.

[82] SINGH, A., ONG, J., AGARWAL, A., ANDERSON, G., ARMISTEAD,

A., BANNON, R., BOVING, S., DESAI, G., FELDERMAN, B.,

GERMANO, P., ET AL. Jupiter rising: A decade of clos topologies

and centralized control in google’s datacenter network. In ACM

SIGCOMM (2015).

[83] SIVARAMAN, A., SUBRAMANIAN, S., ALIZADEH, M., CHOLE, S.,

CHUANG, S.-T., AGRAWAL, A., BALAKRISHNAN, H., EDSALL, T.,

KATTI, S., AND MCKEOWN, N. Programmable packet scheduling at

line rate. In Proceedings of the 2016 ACM SIGCOMM Conference

(2016), pp. 44–57.

[84] SONCHACK, J., AVIV, A. J., KELLER, E., AND SMITH, J. M.

Turboflow: Information rich flow record generation on commodity

switches. In Proceedings of the Thirteenth EuroSys Conference

(2018), pp. 1–16.

[85] W. DALLY, P. C., AND DENNISON, L. Architecture of the avici

terabit switch/router. Proc. of 6th Hot Interconnects (1998).

[86] WANG, W., MOSHREF, M., LI, Y., KUMAR, G., NG, T. E.,

CARDWELL, N., AND DUKKIPATI, N. Poseidon: Efficient, robust,

and practical datacenter CC via deployable INT. In 20th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

23) (2023), pp. 255–274.

[87] XU, Y., HE, K., WANG, R., YU, M., DUFFIELD, N., WASSEL, H.,

ZHANG, S., POUTIEVSKI, L., ZHOU, J., AND VAHDAT, A. Hashing

design in modern networks: Challenges and mitigation techniques. In

ATC (2022).

[88] YANG, M., BABAN, A., KUGEL, V., LIBBY, J., MACKIE, S.,

KANANDA, S. S. R., WU, C.-H., AND GHOBADI, M. Using trio:

juniper networks’ programmable chipset-for emerging in-network

applications. In Proceedings of the ACM SIGCOMM 2022 Conference

(2022), pp. 633–648.

[89] YU, Z., WU, J., BRAVERMAN, V., STOICA, I., AND JIN, X.

Twenty years after: Hierarchical core-stateless fair queueing. In 18th

USENIX Symposium on Networked Systems Design and Implementa-

tion (2021), pp. 29–45.

[90] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA, J.,

MCCAULEY, M., FRANKLIN, M. J., SHENKER, S., AND STOICA,

I. Resilient distributed datasets: A fault-tolerant abstraction for in-

memory cluster computing. In USENIX NSDI (2012).

[91] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA, J.,

MCCAULY, M., FRANKLIN, M., SHENKER, S., AND STOICA, I.

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-

Memory Cluster Computing. In NSDI (2012).

[92] ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M., SHENKER, S.,

AND STOICA, I. Spark: Cluster computing with working sets. In

HotCloud (2010).

[93] ZHANG, Z., ZHENG, H., HU, J., YU, X., QI, C., SHI, X., AND

WANG, G. Hashing linearity enables relative path control in data

centers. In 2021 USENIX Annual Technical Conference (USENIX ATC

21) (2021), pp. 855–862.

[94] ZHIYU ZHANG, SHILI CHEN, R. Y. R. S. H. M. H. W. Z. C. G. F.

Y. F. W. S. S. L., AND XU, Y. vpifo: Virtualized packet scheduler

for programmable hierarchical scheduling in high-speed networks. In

SIGCOMM (2024).

[95] ZHU, Y., ERAN, H., FIRESTONE, D., GUO, C., LIPSHTEYN,

M., LIRON, Y., PADHYE, J., RAINDEL, S., YAHIA, M. H., AND

ZHANG, M. Congestion control for large-scale rdma deployments. In

ACM SIGCOMM (2015).

APPENDIX

(a) Average FCT. (b) 99th-tail FCT

Figure 17: When the size of incast flows varies.

A Discussions

Dealing with link failures. For link failure that exactly

occurs at the port of congestion roots, Pyrrha sends RE-

SUME frames to its upstream switches to avoid unnecessary

further control. For link failure on other ports, the failure

is transparent to Pyrrha when source routing is used. When

hash calculation is used to get flows’ path, the calculation

can be dynamically adjusted by introducing a rerouting

table when route changes by leveraging existing rerouting

protocols to propagate the rerouting information.

Related works. The IEEE standard group advocates Con-

gestion Isolation (CI) [47], supporting the isolation of con-

gested data flows within datacenter. An egress port can

identify flows causing congestion and isolate them locally.

The progress of the IEEE standard proved the necessity

of Pyrrha from the side. However, CI can only control

congested flows that already arrived at the congested port.

Besides, CI uses only one dedicated queue for all congested

flows, resulting in HOL blocking among congested flows

passing through different congested ports.

In addition, there are several existing lines of work that

go beyond flow control and congestion control. dcPIM [24]

takes several RTTs to match senders and receivers before

starting transmission to avoid congestion. TCD targets

solving the problem that traditional flow control (e.g., PFC

and CBFC [17]) interferes with the congestion detection of

congestion control protocols. It proposes an undetermined

state by leveraging the ON-OFF pattern caused by flow

control, and only the flow identified as congested reduces

its rate according to congestion control. It can give more

penalty to congested flows afterward but does not handle

congestion that already occurs. ABM [5] is an efficient

buffer-sharing scheme that leverages both spatial and tem-

poral features of the buffer. Queue scheduling approaches

target at providing approximate fair queuing [81, 89] or

strict priority [12, 38, 9, 83]. Scheduling approaches do not

differentiate congested flows from those uncongested thus

they can not eliminate HOL blocking. CASSINI [76, 75]

adjusts the communication phases of ML jobs to share the

bandwidth. These works are orthogonal to Pyrrha.

(a) Web Server (incast flows). (b) Web Search (incast flows).

Figure 18: Incast flow performance.

(a) Average and 99th-tail FCT. (b) Queuing time (uncongested

flows).

Figure 19: When facing multiple congestion roots.

B Supplemental Results

When the size of incast flows varies. Now we investigate

the performance of uncongested flows when the size of incast

flows varies. As shown in Figure 17, Pyrrha achieves a stable

performance when the size of incast flows increases. This is

expected since Pyrrha can already control the transmission

of incast flows when the size of incast is smaller than one

BDP (§ 6.2). The performance of BFC downgrades to a

large extent with long incast flows. Because long incast flows

occupy the queues continuously, HOL blocking uncongested

flows sharing the same queue with them. For CC protocols,

the FCT of uncongested flows becomes stable after the incast

size increases to three BDPs since congestion control begins

taking effect.

