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Abstract

The switch buffers in datacenters today are dynamically shared
by traffic classes with different loss tolerance and reaction to
congestion signals. In particular, while legacy applications
use loss-tolerant transport, e.g., DCTCP, newer applications
require lossless datacenter transport, e.g., RDMA over
Converged Ethernet. Unfortunately, as we analytically show in
this paper, the buffer-sharing practices of today’s datacenters
pose a fundamental limitation to effectively isolate RDMA
and TCP while also maximizing burst absorption. We identify
two root causes: (i) the buffer-sharing for RDMA and TCP
relies on two independent and often conflicting views of the
buffer, namely ingress and egress; and (ii) the buffer-sharing
scheme micromanages the buffer and overreacts to the changes
in its occupancy during transient congestion.

In this paper, we present REVERIE, a buffer-sharing scheme,
which, unlike prior works, is suitable for both lossless and loss-
tolerant traffic, providing isolation and better burst absorption
than state-of-the-art buffer-sharing schemes. At the core of
REVERIE lies a unified (consolidated ingress and egress)
admission control that jointly optimizes the buffers for both
RDMA and TCP. REVERIE allocates buffer based on a low-
pass filter that naturally absorbs bursty queue lengths during
transient congestion within the buffer limits. Our evaluation
shows that REVERIE can improve the performance of RDMA
as well as TCP in terms of flow completion times by up to 33%.

1 Introduction
Network devices contain a buffer that can temporarily store
excessive packets during congestion events. As the link
speeds increase, maintaining a constant buffer-bandwidth
ratio would require buffer memory to evolve faster than
Moore’s law and is hence impractical [33]. As a result,
we observe buffer-per-Gbps to constantly shrink [12, 26]
making performance problems rooted in buffer sharing more
evident. Indeed, our expert survey, which included experts
from six companies, revealed that buffer sharing is causing
performance problems in most large-scale datacenters.

At a high level, the goal of a buffer-sharing scheme is to
provide isolation between traffic classes, while maximizing
the benefit of the buffer e.g., by absorbing bursts and achieving
high throughput. Existing buffer management schemes
(even recent ones) [1, 8, 15, 25] were designed considering
exclusively loss-tolerant traffic (e.g., TCP variants). However,
modern datacenters host traffic classes with different loss toler-
ance. Concretely, along with traditional loss-tolerant transport
protocols, many clouds, e.g., Azure [11], Alibaba [22] and
OCI [38], deploy RDMA over Converged Ethernet which
requires lossless transport. In order to guarantee zero packet
loss for RDMA, production datacenters enable Priority Flow
Control (PFC) at the switches [11].

The co-existence of TCP and RDMA traffic in the switch
buffer makes sharing the buffer particularly challenging. While,
in principle, TCP and RDMA traffic have the same perfor-
mance objectives (e.g., high throughput, low latency), their
reaction to network events such as congestion is vastly differ-
ent in terms of speed and granularity. A PFC pause proactively
throttles RDMA traffic at per-hop granularity before the buffer
fills up in order to prevent packet loss due to congestion. On the
contrary, a packet drop throttles TCP at per-flow granularity
once the buffer is filled up due to congestion. Moreover, the ef-
fect of PFC pause (in RDMA) on the buffer is not immediately
evident as all incoming packets after the PFC has been triggered
must be admitted in the buffer further increasing its occupancy.
On the contrary, the effect of a packet drop (in TCP) on the
buffer is immediately evident in the buffer as current packets do
not further increase the buffer occupancy which can decrease
proportionately to the aggregate port bandwidth. Since RDMA
and TCP share the same switch buffer, congestion caused by
TCP can result in excessive PFC pauses for RDMA and sim-
ilarly the buffer occupied by RDMA (especially when it is
paused) can result in excessive packet drops for TCP; leading
to throughput degradation and poor burst absorption.

A naive approach for isolating RDMA and TCP in the shared
buffer is to statically partition it e.g., dedicate 50% of the buffer
to each class. However, such an approach will result in subop-
timal burst absorption; and (in the worst case) poor throughput
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Figure 1: 1 Current buffer-sharing practices maintain two
independent and at times conflicting views of the buffer i.e.,
ingress and egress, which are subdivided into various pools;
posing a challenge to achieve isolation across RDMA and TCP
traffic. 2 REVERIE maintains a bird’s eye view of the buffer;
effectively unifying ingress and egress admission control with-
out statically partitioning the buffer to achieve isolation.

when one of the two classes is not using its dedicated portion of
the buffer. On the one hand, production-grade buffer-sharing
schemes do not significantly depart from static partitioning
among TCP and RDMA. The root cause of this pitfall is the
unnecessary complex buffer model together with the use of pre-
configured buffer pools i.e., pieces of buffer dedicated to certain
queues only. On the other hand, research-grade buffer-sharing
schemes such as ABM [1] can –at best– achieve steady-state
isolation across traffic priorities only for loss-tolerant traffic,
but would fail to isolate lossless and lossy traffic, even if we
extend them to work in such settings, as we show in §2.3. Our
goal in this paper is to formally navigate the trade-off between
isolation and burst absorption in a setting where lossless and
lossy traffic co-exist. Two key insights allow us to do so.

Our first key insight –after thoroughly studying the current
buffer-sharing practices– is that although lossless and lossy
traffic are, in practice, independently managed, the available
buffer for both depends on each other’s occupancy. Concretely,
today’s switches maintain two views of the buffer (i.e., ingress
and egress); each of these views is virtually further split into
pools i.e., buffer pieces configured to serve a subset of the
queues. Figure 1 summarizes these views. The complexity
of the buffer design stems from its evolution over the years
from serving lossy traffic to serving both lossy and lossless.
Unfortunately, as we show in this paper, this complex buffer
design of today’s datacenter switches leads to unexpected
buffer issues e.g., lossy traffic gets more buffer allocation
than lossless traffic when they compete, against the high-level
objective of the configuration. Our analysis shows that buffer
pools and the independent views of the buffer at the ingress
and egress are the root causes of such issues. To tackle this
problem, we propose a simple buffer-sharing scheme in which
both RDMA and TCP are managed jointly with a bird’s eye
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Figure 2: Prior works calculate 1 thresholds and compare
against 2 instantaneous queue lengths, which leads to 3
overreaction to bursts and a high loss rate. REVERIE takes a
different approach and compares the thresholds against 4
low pass filtered queue lengths. This allows REVERIE to 5
smoothly react to congestion while absorbing transient bursts.

view of the buffer. Such an allocation scheme facilitates novel
admission control schemes that can efficiently isolate RDMA
and TCP without statically partitioning the buffer.

Our second key insight is that absorbing RDMA bursts
is extremely challenging because the decisions of a buffer-
sharing scheme are on a per-packet basis but PFC pause
(required for RDMA) is a per-hop signal affecting not just the
incoming packet but all the future arrivals from the previous
hop. Moreover, sudden and concurrent fluctuations in multiple
queue lengths can rapidly change the buffer occupancy. Worse
yet, the incoming rate at today’s link speeds can very rapidly
fill in a buffer. Existing schemes [1, 8, 25] that were designed
specifically for loss-tolerant traffic apply large thresholds to
those packets that are classified as short flows or incast flows.
Unfortunately, as we later show in this paper, these techniques
cannot fundamentally achieve better burst absorption for
lossless traffic since PFC works at per-hop or per-queue
granularity and not per-packet i.e., burst absorption for RDMA
requires prioritizing a queue experiencing burst (not just spe-
cific packets). To address this problem, we show that instead
of increasing thresholds at per-packet granularity under bursty
scenarios, it is sufficient to dampen the queue statistic (e.g.,
by a low-pass filter) against which thresholds are compared,
when taking buffer decisions. Figure 2 illustrates our main
idea. This essentially prioritizes queues experiencing bursts
and improves the burst absorption capabilities of the buffer.

