
TCP’s Third Eye: Leveraging eBPF for
Telemetry-Powered Congestion Control

Jörn-Thorben Hinz
TU Berlin

Vamsi Addanki
TU Berlin

Csaba Györgyi
University of Vienna

Theo Jepsen
Intel

Stefan Schmid
TU Berlin

ABSTRACT
For years, congestion control algorithms have been navigating
in the dark, blind to the actual state of the network. They were
limited to the course-grained signals that are visible from the OS
kernel, which are measured locally (e.g., RTT) or hints of imminent
congestion (e.g., packet loss and ECN). As applications and OSs are
becoming ever more distributed, it is only natural that the kernel
have visibility beyond the host, into the network fabric. Network
switches already collect telemetry, but it has been impractical to
export it for the end-host to react.

Although some telemetry-based solutions have been proposed,
they require changes to the end-host, like custom hardware or
new protocols and network stacks. We address the challenges of
efficiency and protocol compatibility, showing that it is possible
and practical to run telemetry-based congestion control algorithms
in the kernel. We designed a framework that uses eBPF to run CCAs
that can execute different control laws by selecting different types of
telemetry. It can be deployed in brownfield environments, without
requiring all switches be telemetry-enabled, or kernel recompilation
at the end-hosts. When our eBPF program is deployed on hosts
without hardware or OS changes, TCP incast workloads experience
less queuing (thus lower latency), faster convergence and better
fairness.

CCS CONCEPTS
• Networks→ Transport protocols; Data center networks.

KEYWORDS
eBPF, Datacenter, TCP, INT, Congestion Control, Linux Kernel.

ACM Reference Format:
Jörn-Thorben Hinz, Vamsi Addanki, Csaba Györgyi, Theo Jepsen, and Stefan
Schmid. 2023. TCP’s Third Eye: Leveraging eBPF for Telemetry-Powered Con-
gestion Control. In 1st Workshop on eBPF and Kernel Extensions (eBPF ’23),
September 10, 2023, New York, NY, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3609021.3609295

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
eBPF ’23, September 10, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0293-8/23/09. . . $15.00
https://doi.org/10.1145/3609021.3609295

1 INTRODUCTION
The volume of traffic in datacenters is increasing rapidly over
time [6, 31, 33]. The throughput and latency offered by the un-
derlying architecture and the set of protocols plays a critical role
in the performance of modern cloud-based applications [26]. To
this end, major research efforts over the past decade have been in
two main domains: hardware offloading [2, 3, 20] and advanced
congestion control [1, 18, 25, 26, 28, 42].

On the one hand, offloading computationally heavy tasks to
hardware reduces software overheads but it comes at the cost of
programmability and flexibility of the network stack, requiring
specialized hardware such as RDMA (Remote Direct Memory Ac-
cess) NICs. On the other hand, advanced congestion control offers
immense benefits in-terms of throughput and latency, but it comes
at the cost of bandwidth and computational overheads [12, 27].
These tradeoffs are clearly visible in today’s datacenters, which
rely on traditional TCP/IP for storage applications [19, 21]. Even in
large-scale datacenters with RDMA capabilities, traditional TCP/IP
traffic still accounts for up to 30% of the total traffic [5].

In this paper, we lay the groundwork for flexible and low-overhead
telemetry-based congestion control algorithms (CCAs) in datacen-
ter networks. Recent advancements in networking have finally
made this possible and practical. The network data-plane is now
programmable, both at the end-hosts and in the network fabric.
Just the way the kernel network stack can be programmed with
eBPF [16, 23, 37], switches in the fabric can be programmed with
P4 [11, 14]. This opens opportunities for network-host signaling co-
design. Concretely, exporting fine-grained telemetry from switches
to the kernel provides end-host CCAs with rich information — not
only the location, but also the degree of congestion – that can be
used to make critical decisions more precisely and more rapidly.