When facing multiple congestion roots. We investigate

the scenario where multiple congestion roots exist. An

uneven hash function is used to conduct load imbalance. ToR

switches can choose among four core switches to forward,

the possibility to route to the first core switch is 50%, and the

other three paths share the left 50% uniformly. This is called

hash polarization, which can occur in datacenter networks.

Flows are generated as the incastmix scenario (§ 6.2). Hence,

there are multiple congestion roots in networks, e.g., load

imbalance on the upstream ports of ToR switches and incast

on their downstream ports.

Figure 19 shows the performance of different approaches.

Pyrrha reduces the average and tail FCT of non-incast flows.

Pyrrha detects the congestion on source ToR switches and

sends congestion notifications to the connected source hosts.

Then, senders can send other flows that do not pass the

imbalanced ports to utilize the network. For congested flows

passing through both load imbalance and incast ports, their

transmission is well controlled. Hence, the queuing delay

(a) Web Server (vulnerable flows). (b) Web Server (uncongested flows). (c) Web Server (vulnerable flows). (d) Web Server (uncongested flows).

Figure 20: FCT performance under k=16 fat-tree.

(a) Throughput (DCQCN). (b) Throughput (DCQCN+Pyrrha). (c) FCT comparison.

Figure 21: Performance comparison under MoE workloads (interleaved phase).

of Poisson flows is quite small. For CC approaches, they

can not alleviate the throughput downgrade caused by load

imbalance, hence FCTs of Poisson flows are prolonged.

Supplemental results under k=16 fat-tree. Figure 20

shows the additional evaluations of Pyrrha, TIMELY, and

HPCC under the k=16 fat-tree. The results are consistent

with Figure 6.3 where Pyrrha is compared with DCQCN.

Per-flow queue scheme. Figure 22 shows the performance

of flow control protocols in incastmix scenarios, including

the per-flow queue scheme. For Memcached, the per-flow

queue scheme can achieve as low latency as Pyrrha for back-

ground flows. While for vulnerable flows, the per-flow queue

scheme can not reduce their tail latencies. Due to the fact that

the per-flow queue scheme does not start to control a newly

arrived congested flow until it is transmitted to the congested

port. It induces a large buffer occupancy at the network

bottleneck. Moreover, vulnerable flows and congested flows

share the same bottleneck at core switches. When there are a

large number of congested flows, vulnerable flows can only

get a small fraction of bandwidth share. As a by-product, the

per-flow queue scheme reduces the average FCTs of incast

flows, as shown in Figure 18.

CC with no window. Figure 26 shows the performance of

Pyrrha, DCQCN, and HPCC when no sending window is

applied. In comparison to protocols with sending window,

the same traffic pattern as Figure 12 is generated. Without

the sending window, the queuing delay on source ToR is

increased across all protocols, as shown in Figure 26(e).

The rationale is the absence of initial transmission control

allows for a greater volume of traffic to be injected into

the network, leading to longer queue length and increased

queuing delays at the source ToRs before CC or FC steps

into. DCQCN experiences a larger degree of congestion as

each flow can concurrently inject a larger volume of traffic

into the network. Likewise, DCQCN+IRN suffers from a

larger loss rate which results in performance degradation. In

the absence of the sending window, HPCC endures a more

severe performance degradation since HPCC is designed

to be a window-based protocol. Benefiting from the fast

reaction to network congestion, the latency of Pyrrha is

slightly increased compared to that with sending window.

Performance under MoE workloads (interleaved phase).

Figure 21 depicts the performance of two groups of alltoall

flows with interleaved phase, i.e., the two groups of traffic do

not overlap with each other. With the interleaved phase, two

groups of flows are slightly affected by each other. By adding

Pyrrha to DCQCN, there is still performance improvement

of the latency of flows, as depicted in Figure 21(c). This

is because the traffic of alltoall-1/alltoall-2 itself can induce

transient congestion and Pyrrha can handle it better.

Comparing with TIMELY. We use the parameters recom-

mended by the TIMELY authors in their paper. As shown in

Figure 25, when adding Pyrrha on TIMELY, the performance

improvement of TIMELY is similar to that for DCQCN.

Deep dive of the per-hop queuing delay. To fully under-

stand how Pyrrha works, we investigate the flows’ queuing

time among different hops, where the experiments settings is

the same as in § 6.2. Figure 23 shows the result. Queuing

time is split into three parts, where SrcToR denotes the

uplink ports of ToR, i.e., the first hop of packets. Likewise,

DstToR denotes the downlink ports of ToR, i.e., the last hop

of packets. The average queuing time reflects the extent

of HOL blocking that uncongested flows encounter. For

DCQCN, vulnerable flows are HOL blocked by incast flows

at the core switches. When adding Pyrrha to DCQCN, it

eliminates the queuing time for vulnerable flows signifi-

cantly. For Web Server, Pyrrha also helps reduce the queuing

delay of background flows since it does not cause congestion

(a) Memcached (overall flows). (b) Web Server (uncongested flows). (c) Web Search (uncongested flows).

Figure 22: FCT performance of FC (per-flow queue included).

(a) Memcached (vulnerable flows). (b) Memcached (background flows). (c) Memcached (incast flows). (d) Web Server (background flows).

Figure 23: Queuing time (DCQCN) is split into three parts, i.e., time spent on SrcToR, core, and DstToR.

(a) Pyrrha (congestion root varies.) (b) PFC (congestion root varies.)

Figure 24: Throughput of testbed experiments (additional).

Figure 25: TIMELY: Memcached (overall flows).

spreading, and only flows causing congestion are paused.

Pyrrha reacts quickly on congestion at the last hop, hence

the queuing time of incast flows is mainly composed of the

time spent on the srcToR and core switches.

Pyrrha is robust when congestion roots vary. We provide

additional testbed results when congestion roots vary. The

testbed setting is the same as in § 5.2. When flows on

three hosts S2, VS, and S1 start to arrive at 1s, 4s, and

7s, respectively, the congestion root changes from the core

switch to the destination ToR. Pyrrha can also converge

quickly and achieve good throughput.

B.1 Parameter and Mechanism Validation

Parameter Selection. In this section, the performance

of Pyrrha under different parameters is evaluated. We

scan parameters under incastmix scenarios of Memcached.