We present REVERIE, a buffer-sharing scheme suitable
for modern datacenters hosting traffic with different loss
tolerance. REVERIE jointly optimizes the buffer allocation
for lossless and lossy traffic with a bird’s eye view over the
buffer; essentially unifying ingress and egress admission
control as shown in Figure 1. Further, REVERIE significantly
improves the burst absorption capabilities of the buffer by



comparing low-pass-filtered queue lengths against thresholds
as illustrated in Figure 2.

Our extensive evaluation of REVERIE based on large-scale
simulations in NS3 shows that REVERIE effectively isolates
RDMA and TCP, reduces the overall number of PFC pauses
by 60% on average and improves the flow completion
times for bursty workloads by up to 33% compared to the
state-of-the-art approaches.

In summary, our key contributions in this work are:
• The first analysis of a production-grade buffer model

(exemplified by the open source SONiC [44]) that
includes both ingress and egress admission control.
This analysis generates multiple insights including the
conflicting buffer views of ingress and egress that prevent
effective isolation between lossless and lossy traffic.

• REVERIE, the first buffer-sharing scheme that can
isolate lossless and lossy traffic while improving burst
absorption for both.

• As a contribution to the research commu-
nity and to facilitate future work, all our ar-
tifacts have been made publicly available at
https://github.com/inet-tub/ns3-datacenter.

2 Motivation
We first present unintuitive outcomes (issues) that arise under
typical configurations (§2.1). To explain the root cause of
those issues (§2.3), we first describe in detail a representative
buffer-sharing architecture of an open-source and widely-used
switch OS, i.e., SONiC [44] (§2.2). Our buffer model has been
endorsed by major Ethernet switch ASIC vendors, including
Broadcom, Cisco and NVIDIA.

2.1 Buffer Issues in Datacenters
In this section, we walk through three issues that operators
of large-scale RDMA deployments [11] can face while
debugging buffer problems. We have verified that these issues
are (i) possible by showing them analytically (§2.3); and
(ii) realistic by direct communications with operators of
large-scale RDMA deployments. Consider an operator who
wants lossless traffic to get as much buffer as it needs, i.e.,
lossless is prioritized over lossy traffic under buffer contention.
This is a typical use case in datacenters with large RDMA
deployments. Although the operator closely follows the "best
practices" (i.e., a set of heuristics) to configure the buffer,
which we explain in §2.2.2, they observe the following issues.

Issue 1. Lossy traffic gets more buffer allocation than lossless
traffic when they both compete for buffer space.

Issue 2. Lossless traffic yields to the increase in buffer
occupancy of lossy traffic, while the opposite is not true, i.e.,
the allocation for lossy traffic is not affected by the buffer
occupancy of lossless traffic.

Issue 3. The buffer is more efficient in absorbing bursts of
lossy traffic than bursts of lossless traffic.

2.2 Buffer Sharing Practices
To understand the root cause of the issues (§2.3), we need to
understand the buffer model used in today’s datacenters and the
"best practices" for configuring it. To the best of our knowledge,
we are the first to present a detailed and up-to-date description
of a buffer model of a datacenter switch that serves both lossless
(e.g., RDMA) and lossy (e.g., TCP) traffic. We use SONiC [44],
an open-source network operating system that is the closest we
can get to the modus operandi for buffer management. SONiC
runs on switch ASICs from multiple vendors, e.g., Broadcom,
NVIDIA, Cisco and Intel, and has been widely deployed in Mi-
crosoft [11], Alibaba [48], LinkedIn [51] and Tencent. Impor-
tantly, our buffer model aligns with that of NVIDIA Onyx [47].
Hence, we believe our buffer model is representative of a broad
range of scenarios and settings. We next describe the terminol-
ogy and the configurable parts according to the buffer model of
SONiC. We tabulate the important notations we use in Table 1.

Hereafter, we denote lossless by • and lossy by ◦. The
switch uses a memory management unit (MMU) to manage
the packet buffer.

Ingress and Egress Counters (Queues): The MMU main-
tains two types of counters1, ingress denoted by← and egress
denoted by → that serve admission control purposes. We
henceforth refer to these counters as queues. Let Q be the set
of all queues maintained by the MMU. Once a packet arrives at
the switch, the packet is mapped to an ingress queue (s,p)∈

←
Q

based on the source port s and the packet’s priority p2; and
an egress queue (d, p) ∈

→
Q based on the destination port d.

Ingress (egress) admission control acts over ingress (egress)
queues. Each packet is admitted to the buffer if and only if the
corresponding ingress and egress queues pass the ingress and
egress admission controls. An arriving and admitted packet
increases both the corresponding ingress and egress queues,
while a departure packet decreases the queues. A packet is
only buffered once regardless of the number of counters it is
accounted by. Note that once a packet is admitted, it cannot be
pushed out by new packet arrivals. A queue carrying lossless
(lossy) traffic is known as a lossless (lossy) queue. Overall,
the MMU maintains four sets of queues i.e., ingress lossless←•
Q , ingress lossy

←◦
Q , egress lossless

•→
Q and egress lossy

◦→
Q .

Buffer Size and Pools: The packet buffer has a total size of
b. Current datacenter practices define pools that can intuitively
be viewed as the buffer available for certain types of queues.
In other words, the pool is a group of queues. The user can
configure the buffer allocation policy, including the allocation
algorithm, per-queue limit, and total size, for this group of
queues. SONiC defines the following four pools:

• Ingress pool of size
←
b shared by both ingress lossless and

lossy queues, with an occupancy of
←q (t) at time t.

1Not to be confused with ingress and egress pipelines. Throughout this
paper, ingress and egress are merely counters (referred to as queues).

2Most of the switch ASICs support 8 priorities. Operators typically map a
packet to a priority based on its DSCP value.

https://github.com/inet-tub/ns3-datacenter
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Figure 3: Buffer bookkeeping: packets are stored once but
accounted twice; once in the ingress and once at the egress for
admission control purposes.

• PFC headroom pool of size bh used only by ingress
lossless queues upon PFC pause (described next).

• Egress lossless pool of size
•→
b used by egress lossless

queues, with an occupancy of •→q (t) at time t.
• Egress lossy pool of size

◦→
b used by egress lossy queues,

with an occupancy of ◦→q (t) at time t.
Note that pool sizes and occupancy are also counters. A

packet can be counted in multiple pools while being buffered
once (pools may overlap), thus the sum of all pools may
exceed the actual buffer occupancy.

Figure 3 illustrates an example of the buffer bookkeeping.
Packets are physically stored only once, but are accounted
twice. For example, packet 5 is accounted in the ingress queue
(counter) q4 and in the egress queue (counter) qa. In essence,
all packets are accounted in the ingress pool, but packets of
lossless queues are also accounted in the egress lossless pool,
while packets of lossy queues are also accounted in the egress
lossy pool.

Admission Control: Each queue i.e., counter (i,p)∈Q at an
input or output port denoted by i, corresponding to priority p is
associated with a threshold Γ

p
i (t) at time t. The admission con-

trol scheme compares the instantaneous length qi
p(t) of a queue

against its threshold to make buffering decisions. Thresholds
can be intuitively viewed as the maximum size of a queue. Once
the queue hits the threshold, the switch will drop the incoming
packet or send PFC pause frames to throttle the queue build-up.
We emphasize that the switch cannot push out existing packets
in the buffer to make room for the incoming packet.

2.2.1 Journey of a Packet in the Switch MMU

We walk through the various counters that are incremented and
decremented during a packet’s journey in the MMU. Recall
that a packet can travel through the switch if and only if it
satisfies both ingress and egress admission control.

