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ABSTRACT
For years, congestion control algorithms have been navigating
in the dark, blind to the actual state of the network. They were
limited to the course-grained signals that are visible from the OS
kernel, which are measured locally (e.g., RTT) or hints of imminent
congestion (e.g., packet loss and ECN). As applications and OSs are
becoming ever more distributed, it is only natural that the kernel
have visibility beyond the host, into the network fabric. Network
switches already collect telemetry, but it has been impractical to
export it for the end-host to react.

Although some telemetry-based solutions have been proposed,
they require changes to the end-host, like custom hardware or
new protocols and network stacks. We address the challenges of
efficiency and protocol compatibility, showing that it is possible
and practical to run telemetry-based congestion control algorithms
in the kernel. We designed a framework that uses eBPF to run CCAs
that can execute different control laws by selecting different types of
telemetry. It can be deployed in brownfield environments, without
requiring all switches be telemetry-enabled, or kernel recompilation
at the end-hosts. When our eBPF program is deployed on hosts
without hardware or OS changes, TCP incast workloads experience
less queuing (thus lower latency), faster convergence and better
fairness.
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1 INTRODUCTION
The volume of traffic in datacenters is increasing rapidly over
time [6, 31, 33]. The throughput and latency offered by the un-
derlying architecture and the set of protocols plays a critical role
in the performance of modern cloud-based applications [26]. To
this end, major research efforts over the past decade have been in
two main domains: hardware offloading [2, 3, 20] and advanced
congestion control [1, 18, 25, 26, 28, 42].

On the one hand, offloading computationally heavy tasks to
hardware reduces software overheads but it comes at the cost of
programmability and flexibility of the network stack, requiring
specialized hardware such as RDMA (Remote Direct Memory Ac-
cess) NICs. On the other hand, advanced congestion control offers
immense benefits in-terms of throughput and latency, but it comes
at the cost of bandwidth and computational overheads [12, 27].
These tradeoffs are clearly visible in today’s datacenters, which
rely on traditional TCP/IP for storage applications [19, 21]. Even in
large-scale datacenters with RDMA capabilities, traditional TCP/IP
traffic still accounts for up to 30% of the total traffic [5].

In this paper, we lay the groundwork for flexible and low-overhead
telemetry-based congestion control algorithms (CCAs) in datacen-
ter networks. Recent advancements in networking have finally
made this possible and practical. The network data-plane is now
programmable, both at the end-hosts and in the network fabric.
Just the way the kernel network stack can be programmed with
eBPF [16, 23, 37], switches in the fabric can be programmed with
P4 [11, 14]. This opens opportunities for network-host signaling co-
design. Concretely, exporting fine-grained telemetry from switches
to the kernel provides end-host CCAs with rich information — not
only the location, but also the degree of congestion – that can be
used to make critical decisions more precisely and more rapidly.

CCAs base their decisions on the state of the network — or, more
accurately, based on what they believe to be the state of the network.
They learn the state of the network based on signals. Today’s CCAs
generally use signals that are inferred implicitly at the host, or
explicitly from the network. These signals are multi-bit or single-bit
(binary). Round trip time (RTT) is a multi-bit signal measured at the
host, which infers the bottleneck state and intensity of congestion.
Packet drops are a single-bit signal from the network indicating
that congestion was encountered. Explicit Congestion Notification
(ECN) is a single bit sent by the network fabric, indicating whether
a packet passed through a congested link [17]. However, these
signals are insufficient for precisely controlling modern datacenter
traffic [1, 26].

The host-based signals are rich (multi-bit), but delayed. On the
other hand, the network fabric-based signals are poor (single-bit),
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but immediate. We want both: rich multi-bit signals received imme-
diately from the fabric. This third option is now possible, thanks to
advances in networking: In-band Network Telemetry (INT) [38, 39].
Ourmain contribution is to give the Linux network stack a “third
eye”, leveraging INT to see the true state of the fabric (transmission
rate, queuing, latency, etc.), empowering end-host CCAs to make
informed, immediate decisions.

We are not the first to propose using INT for CCAs. Although
there have been proposals for integrating INT [26, 35, 36], they
are impractical. They have high overheads and are not suitable for
brownfield deployments, as they require specialized hardware (e.g.,
RDMA NICs [26]) and significant changes to the host networking
stack [35]. Furthermore, they are not flexible—they are tied to a
specific CCA.