CCAs base their decisions on the state of the network — or, more
accurately, based on what they believe to be the state of the network.
They learn the state of the network based on signals. Today’s CCAs
generally use signals that are inferred implicitly at the host, or
explicitly from the network. These signals are multi-bit or single-bit
(binary). Round trip time (RTT) is a multi-bit signal measured at the
host, which infers the bottleneck state and intensity of congestion.
Packet drops are a single-bit signal from the network indicating
that congestion was encountered. Explicit Congestion Notification
(ECN) is a single bit sent by the network fabric, indicating whether
a packet passed through a congested link [17]. However, these
signals are insufficient for precisely controlling modern datacenter
traffic [1, 26].

The host-based signals are rich (multi-bit), but delayed. On the
other hand, the network fabric-based signals are poor (single-bit),

https://doi.org/10.1145/3609021.3609295
https://doi.org/10.1145/3609021.3609295

eBPF ’23, September 10, 2023, New York, NY, USA Hinz et al.

but immediate. We want both: rich multi-bit signals received imme-
diately from the fabric. This third option is now possible, thanks to
advances in networking: In-band Network Telemetry (INT) [38, 39].
Ourmain contribution is to give the Linux network stack a “third
eye”, leveraging INT to see the true state of the fabric (transmission
rate, queuing, latency, etc.), empowering end-host CCAs to make
informed, immediate decisions.

We are not the first to propose using INT for CCAs. Although
there have been proposals for integrating INT [26, 35, 36], they
are impractical. They have high overheads and are not suitable for
brownfield deployments, as they require specialized hardware (e.g.,
RDMA NICs [26]) and significant changes to the host networking
stack [35]. Furthermore, they are not flexible—they are tied to a
specific CCA.

To address these shortcomings, we developed a flexible telemetry-
based CCA framework. It is built on eBPF and TCP in order to be
compatible with existing protocols and networking stacks. The
framework’s flexibility is enabled by an extensible control model
that can integrate various types of network telemetry. To access
telemetry, we use TCP-INT [22, 41], a P4-based telemetry system
that inserts telemetry (measured locally at the switch) into packets
in such a way to minimize data overhead, as well as computational
overheads at the host. In essence, our framework can be used to
implement existing, as well as new advanced CCAs that can react
to the changes in the network quickly and precisely.

To make such a system performant and practical, we faced sev-
eral challenges. First, it must be suitable for brownfield deployments
with different types of network hardware and software stacks. This
requires compatibility with existing protocols (i.e. TCP) and inte-
gration into the host network stack (eBPF). Second, the existing
approach of appending telemetry data to the packet header at ev-
ery hop in the network increases the bandwidth overhead [26, 27].
One of our key observations is that the end-host CCA only needs
information about the most congested hop, and hence information
from every hop is unnecessary. Receiving telemetry from only the
most congested hop reduces bandwidth overhead. Third, the ex-
isting approach of inserting telemetry (called “tagging”) in every
packet introduces computational overhead, as it interferes with
other parts of the host networking stack [12]. This high tagging fre-
quency hurts throughput without bringing any additional benefits
for detecting changes in network conditions; ideally, the tagging
frequency should provide a suitable tradeoff between throughput
and timely telemetry.

Finally, to demonstrate the flexibility and efficiency of our frame-
work, we use it to implement PowerTCP, a recent CCA that orig-
inally used RDMA and NIC offloading [1]. Experiments in our
testbed show that our implementation achieves the desired fairness
and queuing properties of PowerTCP. Furthermore, we evaluate
the overheads and trade-offs of our framework. We discuss several
exciting future directions and suggest some desired features and
functionality from eBPF that would greatly improve the efficiency
and accuracy of advanced CCAs in datacenters.

Overall, our main contributions are:

• A flexible CCA framework that uses telemetry in a novel
control model.
• An exploration and evaluation of the trade-offs that make
such a system practical.

• An eBPF implementation that runs the CCA model, and
kernel patches that have already been accepted in Linux
6.0. Our source code is publicly available online at https:
//github.com/inet-tub/powertcp-linux.

2 BACKGROUND
For decades, the TCP/IP stack has ossified in both end-hosts as
well as the network fabric (e.g., switches and routers). Deploying
new functionality required major changes either in terms of re-
compiling the kernel or changing the hardware altogether. Recent
advancements have enabled the programmability of both end-host
kernels as well as the network fabric. This presents the opportunity
to innovate congestion control algorithms by unlocking the rich
network telemetry that has always been available, but invisible, to
the end-host.