Ingress Admission Control: The admission control in the
ingress is different for lossy and lossless queues since as
TCP (lossy) tolerates packet loss whereas RDMA (lossless)
requires PFC and does not tolerate packet loss. The admission
for ingress lossy queues is straightforward. If the ingress lossy

queue hits the threshold (meaning if the length of the queue
equals or exceeds the corresponding threshold devised by
the buffer-sharing logic), the packet is dropped. Otherwise,
both the ingress lossy queue and ingress pool counters are
incremented upon admission and decremented as the packet
departs to its destination.

In contrast, the admission control for ingress lossless queues
is more complex and designed to achieve zero packet loss.
If the ingress queue hits the threshold, the switch moves the
queue to “paused” state and keeps sending PFC pause frames
to the peer device. Then the arriving packet is admitted, but
it increments the PFC headroom pool occupancy rather than
the ingress pool occupancy. In other words, once an ingress
lossless queue uses up its limit in the ingress pool, it starts to
consume (or be accounted in) the PFC headroom pool. As the
buffer drains, an ingress lossless queue under “paused” state
first decrements its headroom pool occupancy, and then its
ingress pool occupancy. When the headroom buffer occupancy
is zero and the ingress pool occupancy is below the threshold,
the switch moves the “paused” ingress lossless queue back
to “resumed” state and sends PFC resume frames.

Egress Admission Control: Egress counters are straight-
forward. Egress queue length and pool occupancy based on
the class of packet (lossy or lossless) are incremented upon
admission and decremented as the buffer drains. The switch
drops packets if egress queues hit thresholds.

2.2.2 Buffer Management

The MMU of the switch uses a buffer management algorithm
that assigns thresholds to all ingress and egress queues. Dy-
namic Thresholds [15] (DT) is the state-of-the-art buffer man-
agement algorithm widely adopted by ASIC vendors [37, 45].

In a nutshell, DT calculates dynamic thresholds for each
queue (i,p) ∈ Q as the product of a configurable parameter
αi

p and the remaining buffer space in the corresponding pool.
We refer the reader to Table 1 for the list of notations we use.
In the following, we summarize DT’s buffer management for
lossless and lossy traffic, at ingress and egress queues.

Γ
i
p(t)=α

i
p×


←
b−
←q (t) Ingress Lossless: (i,p)∈

←•
Q

←
b−
←q (t) Ingress Lossy: (i,p)∈

←◦
Q

•→
b −

•→q (t) Egress Lossless: (i,p)∈
•→
Q

◦→
b −

◦→q (t) Egress Lossy: (i,p)∈
◦→
Q

(1)
In addition to the above threshold checks, the switch also

uses the physical packet buffer limit as the last defense.
Having a better understanding of how the buffer works, we

can go back to the operator’s goal to prioritize lossless over
lossy and explain how they would in practice configure the
buffer. To avoid lossless packet drops, they would want to
control lossless traffic only at the ingress with PFC thresholds.
To make the problem easier to debug and more intuitive, they
would want to control lossy traffic only at the egress with drop



Notation Description
← Ingress
→ Egress
• Lossless
◦ Lossy
∗ Shared
b Total buffer size
bh Headroom pool size
Q Set of all queues
←•
Q Set of ingress lossless queues

(i,p) Queue at input or output port i, priority p
qp

i (t) Length of queue (i,p) at time t
Γ

p
i (t) Threshold of queue (i,p) at time t
◦→q (t) Occupancy of egress lossy pool

α
p
i Parameter for queue (i,p)
←•
α α for ingress lossless queues (for simplicity)
◦→
α α for egress lossy queues (for simplicity)
←•n # ingress lossless queues using buffer
◦→n # egress lossy queues using buffer

Table 1: Important notations used in this paper.

thresholds. To this end, they would use the following buffer
configuration heuristics. For simplicity, in this section, we set
αi

p to←•α ,←◦α , •→α and ◦→α for all ingress lossless, ingress lossy,
egress lossless and egress lossy queues respectively.

Heuristic 1. To avoid packet drops for lossless traffic at
ingress, the sum of the ingress pool size

←
b and headroom pool

size bh should be equal to (or smaller than) the total size of
the switch buffer b i.e.,

←
b+bh≤b.

Heuristic 2. To bypass egress admission control for lossless
traffic and to allow fully utilizing the buffer space i.e., to avoid
lossless packet drops at egress, we should set egress lossless
pool size

•→
b to total switch buffer size b and use an infinitely

large egress lossless threshold i.e., •→α ≫1.

Heuristic 3. To avoid packet drops for lossy traffic at ingress,
we should set ingress lossy threshold←◦α to an infinitely large
value, and ensure that egress lossy pool size

◦→
b is not larger

than ingress pool size
←
b i.e.,

◦→
b ≤

←
b .

2.3 Root Causes of the Buffer Issues
To systematically analyze the problems, we consider a fluid
flow model with deterministic packet arrivals and analyze the
steady state3 of the buffer, similar to prior works [1, 15]. In the
following, we explain our key findings intuitively. Our model
and complete analysis can be found in Appendix A.

First, based on Heuristic 1, lossless traffic is allowed to
use the entire buffer at the ingress i.e.,

←
b +bh ≤ b. Further,

lossless traffic is allowed to use the entire buffer at the egress
i.e.,

•→
b =b based on Heuristic 2. Still, we end up with Issue 1.

3A steady state is achieved when the queue lengths stabilize i.e., packet
arrival rate equals departure rate.

Root cause of Issue 1: To shed light on this issue, we ana-
lytically derive the aggregate buffer allocation←•q to lossless
queues and the aggregate buffer allocation ◦→q to lossy queues.
Let ←•n and ◦→n denote the number of ingress lossless queues
and egress lossy queues using the buffer respectively. We have:

←•q =
←
b ·
( ←•n ·←•α

1+←•n ·←•α

)
−◦→b ·

( ←•n ·←•α

1+←•n ·←•α
·
◦→n ·◦→α

1+◦→n ·◦→α

)
(2)

◦→q =
◦→n ·◦→α ·◦→b
1+◦→n ·◦→α

(3)

Figure 4 illustrates the ratio of buffer allocated to lossy
and lossless. Notice that for a sufficiently large number of
lossless queues←•n and lossy queues ◦→n , the buffer allocation
to lossless queues tends to

←
b −

◦→
b (based on Equation 2)

and the allocation for lossy queues tends to
◦→
b (based on

Equation 3). Unless
←
b ≥ 2 × ◦→b , we end up with Issue 1,

caused by the buffer pools. Specifically, although lossless
queues are allowed to fully utilize the buffer, the egress lossy
pool effectively overlaps with both ingress pool and egress
lossless pools as shown in Figure 1, leading to Issue 1.

■ Takeaway. The buffer is pre-fragmented in a way that makes
enforcing high-level objectives through low-level configu-
ration impossible. Current buffer sharing practices cannot
prevent Issue 1 unless the ingress pool is at least twice as large
as the egress lossy pool i.e., the buffer is statically partitioned.

Second, according to Heuristic 2 and Heuristic 3, since
lossless (lossy) bypasses egress (ingress) admission control,
we would expect that lossless and lossy traffic are isolated
in the buffer. While Issue 1 already suggests that lossy traffic
may effectively get more buffer allocation than lossless traffic,
we find yet another issue that lossy and lossless traffic interact
in a surprisingly unfair manner: lossy traffic is effectively
prioritized over lossless traffic (Issue 2) although our expert
heuristics are intended otherwise.
Root cause of Issue 2: Notice that the buffer occupancy of
lossy traffic at the egress equals its occupancy at the ingress
i.e., ◦→q =

←◦q , since every packet is accounted both in the
ingress and egress as shown in Figure 3. As a result, the overall
ingress pool occupancy is the sum of egress lossy occupancy
and the ingress lossless occupancy i.e.,

←q =
◦→q +

←•q . Using
Equations 2 and 3, as well as the above relation, we derive the
steady-state thresholds for ingress lossless (PFC thresholds)
and egress lossy (drop thresholds) based on Equation 1.