To address these shortcomings, we developed a flexible telemetry-
based CCA framework. It is built on eBPF and TCP in order to be
compatible with existing protocols and networking stacks. The
framework’s flexibility is enabled by an extensible control model
that can integrate various types of network telemetry. To access
telemetry, we use TCP-INT [22, 41], a P4-based telemetry system
that inserts telemetry (measured locally at the switch) into packets
in such a way to minimize data overhead, as well as computational
overheads at the host. In essence, our framework can be used to
implement existing, as well as new advanced CCAs that can react
to the changes in the network quickly and precisely.

To make such a system performant and practical, we faced sev-
eral challenges. First, it must be suitable for brownfield deployments
with different types of network hardware and software stacks. This
requires compatibility with existing protocols (i.e. TCP) and inte-
gration into the host network stack (eBPF). Second, the existing
approach of appending telemetry data to the packet header at ev-
ery hop in the network increases the bandwidth overhead [26, 27].
One of our key observations is that the end-host CCA only needs
information about the most congested hop, and hence information
from every hop is unnecessary. Receiving telemetry from only the
most congested hop reduces bandwidth overhead. Third, the ex-
isting approach of inserting telemetry (called “tagging”) in every
packet introduces computational overhead, as it interferes with
other parts of the host networking stack [12]. This high tagging fre-
quency hurts throughput without bringing any additional benefits
for detecting changes in network conditions; ideally, the tagging
frequency should provide a suitable tradeoff between throughput
and timely telemetry.

Finally, to demonstrate the flexibility and efficiency of our frame-
work, we use it to implement PowerTCP, a recent CCA that orig-
inally used RDMA and NIC offloading [1]. Experiments in our
testbed show that our implementation achieves the desired fairness
and queuing properties of PowerTCP. Furthermore, we evaluate
the overheads and trade-offs of our framework. We discuss several
exciting future directions and suggest some desired features and
functionality from eBPF that would greatly improve the efficiency
and accuracy of advanced CCAs in datacenters.

Overall, our main contributions are:

• A flexible CCA framework that uses telemetry in a novel
control model.
• An exploration and evaluation of the trade-offs that make
such a system practical.

• An eBPF implementation that runs the CCA model, and
kernel patches that have already been accepted in Linux
6.0. Our source code is publicly available online at https:
//github.com/inet-tub/powertcp-linux.

2 BACKGROUND
For decades, the TCP/IP stack has ossified in both end-hosts as
well as the network fabric (e.g., switches and routers). Deploying
new functionality required major changes either in terms of re-
compiling the kernel or changing the hardware altogether. Recent
advancements have enabled the programmability of both end-host
kernels as well as the network fabric. This presents the opportunity
to innovate congestion control algorithms by unlocking the rich
network telemetry that has always been available, but invisible, to
the end-host.

2.1 eBPF for Congestion Control
Congestion control [29] is a fundamental and integral part of TCP.
It ensures that network hosts do not overload the network by trans-
mitting too much data too fast, leading to network congestion,
packet loss and re-transmissions. Congestion control algorithms
(CCAs) typically detect or infer changes in the network state, and
control the sending rate by changing their congestion window
(CWND) — the in-flight, un-acknowledged bytes.

When innovating CCAs, it is difficult to deploy in the wild, be-
cause it is non-trivial to integrate into existing network stacks,
like that in the Linux kernel. CCP [30] proposes a framework for
decoupling the CCA from the OS, making it easier to deploy new
CCAs. However, this is not yet natively supported in the kernel.

Recently, the kernel added support for implementing CCAs in
eBPF, through the STRUCT_OPS program type An eBPF CCA must
satisfy the same interface as from a kernel module, providing the
functions predefined in the tcp_congestion_ops structure1. The
structure defines hooks that are invoked at multiple places in the
control flow of Linux’ network stack. Various events can trigger the
hooks, including TCP state changes, arrival of ACKs, and detection
of packet loss. The most important hook is responsible for updating
the CWND, and optionally control a socket’s pacing rate, after an
ACK was received.