Figure 27 depicts the 99th-tail FCT of the vulnerable flows.

Kresume is set to 1 when sweeping Kpause, and Kpause is set to

10 when sweeping Kresume. Pyrrha is relatively insensitive to

different Kpause and Kresume value, which is preferred in the

industry.

As shown in Figure 27(a), Pyrrha achieves the smallest tail

latency when Kpause ranges from 2 to 35. When the value

of Kpause is larger than 35, the tail latency increases. This

is because Pyrrha reacts slowly on congestion with a large

pause threshold.

As shown in Figure 27(b), the tail latency of Pyrrha re-

mains unchanged when sweeping Kresume. For that, with

a fixed value of Kpause, the timing and correctness of con-

gestion root identification are the same, and Kresume only

affects the queuing delay arrangement of congested flows on

different hops.

Mechanism validation. With merging, Pyrrha is insensitive

to Kpause and Kresume. As shown in Figure 27(a), without

merging, when Kpause varies (e.g., 2-35), the inaccurate root

detection induces queuing of vulnerable flows. While with

merging, those false-positive congestion roots caused by

inappropriate parameters could be corrected. The queuing

delay shown in Figure 28(a) and 28(b) validates it.

Figure 27(b) demonstrates the performance when Kresume

varies. Notice that Kpause here is set to 10, and the incorrect

congestion detection exists. Figure 28(c) shows that the

queuing delay increases when Kresume is set to a smaller

value. This is due to a small resume threshold could be strict

to resume and vulnerable flows in the IQ of the false-positive

root can be blocked for a long time. With merging, different

values of Kresume does not influence the queuing delay, as

shown in Figure28(d).

C IQ Management

C.1 Methodology

The function of HIQs (e.g., hierarchical congestion matching

and in-order delivery) can be achieved by leveraging single-

tier IQs. Considering a two-tier HIQ matches congestion

roots belonging to two different levels. We denote the single-

tier IQ matching two-level congestion roots as IQAi
and IQB j

(a) Memcached (overall flows). (b) Web Server (vulnerable flows). (c) Web Server (uncongested flows). (d) Web Search (uncongested flows).

(e) Queuing time (Web Server background). (f) HPCC: Memcached (overall flows). (g) HPCC: Web Server (uncongested flows).

Figure 26: Performance w/o sending window.

(a) Kpause.

(b) Kresume.

Figure 27: Parameter selection.

(a) Kpause w/o merging. (b) Kpause w/ merging.

(c) Kresume w/o merging. (d) Kresume w/ merging.

Figure 28: Queuing time variation of vulnerable flows across different value of

Kpause and Kresume.

respectively and use lower case letters ai and b j to denote

the corresponding congestion roots. For a network with two

congestion roots a1 and b1, there can be flows matching

congestion roots a1, b1, and a1 ∧ b1. To handle these three

types of congestion flows, for HIQs, IQA1
and IQB1

can be

arranged into two levels. For single-tier IQs, three dedicated

IQs (i.e., IQA1
, IQB2

and IQA1∧B2
) are needed. Generally,

to isolate different congested flows as in two-tier IQs (e.g.,

n first level IQs IQA1
, . . . ,IQAn and m second level IQs

IQB1
, . . . ,IQBm), the single-tier IQs need additional n∗m IQs

(i.e., IQA1∧B1
, . . . IQAn∧Bm).

For single-tier IQs, to ensure in-order delivery, it should

be careful when a congested flow alters its chosen queue.

Scenarios where a flow changes the queue it uses only occur

when (i) a congestion root vanishes , or (ii) a new congestion

root is detected. For the first scenario, since the IQ to be

unassigned must be empty, packets of the flow are not in

different queues hence in-order delivery is satisfied naturally.

The second scenario is described in § 4.3, where a new

congestion root b1 is detected after a1. Then IQB1
and

IQA1∧B1
are assigned to traffic passing b1 and traffic passing

both congestion roots. Following arrival packets passing

through both congestion roots a1 and b1 alters from IQA1
to

IQA1∧B1
. A order mark is inserted into the IQA1

, and IQA1∧B1

can not be resumed until the order mark is dequeued from

IQA1
. Note that IQA1

can be paused by congestion root b1

before the order mark is dequeued due to that flows passing

through both port a1 and b1 can be pushed into IQA1
before

congestion root b1 is detected. Given that Pyrrha detects

congestion roots rapidly, packets in IQA1
can be moderate

hence the order mark can be dequeued in a short time.

C.2 Experimental Verification

To reduce the complexity, we can analog two-tier HIQs

which is enough for two-tier Clos-networks. For three-tier

(a) FCTs. (b) Buffer Occupancy.

Figure 29: Performance when using single-tier congestion

queue to perform a two-tier HIQ.

Clos or fat-tree networks, it only matches congestion roots

that two hops away from the destination host. And we

leverage CC protocols to handle the congestion close to the

source host.

We evaluate the performance of Pyrrha when single-tier

congestion queues are used to analog the behavior of a

two-tier HIQ in a three-tier topology. Figure 29 shows

the performance of Pyrrha and Pyrrha handling downstream

congestion roots by leveraging single-tier IQs. Results show

that when comparing Pyrrha (downstream)+DCQCN with

Pyrrha+DCQCN, the latency of flows smaller than 100KB

is increased. But Pyrrha (downstream)+DCQCN reduces the

latency of flows significantly compared to pure DCQCN.

D Pyrrha Prototype and Discussion

In this section, we present our Tofino2 prototype, with Figure

30 depicting its pipeline. We divide the pipeline into three

parts, each detailed in a separate subsection (Appendix D.1 -

D.3). Finally, we summarize the Tofino2 features leveraged

in our prototype and examine the practicality of implement-

ing Pyrrha on the RTC (Run-To-Completion) architecture,

e.g., Juniper Trio [88].

D.1 Ingress Pipeline

Packet Classifier. The packet classifier is located at the front

of the ingress pipeline. The module determines the packet

type according to the Ethertype field in the Ethernet header.

(We use Ethertypes that are not used by the IEEE standard

to mark different types of packets.) There are three types

of packets: data packet, signal packet, and generated packet.

Different types of packets then go through different modules.

Forward Engine. Only data packets go through the for-

warding engine. The forwarding engine looks up the table

deployed in advance and determines the egress port of

the data packet. This module is similar to that of most

commercial switches.