Figure 5a shows how PFC thresholds for lossless queues
vary depending on the number of ingress lossless queues using
the buffer and the number of egress lossy queues. Interestingly,
we find that the drop thresholds vary only according to the
number of egress lossy queues (affected by the own buffer
occupancy), but remain unchanged as the number of ingress
lossless queues increases, see Figure 5b. We observe that cur-
rent buffer sharing practices allow buffering lossy packets
mostly independently of lossless traffic, but lossless traffic is
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Figure 5: Contrary to the expectation that lossless and lossy traffic are admitted
independently in the buffer, lossless traffic is throttled due to the buffer occupancy
of lossy, whereas lossy is admitted independent of the presence of lossless i.e.,
seemingly prioritizing lossy over lossless.

suppressed due to lossy traffic i.e., effectively prioritizing lossy
over lossless. Our analysis reveals two root causes of Issue 2: (i)
the egress lossy pool occupancy ◦→q which is used to calculate
egress lossy drop thresholds (see Equation 1) does not account
for lossless traffic whereas (ii) the ingress pool occupancy

←q
which is used to calculate ingress lossless PFC thresholds (see
Equation 1) accounts for both lossless and lossy traffic.

■ Takeaway. Although lossless and lossy traffic are admitted
seemingly independently by ingress and egress, the admission
control for lossless traffic depends on both lossy and lossless
occupancy, whereas the admission control for lossy traffic
depends only on its own occupancy.

It is natural to ask here whether these issues are due to the
underlying buffer management scheme DT [15], and hence
whether recent proposals such as ABM [1] should be able
to avoid them. Although ABM can address isolation across
various traffic priorities, it only works for a buffer-sharing
architecture that supports lossy traffic but not lossless traffic.
While, in theory, one could extend ABM to calculate the
thresholds accordingly (by replacing Equations 1 within
the same buffer architecture with the corresponding pools
described in §2.2), both Issue 1 and Issue 2 would still hold. In-
deed, if ABM operates in the default buffer architecture, it will
(similar to DT) control lossless and lossy independently since
lossless (lossy) bypasses egress (ingress) admission control.
As a result, ABM cannot jointly impose fairness and isolate
lossless and lossy traffic. Importantly, the technique used for
burst absorption in ABM and other recent proposals [8, 25],
i.e., prioritizing burst packets by using a high α parameter for
thresholds, also results in Issue 3.

Root cause of Issue 3: Indeed, several recent works [1, 8, 25]
rely on selectively taking action on burst and non-burst packets

i.e., if the queue length exceeds its threshold, the buffer
management scheme still accepts burst packets selectively by
increasing the thresholds using a higher α parameter value only
for those packets identified as burst. Figure 13 in Appendix A
intuitively summarizes our key points. For example, if a
non-burst (e.g., long flow) packet interleaves burst packets,
the non-burst packet would be dropped since the queue length
exceeds its threshold. However, a key property of PFC is that
once PFC is triggered due to a non-burst packet, it affects all
arriving traffic (including bursts) to the queue due to PAUSE
frames. Selectively accepting packets does not apply for PFC.

■ Takeaway. Optimally prioritizing bursts involves prefer-
entially treating packets belonging to the burst only; this is
possible for lossy but not for lossless traffic where congestion
is signaled at a per-queue granularity.

3 REVERIE

Based on the lessons learned from our analysis in §2, we design
a buffer-sharing scheme REVERIE which prevents harmful
interactions between lossless and lossy traffic (isolation) while
absorbing bursts of both. We first describe the two pillars on
which REVERIE relies: (i) consolidated admission control;
and (ii) a low pass filter. Next, we explain how they fit together
to form REVERIE. Finally, we discuss REVERIE’s properties
and its practicality.

3.1 Single Buffer Pool for Isolation
We argue that the first step towards achieving isolation is to
have full visibility and control over the state of the buffer.
Yet, current buffer-sharing practices maintain independent
views and admissions at the ingress and egress, prohibiting
global visibility and control. To address this, REVERIE
uses a single shared buffer pool as shown in Figure 1, in



addition to a headroom pool dedicated to lossless queues.
Further, REVERIE uses a single admission control that jointly
optimizes the buffer allocation for lossless and lossy queues.
The single shared buffer pool and a single admission control
offer REVERIE a bird’s eye view over the buffer.

Specifically, upon a packet arrival, REVERIE first deter-
mines the packet’s class (lossless or lossy). If the packet
belongs to lossless • class, REVERIE maps the packet to an
ingress lossless queue (s,p)∈

←•
Q , where s is the source port

that received the packet and p is the packet priority. Similarly,
if the packet belongs to the lossy class, REVERIE maps the
packet to an egress lossy queue (d,p)∈

◦→
Q , where d is the port

to which the packet is destined and p is the packet priority.
As illustrated in Figure 6, REVERIE maintains only two

types of queues (counters) i.e., ingress lossless and egress
lossy, as opposed to the four types of queues in SONiC (see
Figure 3). Further, REVERIE accounts for each packet only
once as opposed to twice (once at ingress and once at egress)
in the current buffer-sharing practices. In essence, all the
lossless and lossy queues are mapped to the same (single)
shared buffer pool as shown in Figure 1.

Using a single shared buffer pool and a single admission
control leaves REVERIE solely responsible for fairly allocating
the buffer across all queues to ensure isolation. In §3.3, we
show how REVERIE’s allocation achieves isolation across
lossless and lossy.

3.2 Low-Pass Filter for Burst Absorption
A vast majority of prior works, including DT [15], FAB [8],
ABM [1], TDT [25], calculate a threshold and compare it
against instantaneous queue lengths in order to take buffer
decisions. To improve burst absorption, prior works [1,8,25] se-
lectively prioritize certain packets (e.g., short flows) by assign-
ing them a larger threshold compared to the default threshold
for other packets (e.g., long flows). However, as we explained
in §2.3, selective packet prioritization cannot improve burst
absorption for lossless traffic leading to Issue 3. It is essential
to identify a queue experiencing a burst and prioritize all in-
coming traffic to the queue under bursty scenarios. A natural
indicator for a queue that is experiencing a burst is its queue gra-
dient, i.e., the rate of change of queue length. Thus, one could
increase thresholds proportionally to the queue gradient. While
intuitive, queue gradient is hard to monitor/calculate in practice
in hardware, especially at microsecond granularity. To address
this, we show an equivalence between an admission control
based on queue gradient and an admission control based on
first-order low-pass filtered queue lengths (Property 1). Our full
proof can be found in Appendix B. Leveraging this equivalence,
REVERIE uses an exponential weighted moving average which
is an easy-to-implement first-order low-pass filter. In essence,
REVERIE compares average queue lengths against a threshold,
unlike prior works that use instantaneous queue lengths.

Property 1 (Relationship of low pass filter and gradient). Let
Ψ be an admission control scheme that compares first order

Lossless Queues
(Only at ingress)

Lossy Queues 
(Only at egress)

q1

q2

q3

q4

qa

qb

qc

qd

Shared Pool= 6 

Figure 6: REVERIE’s buffer bookkeeping: packets are stored
once and accounted for once; lossless and lossy packets are
accounted in the ingress and egress queues, respectively. All
the queues are managed by a single admission control scheme.

low pass filtered queue length q̂(t − δt) against a threshold
Γ(t) i.e., q̂(t−δt)≤ Γ(t), where t−δt denotes the previous
time instance. Let Φ be an admission control that compares
instantaneous queue length q(t) against Ψ’s threshold Γ(t)
incremented proportionally based on the average queue
gradient dq̂(t)

dt i.e., q(t)≤Γ(t)+K · dq̂(t)
dt ; where K is a constant

and dq̂
dt is the gradient. Then, there exists a constant K such

that Ψ and Φ are equivalent.