Historically, because CCAs don’t run in the network fabric but at
the hosts, they cannot know the actual state of the network. Instead,
they infer the network state using signals like packet loss [34] or
round-trip time (RTT) [13]. With a more recent signalling mecha-
nism, Explicit Congestion Notification (ECN) [17], switches proba-
bilistically set a bit in the IP header if queue occupancy exceeds a
threshold. This single bit conveys some network state, but it is im-
precise. It does not convey the degree of congestion. The host must
receive many of these packets to calculate the ECN ratio, which
slows down its reaction time.

Ideally, the switch would communicate its instantaneous send
rate and queue occupancy [4]. Not only would this enable the hosts
to detect changes in network conditions immediately, but it would
also inform them how aggressively to react.

1https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/net/
tcp.h?h=v6.1#n1066

https://github.com/inet-tub/powertcp-linux
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2.2 In-band Network Telemetry
Network switches (including non-programmable) typically collect a
wealth of information, including: queue occupancy, transmit coun-
ters, timestamps, etc., This information would be invaluable to the
protocols at the end-hosts, e.g., to control sending rate by the con-
gestion control algorithms. However, this information has been
out of reach for a simple reason: the network was fixed-function.
Switch vendors had to bake-in support for a myriad of protocols
and processing logic. The lack of flexibility fundamentally limits
the ability to export telemetry. The logic to export different types
of telemetry for different types of protocols would have led to a
combinatorial explosion.

With the advent of P4 [11], the network has become programmable.
We can now program network switches, just the way one would
write software. This programmability is what has made In-band
Network Telemetry (INT) possible in early research efforts, without
relying on the manufacturing capacity of major switch vendors.

There are various implementations of INT. For collecting teleme-
try on a packet travelling through the network, the INT spec [39]
describes two modes of operation: (i) Postcards: upon receiving a
packet, each switch sends a new “postcard” packet containing the
telemetry to a collector (a “sink”), without modifying the original
packet. (ii) Embedded: each switch appends its telemetry to the
packet. The last hop receives the original packet, which includes a
telemetry header from each switch along the path. While postcards
may be useful for passive network monitoring, they are impractical
for control. Not only does it have higher overhead—it generates
many postcard packets, one for each hop—but it also presents op-
erational challenges. It requires configuring the switch with the
destination (“sink”) of the postcards. Furthermore, the sink must
correlate all these postcards with the actual data packet. Embed-
ded INT, on the other hand, can deliver telemetry straight to the
receiver in the same packet, which does not require correlation. Em-
bedded INT is better suited for enabling the host to make immediate
decisions.

However, there are still several problems:
• Interoperability: The INT spec prepends a new header
format to the packet. This may break existing network stacks.
• Data overhead: Since the packet contains telemetry from
each switch along the path, the packet size grows with the
number of hops.
• Compute overhead: The switch inserts telemetry (tagging)
in all packets. This causes increased overhead at the receiver,
which must process telemetry for every packet. Furthermore,
the receiver suffers additional compute overhead since it
must parse each switch’s telemetry (delivered by the packet)
to aggregate them (e.g., to find the queue occupancy at the
most congested switch).

Although other schemes have been proposed [7, 9, 35, 36], they
do not address the aforementioned problems. We need an INT
scheme that is inter-operable, efficient and that can be integrated
into the Linux kernel.

2.3 INT-based Congestion Control
The idea of using INT for CCAs is not new. Some designs have
been proposed, but they target different types of networks or do
not address interoperability issues. Further, existing designs require

Sender
Switch

Receiver

1  Insert telemetry

2  Echo telemetry3  Process telemetry

T

TT

Figure 1: Overview of TCP-INT telemetry delivery.

specialized hardware at the end-host [26, 42], where the congestion
control algorithm is runs in hardware, which is inflexible.

HPCC [26] uses network telemetry to update the congestion
window for RDMA over Converged Ethernet (RoCE). Specifically,
HPCCupdates its window size based on in-flight bytes in amultiplicative-
increase and multiplicative-decrease manner (with a constant addi-
tive factor). The recent proposal PowerTCP [1] updates its window
size based on the notion of power: the product of arrival rate and the
amount of in-flight bytes. These protocols rely on INT to compute
in-flight bytes and power. Their header format includes per-hop
telemetry such as queue length, tx bytes, timestamps, etc. Since
telemetry is inserted per-hop, data overhead as well as compute
overhead increases. PINT [7] reduces overhead by aggregating INT
(most congested hop), but it is not integrated into the kernel and
requires protocol changes. Although many recent proposals use
INT, these solutions are impractical as they are not well-integrated
into the kernel. They require specialized network cards or protocols,
and require changes to the network stack or to the application.