Congestion Root Matcher. This module contains two sub-

module: route calculation unit and hierarchical congestion

root table. The methodology of route calculating is described

in § 4.2, and the optimization to reduce the resource usage

is detailed in Appendix E.3. And as described in § 5.1,

the hierarchical congestion root table records the congestion

roots and their states in a hierarchical manner. When a

data packet passes, the module first calculates its route,

then matches its route against the congestion root table

hierarchically. If the packet matches one or more congestion

roots in PAUSE state, the matched congested root id(s) is

(are) carried in its metadata, which is stored in PHV and

will be used in the following modules. When a signal

packet passes, the module first calculates the location of the

congestion root it indicates, then modifies the state of the

corresponding congestion root in the hierarchical congestion

root table.

Queue Manager. This module manages the mapping be-

tween the congestion root id and queue id. When a packet

passes, the module tries to match the congestion root id

it carried in metadata against mapping table. If there is

no matched entry, the module assigns a new queue to this

congestion root. When a queue is unassigned, the module

deletes the corresponding entry.

Queue State Detector. Ghost is used in this module to

detect the change in queue state. When Ghost is triggered by

predefined thresholds (Kpause or Kresume), a Ghost packet is

generated to the ingress pipeline and writes the queue length

into a register in this module. When passing through this

module, the data packet tries to read the value in the register

corresponding to the queue in which it will be queued. Then

the data packet compares the queue length it read with the

previous queue length stored in another register. If the queue

length exceeding Kpause or falling below Kresume for the first

time, a PAUSE/RESUME packet is needed to be sent. In

such case, the module marks the packet.

At the end of the ingress pipeline is the signal packet

module, which contains three sub-modules corresponding to

three types of packet.

Signal Packet Creator. Only data packets will pass through

this module. Recalling that in the Queue State Detector

module, the data packet is marked if a signal packet is needed

to be sent. Then this module will check the marker and

uses Pktgen to generate a new packet if the marker is valid.

The new programmable Pktgen trigger of Tofino2 enables

carrying some data plane metadata in the generated packet,

which greatly expands programmability.

Signal Packet Constructor. The generated packets will

pass through this module. This module will reorganize the

metadata and construct the header of the signal packet.

Signal Packet Handler. This module will pause/resume

the IQ based on the queue information carried in the signal

packet. The dataplane pause/resume is achieved via AFC, a

new feature of Tofino2. If the signal packet switches some

flows from a working queue to another queue, the signal

will be modified to a Order Mark and pushed into the origin

queue. Otherwise, the signal packet is useless and dropped

by the module.

Figure 30: Pipeline of Pyrrha implementation on Tofino2

D.2 Traffic Manager

In the Traffic Manager, we configure a highest priority queue

as the queue through which the signal packets pass. Other

queues are configured as the same priority and scheduled in

a Round-Robin manner. Among these queues, one is used

as OQ, and the rest of the queues are used as IQ, which are

managed by Queue Manager in Ingress Pipeline.

D.3 Egress Pipeline.

Packet Classifier. The functionality of this module is similar

to the Packet Classifier in Ingress Pipeline. All packages

are divided into three types: mirror packet, data packet, and

Order Mark.

Queue State Detector. Unlike the Queue State Detector in

Ingress Pipeline, this module uses the queue length carried

by the egress packet to detect the change of queue state. This

module mainly focuses on one kind of queue state: CLEAR.

If an IQ is clear, it means we can unassign it when other

conditions are met.

Signal Packet Creator. Because the programmable Pktgen

trigger is not available in Egress Pipeline, this module uses

mirror, another Tofino feature, to create signal packets. To

deliver the signal packet to Ingress Pipeline, the module

mirrors the packet to the top-priority queue of the loopback

port. For the data packet with a CLEAR mark, this module

just mirrors the header to create a small-size signal packet.

For the Order Mark, this module mirrors the whole packet

and then drops the origin packet.

Signal Packet Constructor. In this module, the mirrored

packet is constructed as a signal packet. For the packet

mirrored from the data packet’s header, the module discards

all the origin headers and reconstructs the signal header. For

the packet mirrored from the Order Mark, the module only

makes minor modifications.

D.4 Feasibility on RTC switches

In our Tofino2 prototype, we utilized the following features

that may not be supported by all programmable switches:

Ghost thread, packet trigger, and AFC (Advanced Flow

Control). (i) Ghost thread is used to get queue lengths at

the ingress pipeline. (ii) The packet trigger functionality

can generate new packets at the end of both the ingress

and egress pipelines. (iii) AFC enables the pausing and

resuming of queues in the programmable data plane. We

then discuss how to implement these features on other

types of programmable switches that adopt RTC (Run-To-

Completion) architecture, e.g., Juniper Trio [88].

(i) In programmable switches, queue lengths are typically

visible after packets pass through TM (Traffic Manager), i.e.,

during the process of egress. For Tofino, the Ghost thread

is required due to the hardware limitation that information

can not be directly conveyed from to egress to ingress.

However, in the RTC architecture, the memory is shared

between ingress and egress, thus Ghost thread is naturally

not required.

(ii) The packet trigger functionality is not directly supported

by current RTC switches. Fortunately, through private

discussion with a vendor of the RTC switch chips, we have

learned that the feature can be easily implemented using

background threads and will be integrated into its forthcom-

ing RTC architecture switch chip. More precisely, the design

involves dedicated background threads and associated data

structures that are reserved for packet generation. These

background threads are continuously active, polling the data

structures for the notifications of packet generation. When

a need arises to generate new packets, the necessary packet

generation information is written into the corresponding data

structure. Upon detection of this information, the back-

ground threads initiate the generation process accordingly.

(iii) Currently, AFC is not supported by existing RTC chips.

The support for AFC in Tofino2 demonstrates the feasibility

of exposing this functionality to the programmable data

plane. Considering the necessity to support prevalent flow

control protocols such as PFC, the capability to pause and

resume queues should be a standard functionality in RTC.

We are optimistic that future releases of RTC switch chips

will support this essential functionality.

E Resource Usage on Tofino2

In this section, we detail the resource overhead of the Pyrrha

prototype on Tofino2. Tofino2 adopts pipeline architecture,

wherein the overhead of storage and computational resources

is determined at compile time. It enables us to ascertain

Pyrrha’s resource requirements without running it in a large-

scale cluster. We separately compile three key data structures

that are related to the size of the topology to report their over-

head across different topological scales (Appendix E.1-E.3).