3.3 The Workings of REVERIE

In this subsection, we put all the pieces together, to describe
REVERIE’s buffer-sharing architecture, admission control,
and the underlying buffer management scheme.
Buffer sharing architecture: Let b be the total buffer space.
REVERIE dedicates a headroom pool of size bh for lossless
traffic similar to the existing architecture. The rest of the
shared buffer space denoted by

∗
b = b−bh is shared by both

lossless and lossy traffic dynamically. A lossless packet is
mapped to a lossless queue (s,p) ∈

←•
Q and a lossy packet is

mapped to a lossy queue (d,p)∈
◦→
Q based on the source port s,

destination port d and the packet priority p. In total, REVERIE

maintains a set
∗

Q of queues, where
∗

Q =
←•
Q ∪

◦→
Q consists of

only two types of queues i.e., lossless and lossy instead of the
four types maintained by SONiC.
Admission control: REVERIE calculates a threshold Γi

p(t) for
each queue (i,p) and compares it against the moving averaged
queue length q̂i

p(t) of the corresponding queue at time t i.e.,

q̂i
p(t)≤Γ

i
p(t) (4)

where q̂i
p(t) is given by,

q̂i
p(t)=

Capture steady congestion︷ ︸︸ ︷
γ·q̂i

p(t−δt) +

Capture transient bursts︷ ︸︸ ︷
(1−γ)·qi

p(t) (5)

Here γ is a constant and a parameter for REVERIE, qi
p(t) is the

instantaneous queue length, and t−δt denotes the previous
time instance. γ can be intuitively viewed as the degree of burst
absorption. Since REVERIE’s admission control (Equation 4)
compares the threshold of a queue against its average queue



length (Equation 5), a higher γ masks the impact of transient
bursts on the average queue lengths and, as a result, allows the
admission control to absorb more transient bursts as illustrated
in Figure 2. However, setting γ arbitrarily close to 1 makes
admission control more oblivious to persistent or steady-state
congestion. We leave it for future work to study the optimal
parameter setting.

Any arriving packet that satisfies Equation 4 is buffered in
the shared pool. If a lossy packet does not satisfy the above
condition, the packet is simply dropped. However, if a lossless
packet does not satisfy the above condition, the queue enters
pause state (sends a PFC pause frame to its peer) and all the
subsequent packets to the queue are buffered in the dedicated
headroom irrespective of Equation 4. The queue sends out
a PFC resume frame once the queue’s headroom drains out
completely and when Equation 4 is satisfied again.
Buffer management: The threshold Γi

p(t) for each queue
(i,p)∈

∗
Q calculated by REVERIE at time t, depends on (i) a con-

figurable parameter αp for each priority, (ii) the number of con-
gested queues np of priority p and the remaining shared buffer
space

∗
b−∗q(t) where

∗
b is the size of shared buffer pool and ∗q(t)

is the pool occupancy at time t. The threshold Γi
p(t) is given by,

Γ
i
p(t)=αp ·

1
np
·(∗b−∗q(t)) ∀(i,p)∈

∗
Q (6)

The thresholds used by REVERIE are similar to ABM [1]
but we drop the dequeue rate factor due to the complexity
of measuring it, especially when queues pause in the case of
lossless traffic. However, our design does not prevent using the
dequeue rate factor as well if it can be systematically measured.

3.4 The Properties of REVERIE

REVERIE inherits the steady-state isolation properties of
ABM’s thresholds for lossy as well as lossless traffic. Unlike
ABM, though, which can only achieve isolation across
priorities within lossy traffic, REVERIE can also achieve
isolation across lossless and lossy priorities. In the following,
for simplicity, we consider that all lossless and lossy queues
are configured with the parameter value •α and ◦α respectively.
Our full proofs can be found in Appendix B. Next, we discuss
our results intuitively.

In Theorem 1, we state the ratio in which buffer is allocated
in the steady-state across lossless and lossy traffic in aggregate
when both traffic classes compete for buffer. The ratio turns
out to be the ratio of the configured α parameter. This makes
it very intuitive and flexible to configure the buffer required
for each traffic class, rather than the complicated pool sizes
in the current practices.

Theorem 1 (Isolation). Under contention, REVERIE allocates
buffer across lossless and lossy in the ratio of the corresponding
α parameters i.e.,

•q
◦q
=
•
α
◦
α

where •q and ◦q denote the steady-state shared buffer occupancy
of lossless and lossy traffic respectively; •α and ◦α denote the
parameter values for lossless and lossy queues respectively.

Based on Theorem 1, it is sufficient that the α parameter for
lossless is greater than lossy in order to prevent issue 1. Further,
since the thresholds are calculated with a bird’s eye view of
the buffer, the thresholds for both lossless and lossy depend on
the overall buffer occupancy (see Equation 6). Hence, given
that the α parameter for lossless is greater than lossy, REVERIE
assigns a larger threshold for lossless compared to lossy i.e., pri-
oritizing lossless over lossy. Essentially, REVERIE solves both
issue 1 and issue 2 without statically partitioning the buffer.

When a single traffic class utilizes the buffer, REVERIE al-
locates α

1+α
fraction of the shared buffer, where α corresponds

to the parameter value of the traffic class using the buffer.
Notice that REVERIE allocates more buffer to a traffic class
when it is not competing with the other class e.g., REVERIE

allocates
•
α·∗b
1+•α amount of buffer when only lossless traffic

is using the buffer compared to
•
α·∗b

1+•α+◦α amount of buffer
allocation for lossless when both traffic classes are competing
for buffer space. Intuitively, REVERIE dynamically adapts
the buffer allocation to lossless and lossy according to their
load as opposed to the static pool sizes in the current practices.
However, REVERIE keeps some buffer idle.

Theorem 2 (Buffer waste). REVERIE keeps idle a certain
amount of buffer in the steady-state denoted by bw given by,

∗
b

1+ •α+ ◦α
≤bw≤

∗
b

1+min( •α, ◦α)

where
∗
b is the shared buffer pool size; •α and ◦α are the parameter

values for lossless and lossy queues correspondingly.

Although REVERIE keeps a tiny buffer portion idle in the
steady state, this helps in absorbing transient bursts. REVERIE
effectively absorbs transient bursts even for lossless traffic
since it compares average queue lengths against the threshold.
Indeed, upon burst arrival, the average queue length hits
the threshold slower than the instantaneous queue length,
essentially absorbing transient bursts even for lossless queues.
As a result, REVERIE finally solves issue 3.

3.5 Implementation Feasibility
A prototype implementation of REVERIE is beyond the scope
of this paper and is part of our future work. Our discussions
with NVIDIA already confirm that an approximation of the
shared buffer pool model of REVERIE is feasible in hardware.
In fact, we are currently discussing with a major Ethernet
switch vendor on implementing REVERIE using their latest
ASIC with programmable admission control features.

REVERIE is within reach of today’s hardware because
it does not significantly depart from commodity ASICs’
buffer-sharing architecture and admission control mechanisms.
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Figure 7: Buffer sharing under incast RDMA (DCQCN) workload and across various loads of websearch TCP (Cubic) workload.
ABM achieves better performance for TCP but heavily penalizes RDMA, while REVERIE balances the two.

REVERIE introduces two primary changes. First, REVERIE
uses a simpler buffer-sharing architecture with a single shared
pool (excluding PFC headroom) and two types of queues.
We have confirmed with NVIDIA that this architecture is
supported by existing NVIDIA Ethernet switch ASICs4.
Second, REVERIE uses a first-order low pass filter to obtain the
moving averaged queue lengths. We believe this is practical
as moving averages are used by common AQM like RED [20].
As previous works (e.g., ABM [1], [42] ) have noted, various
queue-length statistics are available and already used by the na-
tive buffer management of the MMU (although switch vendors
do not open up the API for operators to do so on their own).