Given the recent advancements in programmability of the kernel
as well as the network fabric, we set out with the goal to design a
low overhead INT-powered CCA framework for the Linux kernel.

3 TCP’S THIRD EYE
At a high level, our system design can be divided into two parts: (i)
TCP-INT [22, 41] “sees the network”, delivering network telemetry
to the kernel; and (ii) a CCA model running in eBPF that consumes
the telemetry.

3.1 Seeing with TCP-INT
TCP-INT [22] was recently introduced to address the efficiency
and compatibility problems of the above-mentioned previous INT
solutions. With TCP-INT, switches insert INT into packets and an
eBPF-based program at the end-hosts exports the received INT.
This is a key enabler for us: we can now use the INT exposed by
TCP-INT as inputs to telemetry-powered CCAs.

Figure 1 shows the workflow of INT delivery with TCP-INT.
When switches receive a packet (1), they insert telemetry in the
packet (which we refer to as tagging). Upon receiving a packet,
the receiver extracts the telemetry. The receiver then ‘echos’ the
telemetry back to the receiver (2) by inserting it in the next packet it
sends (usually an ACK). The sender receives the ‘echoed’ telemetry
(3), which shows the sender the state of the links on the data-path
(i.e. its forward sending direction).
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Figure 2: TCP-INT option in TCP header.

In order to maintain compatibility with TCP stacks (switches
and hosts), TCP-INT carries INT data in the TCP header, using a
TCP option [15]. The option format is shown in Figure 2. It contains
telemetry fields that are updated by the switch, including queue
depth, link utilization, and timestamps. As an optimization, the
queue depth and utilization are encoded in the same field, indicating
only one of the two (if there is queuing, the link is implicitly fully
utilized). The echo fields are not touched by the switch; they contain
the telemetry from the data path that is sent back from the receiver.

In order to reduce data and compute overheads, instead of stor-
ing the telemetry per-hop, the telemetry is aggregated. This way,
the host only receives telemetry that it needs, from the most con-
gested link along the path (a switch only tags the packet if its local
congestion is greater than that encountered by the packet so far).
The total size of the option is a mere 12 bytes, which is significantly
smaller than the current approach of appending INT at every-hop.

Typically, INT systems tag all packets, which causes excess com-
putational overhead at the receiver. Not only is the host INT pro-
cessing logic invoked for every packet, but it also causes interference
with the Linux network stack. Specifically, it ‘breaks’ generic receive
offload (GRO) [12], which is responsible for coalescing multiple
MTU-sized packets into a jumbo packet, and passing it up the stack
for TCP processing. GRO only coalesces packets with matching
headers (excluding sequence numbers). Because TCP-INT modifies
the TCP header, each packet has a different header, so GRO will not
coalesce them, but pass them up individually to the TCP stack. This
causes a significant hit to performance, which could be avoided by
tagging less frequently.

To reduce these computational overheads, TCP-INT tags some
packets. The tagratio parameter controls the probabilistic frequency
of tagging packets. E.g., tagratio= 1 tags every packet, while tagra-
tio= 32, in expectation, tags one in every 32 packets. Furthermore,
TCP-INT can do dynamic tagging, instead of using a fixed tagratio.
The sender dynamically adjusts the tagratio, based on the sending
rate. It finds the lowest frequency (to not hurt throughput) while
ensuring timely delivery of INT.

In this work, we always use a static tagratio. We leave it to future
work to extend our CCA implementation to dynamically change
the tagratio. We evaluate the impact of the tagratio on throughput
(see section 5), and provide initial insights on how it can be tuned.

3.2 Control Law Framework
We develop a control law framework that unites INT and conges-
tion control in an eBPF program running in the Linux kernel. Our
control law framework supports implementing CCAs within the
generalization discussed in [1].