Subsequently, we present the resource usage of processing

logic, which remains constant irrespective of the scale of

topology (Appendix E.4). Ultimately, we analyze the com-

putational and storage resource complexities of Pyrrha and

provided an exhaustive account of resource utilization under

several typical network conditions. (Appendix E.5)

According to the statistics reported in megascale [49],

the scale of current data centers can reach up to 10,000

nodes. Therefore, we use a fat-tree topology with 11,664

hosts as a representative case for our analysis. In addition,

we investigated the largest scale of topology that Pyrrha can

support theoretically, i.e., approximately an order of mag-

nitude larger than the state-of-the-art datacenter networks.

The results demonstrate that Pyrrha is capable of scaling to

large-scale networks. Our prototype of Pyrrha can support

a typical modern data center with over 10,000 hosts. Lever-

aging the rapidly maturating HIQ technology [94], Pyrrha is

capable of scaling up to support topology approximately an

order of magnitude larger than the typical modern datacenter

networks.

Our overhead analysis focuses on the ToR switches since

they should track the most extensive status information for

their downstream networks, thereby consuming the largest

amount of resources. It is notable that the data plane

storage and the forwarding plane buffers are segregated in

the Tofino2. Thus Pyrrha’s consumption of storage does not

impact the forwarding performance.

E.1 Path Calculation

This section details how we implement hash-based path cal-

culation for fat-tree topology in our Tofino2 prototype. The

path calculation can be divided into two parts: determining

available egress ports and selecting the forwarding port from

available ports by hashing. Given the fact that switches in

datacenter only support limited types of hash functions (e.g.,

CRC or XOR) to conduct efficient calculation [87, 93] and

use switch-specific hash seeds to avoid hash polarization.

Hence, Pyrrha switch only needs to store a bitmap to indicate

the type of the hash function of other switches along with

their hash seeds (§ E.1.1).

In many widely deployed topologies [8, 37, 62, 82], the

characteristics of up-down routing and equal paths can be

leveraged to optimize the overhead of storing other switches’

forwarding tables. We demonstrate that path calculation

can be done within O(n) resource usage where n is the

number of hosts in the topology. For a fat-tree with 11,664

hosts, Pyrrha’s path calculation occupies 0.44MB SRAM

(i.e., 1.8% of Tofino2) (§ E.1.2). If IP addresses are

organized regularly as discussed in [8], the storage cost can

be further reduced to 0.18% of Tofino2 (§ E.1.3). Otherwise,

a Pyrrha switch needs to store forwarding tables on other

switches to calculate the path, incurring extra storage over-

head.

E.1.1 Hash functions used in the data center

Current switches only provide a limited number of hash

functions to prevent complex hashing from impeding for-

warding rates [87, 50]. To avoid traffic polarization caused

by identical hash functions across different switches, it is a

common practice to employ switch-specific seeds to derive

switch-specific hash functions [28]. Before performing the

hash function, the input data (e.g., IP tuple) is XORed with

the switch-specific seed, making the output of identical input

data and hash function different among switches. Switches’

hash seeds are not hardcoded but accessible through the con-

trol plane interface [28]. Therefore, a switch can calculate

the hash outcomes of other switches by storing a limited

number of hash functions and other switches’ hash seeds.

E.1.2 Path Calculation without regular addressing.

To calculate the path, Pyrrha switch needs to store the

forwarding tables of other switches. In this subsection,

we mainly focus on the structure and the storage over-

head of forwarding tables in fat-tree topology. As shown

in Figure 31(a), under two topology-relevant optimization,

Pyrrha switch can calculate path in k = 36 (i.e., 11,664

hosts) fat-tree with 0.44 MB of SRAM. The SRAM usage

is acceptable in Tofino2, which has 25 MB SRAM in total.

These optimizations can also be applied to other clos-based

topologies.

No optimization. Without optimization, a switch needs to

store all forwarding tables on other switches. Take fat-tree

topology as an example; the size of the forwarding table on

a switch is of the order O(n), where n is the number of hosts.

The number of the switch is of the order O(n2/3). Thus, the

size of extra storage usage to calculate the path is of the order

O(n5/3). Storing all forwarding tables will occupy 12.6 MB

in the fat tree with a host number of 3456 (k=24).

Up-down routing optimization. In many topologies, rout-

ing adheres to the up-down principle, where packets are

first forwarded upward and then downward [45]. In such

topologies, switches only need to store upstream routing

entries for upward hops and downstream routing entries for

downward hops. In a fat-tree, a switch must store entries

for all switches in its source pod, all entries for core-layer

switches, and only downstream entries for switches in other

(k−1) pods. Though it can not reduce the complexity of the

resource usage, this optimization can save storage resources

on the order of O(n5/3) in the fat tree. Storing forwarding

tables will occupy 14.1 MB in the fat tree with a host number

of 5,488 (k=28) under up-down routing optimization.

Equal path optimization. In many topologies, there are

(a) Forwarding table in path calculation. (b) Hierarchical congestion root table. (c) Queue assignment module.

Figure 31: The SRAM usage of three data structures.

multiple equal paths between nodes. Take the source ag-

gregation switch as an example. When a packet destined

for another pod arrives, the switch only needs to forward

it to any one of the upward links without differentiating

between the various upward links. Therefore, the edge

switch only needs to store the forwarding table entries of

the hosts within their own pod to determine the forwarding

decisions on aggregation switches within that pod. Similarly,

edge switches only need to store one routing table that maps

different IPs to different pods for all core switches, as core

switches are only concerned with which pod the packet needs

to be forwarded to. For the aggregate switches of the other

k−1 pods, the edge switch only needs to store k−1 different

forwarding tables. This optimization can reduce the storage

resources usage to the order of O(n4/3). Storing forwarding

tables will occupy 2.56 MB in the fat tree with a host number

of 11,664 (k=36) under equal path optimization.

Full optimization (used in our prototype). Combining the

two optimizations mentioned above, we can further reduce

the storage resource overhead to the order of O(n). The

storage usage of storing forwarding tables is reduced to 0.44

MB in the fat tree with a host number of 11,664 (k=36) under

full optimization. In addition, we investigated the largest

scale of topology that Pyrrha can support theoretically, i.e.,

approximately an order of magnitude larger than the state-

of-the-art datacenter networks. In our prototype, storing

forwarding tables will occupy 8.7 MB in the fat tree with

a host number of 524288 (k=128) under full optimization.