4 Evaluation
We evaluate the performance of REVERIE and compare it
against the state-of-the-art approaches in the datacenter. Our
evaluation aims to answer four main questions:
(Q1) Can REVERIE protect RDMA from TCP?
We find that REVERIE shields the performance of RDMA
from TCP under various loads. At increased loads, REVERIE
reduces the number of PFC pauses by 60% on average
compared to DT and by 71.2% compared to ABM, with
DCQCN as the transport protocol. When using advanced
congestion control for RDMA, REVERIE reduces the number
of PFC pauses by up to 100% compared to ABM.
(Q2) Can REVERIE improve burst absorption of any class?
We show that REVERIE significantly improves the burst
absorption for RDMA and for TCP. With background TCP
traffic (websearch), REVERIE improves the incast perfor-
mance of RDMA by up to 33.3% compared to DT and by
50.4% compared to ABM. Under background RDMA traffic
REVERIE improves the incast performance of TCP by up to
46.8% compared to DT and by up to 2.1% compared to ABM.
(Q3) Does REVERIE penalize TCP?
REVERIE does not penalize TCP. We find that REVERIE also
improves the 99-percentile flow completion times (FCT) for

4To implement this buffer-sharing architecture, we just need to map both
egress lossy queues and egress lossless queues to a single egress buffer pool,
and use an infinitely large egress lossless threshold.

short flows of TCP by 42.7% on average across various loads
compared to DT. On this front, REVERIE is on par with ABM.
(Q4) How sensitive is REVERIE to its parameters?
We find an interesting characteristic of the parameter γ in
REVERIE: increasing γ arbitrarily close to 1 dramatically
reduces the number of PFC pauses, and improves the FCT
for incast flows. However, beyond a certain value of γ, the
infrequent PFC pauses negatively affect FCT. Finding the
optimal γ value for a given switch remains an open question.

4.1 Setup
Our evaluation is based on network simulator NS3 [36].
Topology: We consider a leaf-spine datacenter topology
with 256 hosts organized into 4 spines and 16 leaves with
25Gbps links; link delay to 2µs (thus 17.28µs base RTT and
54KB bandwidth-delay product) and an oversubscription
of 4, similarly to previous work [1, 2, 41]. All switches have
5.12KB buffer-per-port-per-Gbps similar to Broadcom Tom-
ahawk [14]5. All server NICs and switches are PFC enabled.
Traffic mix: We launch two types of workloads in our
evaluation: (i) background and (ii) incast workloads. First,
we generate background traffic across 20%-80% loads using
websearch [5] flow size distribution, which is based on
real-world datacenter measurements. Second, similar to prior
works [1,2,4], we generate incast traffic using a synthetic work-
load that simulates the query-response behavior of a distributed
file system. Specifically, each server in our topology sends out
requests (queries) to all servers connected to a different leaf
switch, chosen uniformly at random. These servers respond
by sending a fraction of the file. We generate requests from
each server based on a poisson process and we set the average
request rate to 2 per second. We vary the file size (referred
to as burst size). We use DCQCN [53] and PowerTCP [2] for
RDMA congestion control; and Cubic [23] for TCP.
Baselines & metrics: We compare REVERIE with the
SONiC [44] buffer model which is the state-of-the-art buffer
sharing architecture widely deployed in today’s datacenters.

5While Tomahawk splits the buffer across 4 MMUs, for simplicity, we
assume a single MMU manages the entire buffer.
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Figure 8: Buffer sharing under websearch TCP (Cubic) 80% load and across various burst sizes of incast RDMA (DCQCN)
workload. As the burst size increases, the inability of DT and ABM to absorb RDMA bursts becomes more.

SONiC uses Dynamic Thresholds (DT) [15] as the buffer
management scheme. The vast majority of the schemes in
the literature are tailored for loss-tolerant traffic; thus it is
unclear how those schemes can be evaluated in a fair manner
for lossless traffic. To address this, we extend ABM [1] to
support lossless traffic within the SONiC buffer model (after
discussing with the authors) by accounting for the drain rate as
well as the number of saturated queues in the ingress, and use
it as a baseline. We report the following metrics: (i) number
of PFC pauses triggered, (ii) average FCT slowdown for incast
traffic, (iii) 99-percentile FCT slowdown for short flows of
background traffic (iv) 99-percentile buffer occupancy of
RDMA and (v) 99-percentile buffer occupancy of TCP, as a
percentage of the total shared buffer.

Switch buffer configuration: We set the headroom pool
size based on the NIC bandwidth and link delay, according
to [49]. The remaining buffer is configured as ingress pool
size. We set the egress lossless pool to the total switch buffer
size and the egress lossy pool to 80% of the ingress pool size.
For REVERIE, the headroom pool configuration is the same as
stated earlier and the remaining buffer is configured as shared
pool size. We set α= 1 for all the schemes and set γ= 0.999
for REVERIE. We configure DCQCN according to [31], which
is based on industry experience, and PowerTCP according
to [2]. We set TCP minRTO to 1ms.

4.2 Results
REVERIE significantly reduces PFC pause rate: We
generate TCP traffic using websearch workload and RDMA
traffic using the incast workload in Figure 7 and Figure 8.
RDMA uses DCQCN for congestion control. Across various
loads of TCP and a burst size of 2MB for RDMA traffic, we
observe from Figure 7a that REVERIE reduces the number of
PFC pauses by 60% on average compared to DT and by 71.2%
on average compared to ABM. Specifically, even at 20% TCP
load, REVERIE reduces the number of PFC pauses by 58.9%
compared to DT and by 87.9% compared to ABM. Further,
across various burst sizes of RDMA with 80% TCP load,
REVERIE reduces the number of PFC pauses by 61.8% on

average compared to DT and by 57.4% on average compared
to ABM, as shown in Figure 8a. In Figure 11 and Figure 12,
we generate RDMA traffic using websearch workload and
TCP traffic using the incast workload. We use PowerTCP as
the congestion control for RDMA. From Figure 11a showing
various RDMA loads at 1.5MB TCP burst size, and Figure 12a
showing various TCP bursts at 80% RDMA load, we observe
that REVERIE significantly reduces the PFC pauses by 100%
compared to ABM, while REVERIE and DT perform similarly
in this case. This confirms our observations in §2 on SONiC
that lossy severely interacts with lossless traffic even though
they are controlled independently by ingress and egress.
REVERIE drastically reduces TCP’s interference with RDMA.

REVERIE improves burst absorption for RDMA & TCP:
Figure 7b, shows that across various TCP loads, REVERIE
significantly reduces the average FCT for incast flows by
18.5% on average compared to DT and by 18.2% on average
compared to ABM. At 80% TCP load, across various RDMA
burst sizes, Figure 8b shows that REVERIE improves the
average FCT for incast flows by 10% on average compared to
DT and by 17% compared to ABM. This shows that REVERIE
improves the overall burst absorption for RDMA. Although
REVERIE’s thresholds are similar to ABM’s, REVERIE
achieves better performance for lossless traffic due to its
LPF-based admission control which favors transient bursts.

Across various loads of RDMA and 1.5MB TCP burst size,
in Figure 11b, we see that REVERIE significantly reduces the
average FCT for incast flows by 33.7% on average compared
to DT and by 1.08% compared to ABM. From Figure 12b,
across various TCP burst sizes, we observe that REVERIE
reduces the average FCT for incast flows of TCP by up to 30%
for large bursts compared to DT while REVERIE performs
similarly to ABM. Overall, REVERIE’s LPF-based admission
control scheme improves burst absorption for RDMA as well
as for TCP.