2.1 eBPF for Congestion Control
Congestion control [29] is a fundamental and integral part of TCP.
It ensures that network hosts do not overload the network by trans-
mitting too much data too fast, leading to network congestion,
packet loss and re-transmissions. Congestion control algorithms
(CCAs) typically detect or infer changes in the network state, and
control the sending rate by changing their congestion window
(CWND) — the in-flight, un-acknowledged bytes.

When innovating CCAs, it is difficult to deploy in the wild, be-
cause it is non-trivial to integrate into existing network stacks,
like that in the Linux kernel. CCP [30] proposes a framework for
decoupling the CCA from the OS, making it easier to deploy new
CCAs. However, this is not yet natively supported in the kernel.

Recently, the kernel added support for implementing CCAs in
eBPF, through the STRUCT_OPS program type An eBPF CCA must
satisfy the same interface as from a kernel module, providing the
functions predefined in the tcp_congestion_ops structure1. The
structure defines hooks that are invoked at multiple places in the
control flow of Linux’ network stack. Various events can trigger the
hooks, including TCP state changes, arrival of ACKs, and detection
of packet loss. The most important hook is responsible for updating
the CWND, and optionally control a socket’s pacing rate, after an
ACK was received.

Historically, because CCAs don’t run in the network fabric but at
the hosts, they cannot know the actual state of the network. Instead,
they infer the network state using signals like packet loss [34] or
round-trip time (RTT) [13]. With a more recent signalling mecha-
nism, Explicit Congestion Notification (ECN) [17], switches proba-
bilistically set a bit in the IP header if queue occupancy exceeds a
threshold. This single bit conveys some network state, but it is im-
precise. It does not convey the degree of congestion. The host must
receive many of these packets to calculate the ECN ratio, which
slows down its reaction time.

Ideally, the switch would communicate its instantaneous send
rate and queue occupancy [4]. Not only would this enable the hosts
to detect changes in network conditions immediately, but it would
also inform them how aggressively to react.

1https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/net/
tcp.h?h=v6.1#n1066

https://github.com/inet-tub/powertcp-linux
https://github.com/inet-tub/powertcp-linux
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/net/tcp.h?h=v6.1#n1066
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/net/tcp.h?h=v6.1#n1066

TCP’s Third Eye: Leveraging eBPF for Telemetry-Powered Congestion Control eBPF ’23, September 10, 2023, New York, NY, USA

2.2 In-band Network Telemetry
Network switches (including non-programmable) typically collect a
wealth of information, including: queue occupancy, transmit coun-
ters, timestamps, etc., This information would be invaluable to the
protocols at the end-hosts, e.g., to control sending rate by the con-
gestion control algorithms. However, this information has been
out of reach for a simple reason: the network was fixed-function.
Switch vendors had to bake-in support for a myriad of protocols
and processing logic. The lack of flexibility fundamentally limits
the ability to export telemetry. The logic to export different types
of telemetry for different types of protocols would have led to a
combinatorial explosion.

With the advent of P4 [11], the network has become programmable.
We can now program network switches, just the way one would
write software. This programmability is what has made In-band
Network Telemetry (INT) possible in early research efforts, without
relying on the manufacturing capacity of major switch vendors.

There are various implementations of INT. For collecting teleme-
try on a packet travelling through the network, the INT spec [39]
describes two modes of operation: (i) Postcards: upon receiving a
packet, each switch sends a new “postcard” packet containing the
telemetry to a collector (a “sink”), without modifying the original
packet. (ii) Embedded: each switch appends its telemetry to the
packet. The last hop receives the original packet, which includes a
telemetry header from each switch along the path. While postcards
may be useful for passive network monitoring, they are impractical
for control. Not only does it have higher overhead—it generates
many postcard packets, one for each hop—but it also presents op-
erational challenges. It requires configuring the switch with the
destination (“sink”) of the postcards. Furthermore, the sink must
correlate all these postcards with the actual data packet. Embed-
ded INT, on the other hand, can deliver telemetry straight to the
receiver in the same packet, which does not require correlation. Em-
bedded INT is better suited for enabling the host to make immediate
decisions.