Next, we introduce the specific content of the forwarding

tables to storage and then analyze the complexity. (i) A ToR

switch is required to store K/2 downstream entries for itself.

If the destination IP of a packet is missed in the downstream

entries, the switch should select a port from upward ports

by hash to forward the packet. The complexity is of

O(n1/3). (ii) The ToR should store store k2/4 downstream

entries, for all aggregation switches within the same pod.

If the destination IP is not within the pod, the aggregation

should select an upward port by hash to forward the packet.

The complexity is of O(n2/3). (iii) The ToR should store

k3/4 entries for all core switches, containing the mappings

between destination IPs and their corresponding pods, with

a complexity of O(n). (iv) Additionally, for the aggregation

switches in each of the other k− 1 pods, k− 1 tables need

to be stored, each with a size of k2/4, to store the mappings

of different destination IPs within that pod to the appropriate

edge switches, with a complexity of O(n). (v) For all other

edge switches, tables of size k/2 that record the mappings

between destination IPs and hosts should be stored, also with

a complexity of O(n). Therefore, under full optimization, the

storage overhead complexity for maintaining the forwarding

tables is O(n).

Apply optimizations on other topologies. The two op-

timizations mentioned above can be applied to most clos-

based topologies [37, 63, 82].

E.1.3 Path Calculation with regular addressing

In this subsection, we discuss how to conserve storage

overhead for forwarding tables based on the regularity of

the topology’s addressing. Our discussion is based on the

fat-tree topology with addressing method presented in [8].

We believe that this approach can be applicable to the vast

majority of topologies with regular addressing schemes.

IP address format. The address of a host is

10.pod.switch.host, where pod is the pod number, switch

is the edge switch’s position in the pod (counting from left

to right) the host connected to, and host is the host’s position

among hosts connected to the switch.

Switch ID and port ID format. The result of path calcula-

tion is the switch ID and egress port ID that a packet traverses

at each hop. The switch ID and port ID format given below

supports fat-tree topology with k up to 128. Aligned with IP

addresses, IDs are counted from left to right.

The switch ID is 16 bits in length. For edge and aggre-

gation switches, the upper 8 bits represent the pod number,

while the lower 8 bits denote the switch’s position among the

Algorithm 1: Path Calculation In Fat-tree

Input: tuple: IP-tuple of the incoming packet.

1 Procedure PathCalculation(tuple)

2 if tuple.dstIP.pod == tuple.srcIP.pod then

3 if tuple.dstIP.switch == tuple.srcIP.switch then

4 edgeLocal← true

5 else

6 aggLocal← true

7 if edge local == f alse then

8 edgePortID←{1,Hash(tuple, localSeed)}
9 if agg local == f alse then

10 aggSeed← LookupSeed(edgePortID)

11 aggPortID←{1,Hash(tuple, aggSeed)}

Source

edge switch

SwitchID It is already known

PortID edgePortID

Source

aggregation switch

SwitchID {srcIP.pod,0,edgePortID[6 : 0]}

PortID aggPortID

Core switch
SwitchID {0,edgePortID[6 : 0],0,aggPortID[6 : 0]}

PortID {dstIP.pod}

Destination

aggregation switch

SwitchID {dstIP.pod,0,edgePortID[6 : 0]}

PortID {1,dstIP.switch}

Destination

edge switch

SwitchID {dstIP.pod,1,dstIP.switch}

PortID {dstIP.host}

Table 1: Obtain switch ID and port ID from existing data.

same layer switches in the pod. For core switches, the upper

8 bits indicate the position of the connected aggregation

switch (noting that a core switch connects to aggregation

switches at the same position across different pods). The

lower 8 bits are the switch’s position among core switches

connected to the same aggregation switch. Switch IDs may

be identical across different layers by design to conserve

encoding space and reduce computational overhead. This

does not cause issues since Pyrrha’s congestion root table is

hierarchical (§ 5.1).

The port ID is 8 bits in length. Edge switches and

aggregation switches’ ports can be categorized as uplink and

downlink ports. The highest bit of the uplink port ID is 1,

while it is 0 for a downlink port. The remaining 7 bits are

the port’s position within its respective uplink or downlink

category. For core switches, the port ID is the connected pod

number.

Path Calculation. After careful optimization, the path

calculation in fat-tree only needs up to one lookup and two

hash functions. We next explain how to calculate path hop-

by-hop on the source edge switch. The pseudocode for path

calculation is shown in Algorithm 1. Note that the logic of

the P4 code is Match-Action Table (MAT) based, and the

pseudocode only presents the calculation logic. After two

rounds of hashing, the path for each hop can be obtained

using the method described in Table 1. In both the algorithm

and the tables, curly braces {} denote the bit concatenation,

and square brackets [] denote the bit slice, which can be

easily implemented by setting the key of the MAT. In the

concatenation, the 0 and 1 are both 1 bit in width.

(i) Path at source edge switch. The source edge switch is

aware of its own switch ID. When calculating the port ID,

it is necessary to first determine whether the destination is

under the same source edge switch (line 2-4). If so, there

is no need to perform any calculations. Instead, the switch

simply considers itself as the destination edge switch and

uses {dstIP.host} as the port ID. If not, it calculates the port

ID via hashing IP-tuple and its own hash seed (line 8).

(ii) Path at source aggregation switch. The source ag-

gregation switch id is {srcIP.pod,0,edgePortID[6 : 0]} as

edgePortID[6 : 0] is both the edge switch’s up port position

and the aggregation switch’s position according to fat-tree’s

scheme. Similar to the prior case, Pyrrha needs to determine

whether the destination is in the same pod (line 2-6). If so,

no calculation is needed and this aggregation switch is con-

sidered as a destination aggregation switch in the following

logic. If not, Pyrrha will perform the hash function. Before

calculating the source aggregation switch’s hash output, the

source edge switch needs to look up the hash seed (line 10).

The hash seed table does not need to store the hash seeds for

all switches; for an edge switch, it only needs to store the

hash seeds of the aggregation switches within the same pod.

(iii) Path at core switch. The switch ID of the core switch the

packet will pass by is {0,edgePortID[6 : 0],0,aggPortID[6 :

0]}. The upper 8 bits are the position of the aggregation

switch it connected to and the lower 8 bits are the position

of the aggregation switch port it connected to. The egress

port ID at the core switch is the destination pod ID, which is

available in the IP-tuple.