REVERIE protects RDMA from TCP in the buffer: Given
the better burst absorption of REVERIE and significantly fewer
PFC pauses even in the presence of TCP as seen in Figures 7-
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Figure 9: Buffer sharing under websearch TCP (Cubic) 80% load and incast RDMA (DCQCN) workload across various egress
lossy pool sizes (% of ingress pool size) available for lossy TCP traffic. By changing the size of lossy pool, ABM and DT can only
decide which traffic class will be prioritized against the other.
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Figure 10: As the parameter γ value approaches 1, REVERIE
becomes oblivious to the changes in the buffer and drastically
reduces the number of PFC pauses. However, beyond a certain
value, the lack of PFC pauses negatively impacts FCTs.

12, already shows that REVERIE successfully prevents TCP’s
interactions with RDMA. Moreover, from Figure 7d, we see
that DT reduces its buffer allocation significantly for lossless
traffic as the load of TCP increases, while increasing buffer
allocation for TCP (Figure 7e). However, REVERIE gives
lossless traffic its fair share in the buffer even at high TCP loads.
Further, as the burst size of RDMA increases, from Figure 8d,
we see that REVERIE opportunistically allocates increasingly
buffer to RDMA whereas DT and ABM fail to allocate more
buffers to RDMA, thus significantly increasing PFC pauses
(Figure 8a). REVERIE’s isolation properties allow RDMA to
get its fair share of buffer even at high TCP loads. Reducing
TCP’s buffer share (egress lossy pool size) for DT and ABM
improves the number of PFC pauses (Figure 9a) and flow
completion times for RDMA incast flows, but TCP long flows
suffer (Figure 9c) due to the reduced overall buffer available for
TCP (Figure 9e). In contrast, REVERIE dynamically utilizes
the entire shared buffer space in a fair manner and protects
RDMA from TCP in the buffer as seen in Figures 7, 8, 9.

With advanced congestion control for RDMA (PowerTCP)
under websearch workload, across various RDMA loads and
TCP incasts (Figures 11d, 12d), REVERIE and DT as well as
ABM occupy a significantly small portion of buffer and achieve
similar FCTs for short flows of RDMA (Figures 11c, 12c).
However, REVERIE triggers much lower PFC pauses than
ABM as we observe in Figures 11a, 12a even with PowerTCP.

REVERIE also protects TCP in the buffer: Under websearch
workload for TCP and RDMA incasts, from Figures 7c and 8c,

we see that REVERIE and ABM achieve similar FCTs for
short flows of TCP whereas DT severely penalizes TCP. DT
penalizes TCP short flows even though it allocates more buffer
to TCP compared to REVERIE as seen in Figures 7c, 8e. This
excessive buffering results in increased queueing delays for
DT. Further, under incast workload for TCP and websearch
workload for RDMA, while REVERIE and ABM achieve
similar FCTs for incast TCP flows, DT suffers from poor FCTs
for TCP incasts (Figures 11b, 12b). Unlike DT, REVERIE and
ABM protect TCP in the buffer.

Impact of LPF filtering: As discussed in §3.3, the parameter
γ balances the capturing of steady-state (long-term) congestion
against transient-state (short-term) congestion is captured by
the admission control scheme. To better understand the impact
of γ, we generate RDMA traffic using websearch workload
at 80% load along with incast workload at 2MB burst size. In
Figure 10, we show the number of PFC pauses and the average
FCT for incast flows as a function of γ value. We observe that
PFC pauses dramatically reduce as γ increases. Average FCT
for incast flows decreases as γ increases until γ= 0.999. Yet,
for γ = 0.999999 (close to 1), the average FCT increases by
9%. Naturally, a small γ value makes the admission control
scheme highly sensitive to instantaneous queue lengths, which
triggers PFC more frequently upon transient bursts. Similarly,
a high γ value makes the admission control scheme insensitive
to queue length and PFC is not triggered even when the queues
steadily grow. In such cases, the excessive buffer occupied by
steady-state traffic leaves less buffer to absorb transient bursts.
Finding an optimal γ value is not required for reaping the
benefits of REVERIE, as long as we avoid the extreme values
that are easy to distinguish.

5 Related Work

Our work relates to (i) buffer management; and (ii) RDMA.
Multiple works focus on sharing the on-chip buffer across

queues of the same switch [1, 7–10, 13, 15, 18, 19, 29] and
on sharing bandwidth across queues of the same port e.g.,
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Figure 11: Buffer sharing under incast TCP (with Cubic) and across various loads of websearch RDMA (with PowerTCP). ABM
can only deal with low loads of RDMA traffic as it cannot distinguish or priortize it.
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Figure 12: Buffer sharing under websearch RDMA (with PowerTCP) at 80% load varying burst sizes of incast TCP (with Cubic).
As TCP traffic increases, ABM further penalizes RDMA to protect TCP traffic.

AQM and scheduling [6, 20, 21, 35, 39]. In fact, there are also
proposals to combine the two [16]. Further, augementing
buffer sharing algorithms with machine-learned predictions
has been shown to improve performance [3]. While useful,
such works are designed exclusively for lossy traffic (i.e., TCP
variants) and often with loss-based congestion control in mind.
As a result, they are orthogonal to this work.

Many cloud providers have deployed RDMA over Ethernet
to accelerate storage [11, 22], HPC, and ML [38]. To the best
of our knowledge, all of these deployments [11, 22, 38] rely
on PFC. Other research efforts related to RDMA include
congestion control [2, 31, 53], efficient loss recovery [34],
deadlock prevention [24], high performance RDMA appli-
cations [17, 26, 27, 30], testing [28], security [40, 46, 50] and
performance isolation [52]. Among them, the most related
topic is congestion control, but also in those works the buffer
is only used by RDMA traffic [31, 53] (i.e., no TCP).

Coexistence of RDMA and TCP is an emerging new
problem. Several recent parallel works proposed alternative
solutions e.g., dynamically sharing the headroom buffer
space under extremely shallow buffers [43]; using average
occupancy time of packets to allocate buffers for each
queue [32]. Yet, unlike REVERIE, these works do not address
the fundamental issues that arise due to the static buffer pool
configurations in today’s switches. We leave it for future work

to evaluate how the emerging alternative approaches fare
against REVERIE’s allocation.

6 Conclusion
This paper addresses the tension in buffer sharing between
lossy traffic (e.g., TCP variants) and lossless traffic (e.g.,
RDMA) on datacenter switches. To this end, we first uncover,
and explain analytically three particular unexpected buffer
behaviors (issues) that today’s buffer-sharing scheme can
cause. Next, we find the root cause of these inefficiencies,
and design a new buffer sharing scheme, REVERIE that can
provide both isolation and high burst absorption to lossy and
lossless traffic. In future work, we will try to closely work with
a switch ASIC vendor to incorporate REVERIE into an ASIC’s
programmable admission control features.
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A Analysis of SONiC
In this section, we formally model the buffer sharing scheme
of SONiC [44] as well as REVERIE and analyze their buffer
allocation properties. Our analysis aims to understand the
steady-state behavior of the buffer. We build upon the model
and the notation introduced in §2. Specifically, we analyze a
shared buffer switch architecture whose buffer sharing scheme
supports both lossless traffic and lossy traffic. Our analysis
is based on a fluid flow model with deterministic packet arrival
rates, extending [1, 15].

We begin by analyzing the drop thresholds for lossy traffic.
As we study the steady-state of the buffer, we drop the time
variables in our notation for ease of presentation. Since every
packet is accounted both in the ingress and egress, the follow-
ing relations hold at all times: (i) lossy traffic buffer occupancy
◦→q at egress equals its occupancy ←◦q at ingress; (ii) lossless
traffic buffer occupancy at egress •→q equals its occupancy at the
ingress pool←•q plus headroom occupancy qh; (iii) ingress pool
occupancy

←q equals the sum of occupancy of lossless←•q (with-
out PFC headroom) and lossy←◦q traffic occupancy at ingress.