Our eBPF program implements a class of congestion control
algorithms that update the window size based on multiplicative

increase and multiplicative decrease (MIMD) with an additive in-
crease factor. Specifically, we implement the generalized control
law framework presented in [1]. It works as follows:

𝑤𝑖 (𝑡 + 𝛿) ← 𝛾 ·
(
𝑤𝑖 (𝑡) ·

𝑒

𝑓 (𝑡) + 𝛽𝑖
)
+ (1 − 𝛾) ·𝑤𝑖 (𝑡)

where𝑤𝑖 (𝑡) denotes the congestion window size at time 𝑡 , 𝛽𝑖 is a
parameter which denotes the additive increase, 𝛾 is a parameter
which denotes the smoothing factor. Here, 𝑒 and 𝑓 (𝑡) act as MIMD.
𝑒 is the desired equilibrium which is set at initialization time and
𝑓 (𝑡) is the feedback value measured and calculated by the algorithm.
Various algorithms can be captured by our control law framework
based on the choice of 𝑒 and 𝑓 (𝑡) as described in [1].

4 IMPLEMENTATION
We implemented our CCA model as an eBPF program that uses
telemetry delivered by TCP-INT (see section 3) runningwith Tofino [14]
P4 [11] switches. For the control model, we chose power as the in-
put (i.e. 𝑓 (𝑡)) to embody the PowerTCP [1] CCA. In the process, we
identified few shortcomings of eBPF, resolved them and submitted
patches which have since been merged upstream.

4.1 eBPF Program
At a high-level, our eBPF program performs three main tasks: (i)
extract INT from received packets; (ii) calculate necessary inputs for
the specific control law (i.e. power for PowerTCP); and (iii) finally
execute the control model and update the congestion window and
pacing rate.

We use PowerTCP in the model running in our eBPF program.
For PowerTCP, 𝑓 (𝑡) is based on the notion of power, i.e. set to
(𝑞(𝑡) + 𝑏 · 𝜏) · ( ¤𝑞(𝑡) + 𝜇) where 𝑞(𝑡) is the queue length of the
bottleneck link, 𝑏 · 𝜏 is the bandwidth-delay product, ¤𝑞(𝑡) is the
queue length gradient and 𝜇 is the bottleneck link utilization. We
next describe the overall workflow of our framework.
Upon acknowledgment: The entry point to our workflow is the
reception of an acknowledgment (ACK). Specifically, the kernel by
default provides this entry point within the tcp_ack() function
where it executes any function registered under cong_control
(or cong_avoid) after processing the acknowledgement packet.
We register a function telemetry_cong_control() in our eBPF
program which triggers further processing of the INT data carried
by the ACK.
Extracting INT values: For every incoming TCP segment, TCP-
INT extracts the custom TCP option from the header if present.
Telemetry values from the option are stored in an SK_STORAGE
map to be retrieved by other eBPF or user space programs. Later,
our congestion control framework reads the stored values with
bpf_sk_storage_get() from the map.
Packet timestamps: CCAs within our control law framework
require precise packet timestamps for calculating RTT. While ker-
nel timestamps are readily available, we also support the use of
hardware timestamps from the NIC. To do so, we accquire the
timestamp value assigned to a packet (from its struct sk_buff).
The last hardware timestamp received by a socket is stored in a
designated SK_STORAGE map which we later use for our control
law. Unfortunately, tcp_congestion_ops functions implemented
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Figure 3: Visibility into the network fabric via INT brings significant performance benefits for kernel TCP: low latency without
losing throughput while maintaining fairness. GRO introduces interesting tradeoffs in our current implementation: packets
carry INT within the TCP options which interferes with GRO batching.

in a kernel module have no direct access to struct sk_buff and
cannot natively access hardware timestamps.
Calculating 𝑓 (𝑡):We use INT values to compute 𝑓 (𝑡) depending
on the specific choice of 𝑓 (𝑡). For instance, in the case of PowerTCP,
we get 𝑞(𝑡) and 𝜇 from the INT values. We then use the time dif-
ference between two successive acknowledgements to calculate
the gradient ¤𝑞(𝑡). Finally, we calculate 𝑓 (𝑡) and apply smoothing
with an exponentially weighted moving average (EWMA). The
smoothed value of 𝑓 (𝑡) is then used for updating the window sizes.
Updating the window sizes and pacing rate:We update window
sizes based on the control law described above. We then divide the
updated window size with base RTT 𝜏 (a parameter) to set the
pacing rate.

4.2 Kernel Patches
While working on the implementation, we identified two shortcom-
ings in the kernel for eBPF-based CCAs:
• eBPF programs required defining both cong_avoid() as well
as cong_control(), even though the former is not used in
the network stack when the latter is defined.
• eBPF programs were not allowed to control the socket pacing
rate, i.e. they did not have write access to
sk_pacing_rate and sk_pacing_status in struct sock,
even when implementing and registering cong_control().