(iv) Path at destination aggregation switch. The switch ID of

the destination aggregation switch the packet will pass by is

{dstIP.pod,0,edgePortID[6 : 0]}. The switch position (i.e.,

the lower 8 bits) is the same as that of the source aggregation

switch, eliminating the need for calculation. The port ID at

the destination aggregation switch can be obtained from the

switch field of the destination IP address.

(v) Path at destination edge switch. The switch ID and port

ID can be directly obtained from the destination IP address.

Resource usage. Table 2 shows the resource usage of

path calculation with regular addressing on the edge switch.

Pyrrha use only a slight amount (0.18%) of SRAM to store

hash seeds and only two hash function calls. The hash

function is built-in in Tofino2, thus do not occupy any

extra resource. Among those resources, the most utilized

resource is the TableID, which only occupies 2.5% of the

total TableID resources available in the Tofino2.

E.2 Hierarchical Congestion Root Table

We store the downstream congestion snapshot in a hierarchi-

cal congestion root table. The kth table records ports that

Resource Usage Percentage

Comp.

Exact Match Input xbar 40 1.56%

Ternary Match Input xbar 0 0.00%

VLIW Instructions 7 1.09%

Hash Bits 60 0.77%

Hash Calls 2 1.67%

Stateful ALU 0 0.00%

Logical TableID 8 2.50%

Stor.
SRAM 5 0.31%

TCAM 0 0.00%

Table 2: Resource usage of path calculation with regular

addressing.

Figure 32: The components of queue assignment module

with the process of queue assigning depicted.

are k hop away from the switch, whose keys are <switch-

id, port-id>, and the value is a bit, denoting its congestion

status. As shown in Figure 31(b), the storage usage of the

congestion status snapshot is of the order O(p) where p is

the number of ports in the network (i.e., O(n) where n is the

number of hosts for most topology). When the number of

hosts is small, the usage of SRAM does not increase with the

number of hosts. This is because Tofino2 allocates SRAM in

blocks, and when the number of hosts is low, the size of each

data structure fits within a single block. In our prototype, the

hierarchical congestion root table occupies 176 KB in a fat

tree with a host number of 11,664 (k=36) and 0.44 MB for

524,288 host (k=128).

E.3 Queue Assignment Module

The queue assignment employs a lazy update design to

conserve queue resources. The components of the dynamic

queue assignment module and the procedure of queue as-

signment are shown in Figure 32. The queue allocation

module introduced in this section is applicable to both single-

layer IQs and HIQs. For HIQs, the queue allocation module

is also hierarchical, with each layer of queues being allocated

by a corresponding layer of the queue allocation module.

Before entering queue assignment module, a packet is

first processed by a congestion root matching module to

determine whether it will pass through congestion roots

(Appendix D.1). If it will, the packet will carry the IDs of

all the congestion roots it will pass and proceed to the queue

assignment module.

The packet first passes through IsAssigned Table, which

has two dimensions: port ID and congestion root ID. This ta-

ble stores bits to indicate whether a queue has been assigned

to a congestion root on a port. Note that in our Tofino2

prototype, we use single-tier IQs to emulate two-level HIQs

(§ C). Therefore, the congestion root ID is a concatenation of

the IDs of the two potential congestion roots in two layers.

If the corresponding bit in the table is 0, it indicates that the

corresponding IQ has not been assigned. The packet then

modifies this bit to 1 and enters the Multi-segment QueueID

Stack to attempt to obtain a queue ID.

The Multi-segment QueueID Stack utilizes only two ta-

bles, Stack Pointer Table and Stack Content Table, yet it can

independently assign queues in each port. The Stack Pointer

Table is indexed by port ID and stores the top pointer of

the queue ID stack corresponding to each port. The Stack

Content Table holds the remaining available queue IDs for

each port. When queue assignment is required, the packet

first accesses the Stack Pointer Table to obtain the stack top

pointer and then increments the top pointer in the table by

1. Subsequently, it reads the available queue ID from the top

of the Stack Content Table. Finally, this queue ID is written

into the QueueID Record Table, which has the same indexing

as the IsAssigned table and stores the queue IDs that have

already been assigned.

The pipeline architecture of Tofino2 ensures a strict order

in table access among packets. After queue assignment is

completed, subsequent packets that pass through the same

port and congestion roots will find the corresponding bit in

the IsAssigned table set to 1. Then, they will not perform

any operations when passing through the Multi-segment

QueueID stack. Instead, they will directly read the queue

ID from the QueueID Record Table.

When unassigning a queue, the operations are basically

the reverse of queue assignment. When an IQ is clear and

the IQ is the leaf of the congestion tree, a signal packet is

created, which carries the IQ ID to be unassigned as well as

the port ID and congestion root ID. It sets the corresponding

bit in the IsAssigned table to 0. Then, it increments the

stack top pointer in the Stack Pointer Table by 1 and writes

the unassigned IQ ID into the new stack top in the Stack

Content table. Finally, it clears the corresponding record in

the QueueID Record Table.

The SRAM usage of the queue assignment module is

shown in Figure 31(c). The resource usage of the queue

assignment module mainly stems from the IsAssigned table

and the QueueId Record table. When using single-tier IQs,

the congestion root ID is a concatenation of the IDs of

two layers of congestion roots, which results in a space

complexity of O(n5/3) for these two tables where n is the

Resource Usage Percentage

Comp.

Exact Match Input xbar 89 3.48%

Ternary Match Input xbar 76 5.76%

VLIW Instructions 45 7.03%

Hash Bits 684 8.22%

Hash Calls 6 5.00%

Stateful ALU 14 17.50%

Logical TableID 63 19.59%

Stor.
SRAM 120 7.50%

TCAM 31 6.46%

Table 3: Resource usage of Pyrrha’s precessing logic.

Resource Usage Percentage

Comp.

Exact Match Input xbar 277 10.82%

Ternary Match Input xbar 76 5.76%

VLIW Instructions 123 19.22%

Hash Bits 1647 19.80%

Hash Calls 36 30.00%

Stateful ALU 61 76.25%

Logical TableID 124 38.75%

Stor.
SRAM 712 44.50%

TCAM 31 6.46%

Table 4: Resource usage of Pyrrha prototype under 11,664

hosts topologies with irregular addressing.

number of hosts in the topology. The SRAM usage of the

queue assignment module is shown in Figure 31(c). Queue

assignment module for single-tier IQs will occupy 8.64 MB

in the fat tree with a host number of 11,664 (k=36), which is

adequate to support the scale of typical modern topology.