◦→q =
←◦q (7)

•→q =
←•q +qh (8)

←q =
←◦q +

←•q (9)

Based on the egress admission control for lossy traffic i.e.,
Dynamic Thresholds (see Equation 1 in §2), if ◦→n egress lossy

queues are in the steady state, then the total buffer occupancy
is ◦→q =◦→n ·(◦→b −

◦→q ). By rearranging the terms, we obtain the
egress lossy pool occupancy:

◦→q =
◦→n ·◦→α ·◦→b
1+◦→n ·◦→α

(10)

Similarly, based on the ingress admission control for lossless
traffic, if ←•n lossless queues are in the steady state, then the
total buffer occupancy is←•q =←•n ·←•α ·(←•b −

←•q ). Substituting
in Equation 9 and using Equation 10 for ◦→q , we obtain the
following:

←q =
←
b ·
( ←•n ·←•α

1+←•n ·←•α

)
+
◦→
b ·

(
1

1+←•n ·←•α
·
◦→n ·◦→α

1+◦→n ·◦→α

)
Finally, substituting

←q from above in←•q =←•n ·←•α ·(←b−
←q ), we

obtain←•q , the buffer occupied by lossless traffic at the ingress
pool.

←•q =
←
b ·
( ←•n ·←•α

1+←•n ·←•α

)
−◦→b ·

( ←•n ·←•α

1+←•n ·←•α
·
◦→n ·◦→α

1+◦→n ·◦→α

)
(11)

Overall, our steady-state analysis gives the amount of buffer
occupied by lossless traffic (Equation 11) and lossy traffic
(Equation 10) based on the buffer configuration and the state
of the buffer i.e., the number of active queues of each class.
Following the admission control of Dynamic Thresholds from
Equation 1, we could compute the drop thresholds for egress
lossy and PFC thresholds for ingress lossless by using each
pool occupancy from above.

✔✔✘

Default packets Burst or high priority packets

Accept
Accept

Drop

Threshold for priority packets

Threshold for default packets

PFC Pause
(Headroom)

✔ Accept

✔Headroom
✔Headroom

✘Paused

✔

Lossy Queue Lossless Queue

Figure 13: Per-packet prioritization cannot increase burst ab-
sorption for lossless traffic since PFC works at per-queue gran-
ularity.

B Analysis of REVERIE

In this section, we formally prove the properties of REVERIE
stated in this paper. Before analyzing the steady-state behavior
of REVERIE, we first show the relation between low-pass
filters and gradient which builds the intuition for our low-pass
filter-based approach.
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Property 1 (Relationship of low pass filter and gradient). Let
Ψ be an admission control scheme that compares first order
low pass filtered queue length q̂(t − δt) against a threshold
Γ(t) i.e., q̂(t−δt)≤ Γ(t), where t−δt denotes the previous
time instance. Let Φ be an admission control that compares
instantaneous queue length q(t) against Ψ’s threshold Γ(t)
incremented proportionally based on the average queue
gradient dq̂(t)

dt i.e., q(t)≤Γ(t)+K · dq̂(t)
dt ; where K is a constant

and dq̂
dt is the gradient. Then, there exists a constant K such

that Ψ and Φ are equivalent.

Proof. We consider exponentially weighted moving average
for the first order low pass filter in this context. Let q(t) denote
the instantaneous queue length and let q̂(t) denote the average
queue length. We denote the moving average parameter by
ν. The moving average of the instantaneous queue lengths is
then as follows:

q̂(t)=ν·q(t)+(1−ν)·q̂(t−δt)

where δt denotes the previous time when the average was
updated. By rearranging the terms and dividing by δt,

q̂(t)−q̂(t−δt)
δt

=
ν

δt
·(q(t)−q̂(t−δt))

Let K = δ

ν
. Using Euler’s approximation method, we obtain

the following:

K · dq̂(t)
dt

=q(t)−q̂(t−δt) (12)

Using this relation, we now prove that Ψ and Φ admission con-
trol schemes are equivalent. We begin with Ψ which compares
average queue lengths against a threshold Γ(t) at time t.

q̂(t−δt)≤Γ(t)

Using Equation 12, we convert the above inequality as follows:

q(t)−K · dq̂(t)
dt
≤Γ(t)

By rearranging the terms, we obtain the the admission control
scheme Φ. Hence Ψ and Φ are equivalent.

q(t)≤Γ(t)+K · dq̂(t)
dt

Property 1 underlies the design of REVERIE’s admission
control based on LPF. We next prove the steady-state proper-
ties of REVERIE. Notice that by definition, the average queue
length equals instantaneous queue length in steady-state. Due
to this, REVERIE’s steady-state properties are largely inherited
from ABM. REVERIE differs from ABM in that, REVERIE’s
admission control is based on a single shared pool, where as

ABM in the SONiC model would assign thresholds based on
the pool size and occupancies for each priority (within a class).
ABM cannot dynamically allocate buffer across RDMA and
TCP since the pool sizes are fixed in the SONiC buffer model.

We next analyze the buffer allocation ratio for lossless and
lossy.

Theorem 1 (Isolation). Under contention, REVERIE allocates
buffer across lossless and lossy in the ratio of the corresponding
α parameters i.e.,

•q
◦q
=
•
α
◦
α

where •q and ◦q denote the steady-state shared buffer occupancy
of lossless and lossy traffic respectively; •α and ◦α denote the
parameter values for lossless and lossy queues respectively.

Proof. Since under steady-state, average and instanta-
neous converge, we simply use instantaneous values to
prove our claim. Let •n and ◦n be the number of congested
queues of lossless and lossy. REVERIE allocates a total of
•q = •n · •α · 1•n · (

∗
b− ∗q) = •

α ·(∗b− ∗q) to •n lossless and a total of
◦q = ◦n· ◦α· 1◦n · (

∗
b− ∗q) = ◦

α·(∗b− ∗q) to ◦n lossy queues. Since both
lossy and lossless are mapped to the shared pool, we have that
•q+
◦q= ∗q. But substituting the previous relations, we obtain:

∗q=
(
•
α+

◦
α)· ∗b

1+(
•
α+

◦
α)

(13)

•q=
•
α·∗b

1+(
•
α+

◦
α)

(14)

◦q=
◦
α·∗b

1+(
•
α+

◦
α)

(15)

From the above relations, it is easy to see that the ratio
•q◦q =

•
α◦
α

.

Theorem 2 (Buffer waste). REVERIE keeps idle a certain
amount of buffer in the steady-state denoted by bw given by,

∗
b

1+ •α+ ◦α
≤bw≤

∗
b

1+min( •α, ◦α)

where
∗
b is the shared buffer pool size; •α and ◦α are the parameter

values for lossless and lossy queues correspondingly.

Proof. Our proof follows from the proof of Theorem 2. Specif-
ically, for •n lossless queues and ◦n lossy queues, REVERIE
allocates ∗q in aggregate given by Equation 13. The remaining
buffer

∗
b−∗q which is wasted in the steady state is then given by,

bw≥
∗
b−∗q=

∗
b

1+(
•
α+

◦
α)

However, if a traffic class eg., lossless does not use the buffer,
we can derive the remaining shared pool buffer similar to
above. Depending on the smallest α value across all traffic



classes, when such a class uses the buffer alone, then in this
case the buffer waste is given by,

bw≤
∗
b−∗q=

∗
b

1+(min( •α, ◦α))

We believe that REVERIE not only has interesting steady-
state properties but its low pass filter based admission control
find its best benefit under transient state analysis. We plan to
analyze more such properties in the future.
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