We submitted patches to the eBPF maintainers to resolve both
shortcomings, along with minor bug fixes to bpftool and libbpf. Our
patches were accepted and are included in the Linux kernel starting
with version 6.0.

5 EVALUATION
In evaluating our framework, we have two main questions: (i) Does
our telemetry-based CCA provide benefits, in terms of throughput,
latency and fairness? (ii) Is there a performance overhead of the
increased visibility (i.e. INT)? Our small-scale testbed consists of 3
hosts connected to a Tofino [14] switch. All the hosts are connected
to the switch using 25Gbps links. We deploy TCP-INT [22] and
our eBPF-based CCA model on the hosts. We configure the CCA
model to use PowerTCP [1]. We use Linux kernel version 6.1 at the

hosts, following the general recommendations in the literature for
performance tuning and have an average RTT of ≈ 80𝜇𝑠 between
the hosts.

5.1 Performance Benefits
Low latencywithout losing throughput:We generated an incast
by sending two flows from different hosts to a common receiver
host. Figure 3a shows that, at full throughput, PowerTCP keeps
queuing close to zero. Cubic however, fills up the bottleneck queue,
incurring long queuing delays.
Rapid convergence to fairness even at small timescales: First
we run two Cubic flows, then two PowerTCP flows. In fig. 3b, we
observe how the two flows share the bottleneck link bandwidth. We
see that PowerTCP rapidly converges and sustains fairness at very
small timescales. Since Cubic relies on loss as a congestion signal, it
is unable to converge quickly and does not achieve fairness within
this timescale.

5.2 Trade-offs
Given the performance benefits of using INT for congestion con-
trol in the Linux kernel, we take a deep dive into the overhead of
the framework. Interestingly, we analyze tradeoffs in terms of the
freshness and accuracy of INT vs throughput.
Throughput vs INT tagging frequency:With higher INT tagging
frequency, i.e, with lower tagratio, the kernel receives fresh and
more accurate information about the state of the bottleneck. To
understand the overhead of just processing INT in the kernel, we
run TCP-INT with Cubic. The kernel only receives and echos INT
but does not use INT for CCA purposes. This allows us to study the
overhead without the nuances of congestion control accuracy. In
this case, as we see in fig. 3c, a lower tagratio significantly impacts
the average throughput. As the tagratio increases, i.e. hosts receive
INT less frequently, the throughput increases. This is caused by
GRO, i.e. frequent tagging results in breaking batching. As we see
from fig. 3c, at tagratio 1, the throughput with GRO enabled is close
to the throughput achieved without GRO and INT disabled.
Throughput vs MTU size: At a constant throughput, the maxi-
mum transmitted size (MTU) plays a key role in kernel’s packet
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processing rate. As we saw in fig. 3c, which uses a small MTU of
1500, Cubic only comes close to maximum throughput when INT is
less frequent. In fig. 3d, we run Cubic along with TCP-INT, but fix
the tagratio to 1 i.e, every packet is tagged. We observe that as the
MTU size increases, the throughput reaches close to full throughput
even with tagratio 1. This indeed confirms that significant kernel
overhead is due to batching (which is performed by GRO), as in-
creasing the MTU reduces the required packet processing rate.

6 LOOKING INTO THE FUTURE
Our eBPF-based control law framework empowers kernel TCP with
telemetry-based congestion control algorithms, offering significant
performance benefits. We showed that it is possible to obtain the
benefits of advanced congestion control without modifying the host
stack or overhauling the network. By using a standard protocol (i.e.
TCP), it is suitable for brownfield deployment where not all switches
are telemetry-enabled. We hope that this will open avenues for
widespread adoption of telemetry-based protocols (not just CCAs)
at end-hosts, for example routing storage traffic [40], path load
balancing [32] and flow scheduling [8]. With future support for
offloading eBPF to hardware [10, 24], our telemetry-based CCA
could even run directly in the NIC. We believe that standardizing
the use of INT at lower-level protocols—like IP header options or a
custom header (which are both not yet accessible by eBPF)—would
make our framework accessible to protocols beyond TCP, while
also alleviating overheads (such as breaking GRO). To this end, a
corresponding feature support from the eBPF community would
be valuable.
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