Leveraging the rapidly maturating HIQ technology [94],

on Pyrrha switch that support HIQ, the IsAssigned table

and QueueId Record table can be decomposed hierarchically

as in Appendix E.2, thereby reducing the space complexity

to O(n). We also implement a queue assignment module

suitable for HIQ on Tofino2 to investigat the largest scale

of topology that Pyrrha can support theoretically, the result

shows only 2.2MB of SRAM is required to support up to

524,288 hosts.

E.4 Resource Usage of Processing Logic

In addition to the above three data structures, whose re-

source usage varies with the network scale, our prototype

also includes some processing logic with fixed resource

usage. This includes queue length detection, signal packet

creating, constructing, handling, as well as queue pausing

and resuming (Appendix D). The resource overhead of this

processing logic is shown in Table 3. The results indicate

that in our prototype, Pyrrha’s resource usage is moderate

and acceptable for Tofino2.

Resource Usage Percentage

Comp.

Exact Match Input xbar 233 9.10%

Ternary Match Input xbar 76 5.76%

VLIW Instructions 98 15.31%

Hash Bits 1251 15.04%

Hash Calls 33 27.50%

Stateful ALU 44 55.00%

Logical TableID 104 32.50%

Stor.
SRAM 294 18.38%

TCAM 31 6.46%

Table 5: Resource usage of Pyrrha with HIQs under 524,288

hosts topologies with regular addressing.

Resource Usage Percentage

Comp.

Exact Match Input xbar 250 9.77%

Ternary Match Input xbar 76 5.76%

VLIW Instructions 89 13.91%

Hash Bits 1426 17.14%

Hash Calls 29 24.17%

Stateful ALU 35 43.75%

Logical TableID 98 30.62%

Stor.
SRAM 450 28.13%

TCAM 31 6.46%

Table 6: Resource usage of Pyrrha with HIQs under 221,184

hosts topologies with irregular addressing.

E.5 Overall Resource Usage

In this subsection, we analyze the complexity of the overall

resource utilization of Pyrrha on the Tofino2 prototype. Sub-

sequently, we present Pyrrha’s detailed resource usage across

several representative network conditions. According to the

statistics reported in megascale [49], the scale of current data

centers can reach up to 10,000 nodes. Therefore, we use a

fat-tree topology with 11,664 hosts as a representative case

for our analysis. In addition, we investigated the largest scale

of topology (i.e., a k = 128 fat-tree with 524,288 hosts) that

Pyrrha can support theoretically.

Complexity analysis. The computational resources utilized

by Pyrrha are predominantly determined by the on the

maximum number of network hops, with a minor correlation

to the network’s scale. Regarding storage resources, the

overhead of Pyrrha’s data structures is moderate. Denote

the number of hosts in the topology as n. With irregular

addressing, the storage overhead can be reduced to an order

of O(n) through two optimizations. With regular addressing,

the storage cost for path calculation is negligible. The

storage overhead of a hierarchical congestion root table is

also on the order of O(n). In our prototype, the storage cost

for the queue assignment module is O(n5/3). On switches

that support HIQs, the storage cost for the queue allocation

module is O(n).

Resource Usage Percentage

Comp.

Exact Match Input xbar 297 11.60%

Ternary Match Input xbar 76 5.76%

VLIW Instructions 108 16.87%

Hash Bits 1799 21.62%

Hash Calls 33 27.50%

Stateful ALU 44 55.00%

Logical TableID 112 35.00%

Stor.
SRAM 845 52.81%

TCAM 31 6.46%

Table 7: Resource usage of Pyrrha with HIQs under 524,288

hosts topologies with irregular addressing.

Overall, the computational resource overhead of Pyrrha

remains constant across most network topologies. In our

prototype, the storage overhead for Pyrrha is O(n5/3). On

switches that support HIQ, the storage overhead is O(n).
Detailed usage. We present detailed reports of resource

usage for Pyrrha on the Tofino2 prototype across several

typical network environments. We first report the resource

usage of Tofino2 prototype under the scale of a typical

modern data center [49], which is shown in Table 4. In

a network with 11,664 hosts (i.e., fat-tree with k=36), the

Stateful ALU and Logical TableID are the most utilized

computational resources, accounting for 76.25% and 38.75%

of the capacity, respectively. And SRAM is the most utilized

storage resource, occupying 44.5% of the availale capacity.

In addition, we investigated the largest scale of topology

that Pyrrha can support theoretically. Table 5 illustrates the

resource usage of Pyrrha on a switch supporting HIQ within

a 524k hosts network (i.e., fat-tree with k=128) with regular

addressing. The Stateful ALU and Logical TableID are the

most utilized computational resources, accounting for 55%

and 32.5% of the capacity, respectively. The storage usage

is merely 18.38%. Table 6 and 7 shows Pyrrha ’s resource

usage on a switch supporting HIQ and the topology has 221k

and 524k irregular addressed hosts (i.e., fat-tree with k=96

and 128), respectively. In the case of irregular addressing,

the computational overhead remains nearly identical, while

the SRAM usage increases. In a network with 221k hosts,

the SRAM overhead is 28.13%, and in a network with 524k

hosts, the SRAM overhead rises to 52.81%, demonstrating

that the storage overhead is linear.

	Introduction
	Background and Motivation
	CC is Falling and FC is Rising
	HOL Blocking Problem of Simple FC
	State-of-the-art Flow Control is Flawed

	Pyrrha Overview
	Basic Idea
	Design Challenges

	Pyrrha Design
	Congestion Root Identification
	Congested Flow Identification
	Congested Flow Management
	Miscellaneous Detailed Design
	Scalability Discussions

	Implementation and Testbed Experiments
	Prototype of Pyrrha
	Testbed Evaluation

	Simulation Evaluation
	Comparing with Flow Control
	PFC
	BFC

	Cooperating with Congestion Control
	DCQCN
	HPCC

	Additional evaluations and Discussions

	Conclusion
	Discussions
	Supplemental Results
	Parameter and Mechanism Validation

	IQ Management
	Methodology
	Experimental Verification

	Pyrrha Prototype and Discussion
	Ingress Pipeline
	Traffic Manager
	Egress Pipeline.
	Feasibility on RTC switches

	Resource Usage on Tofino2
	Path Calculation
	Hash functions used in the data center
	Path Calculation without regular addressing.
	Path Calculation with regular addressing

	Hierarchical Congestion Root Table
	Queue Assignment Module
	Resource Usage of Processing Logic
	Overall Resource Usage