However, there are still several problems:
• Interoperability: The INT spec prepends a new header
format to the packet. This may break existing network stacks.
• Data overhead: Since the packet contains telemetry from
each switch along the path, the packet size grows with the
number of hops.
• Compute overhead: The switch inserts telemetry (tagging)
in all packets. This causes increased overhead at the receiver,
which must process telemetry for every packet. Furthermore,
the receiver suffers additional compute overhead since it
must parse each switch’s telemetry (delivered by the packet)
to aggregate them (e.g., to find the queue occupancy at the
most congested switch).

Although other schemes have been proposed [7, 9, 35, 36], they
do not address the aforementioned problems. We need an INT
scheme that is inter-operable, efficient and that can be integrated
into the Linux kernel.

2.3 INT-based Congestion Control
The idea of using INT for CCAs is not new. Some designs have
been proposed, but they target different types of networks or do
not address interoperability issues. Further, existing designs require

Sender
Switch

Receiver

1 Insert telemetry

2 Echo telemetry3 Process telemetry

T

TT

Figure 1: Overview of TCP-INT telemetry delivery.

specialized hardware at the end-host [26, 42], where the congestion
control algorithm is runs in hardware, which is inflexible.

HPCC [26] uses network telemetry to update the congestion
window for RDMA over Converged Ethernet (RoCE). Specifically,
HPCCupdates its window size based on in-flight bytes in amultiplicative-
increase and multiplicative-decrease manner (with a constant addi-
tive factor). The recent proposal PowerTCP [1] updates its window
size based on the notion of power: the product of arrival rate and the
amount of in-flight bytes. These protocols rely on INT to compute
in-flight bytes and power. Their header format includes per-hop
telemetry such as queue length, tx bytes, timestamps, etc. Since
telemetry is inserted per-hop, data overhead as well as compute
overhead increases. PINT [7] reduces overhead by aggregating INT
(most congested hop), but it is not integrated into the kernel and
requires protocol changes. Although many recent proposals use
INT, these solutions are impractical as they are not well-integrated
into the kernel. They require specialized network cards or protocols,
and require changes to the network stack or to the application.

Given the recent advancements in programmability of the kernel
as well as the network fabric, we set out with the goal to design a
low overhead INT-powered CCA framework for the Linux kernel.

3 TCP’S THIRD EYE
At a high level, our system design can be divided into two parts: (i)
TCP-INT [22, 41] “sees the network”, delivering network telemetry
to the kernel; and (ii) a CCA model running in eBPF that consumes
the telemetry.

3.1 Seeing with TCP-INT
TCP-INT [22] was recently introduced to address the efficiency
and compatibility problems of the above-mentioned previous INT
solutions. With TCP-INT, switches insert INT into packets and an
eBPF-based program at the end-hosts exports the received INT.
This is a key enabler for us: we can now use the INT exposed by
TCP-INT as inputs to telemetry-powered CCAs.

Figure 1 shows the workflow of INT delivery with TCP-INT.
When switches receive a packet (1), they insert telemetry in the
packet (which we refer to as tagging). Upon receiving a packet,
the receiver extracts the telemetry. The receiver then ‘echos’ the
telemetry back to the receiver (2) by inserting it in the next packet it
sends (usually an ACK). The sender receives the ‘echoed’ telemetry
(3), which shows the sender the state of the links on the data-path
(i.e. its forward sending direction).

eBPF ’23, September 10, 2023, New York, NY, USA Hinz et al.

IP
Ethernet

TCP

Payload

kind=0x72 length=12

util/qdepth

hopID

latency

echo...

Figure 2: TCP-INT option in TCP header.

In order to maintain compatibility with TCP stacks (switches
and hosts), TCP-INT carries INT data in the TCP header, using a
TCP option [15]. The option format is shown in Figure 2. It contains
telemetry fields that are updated by the switch, including queue
depth, link utilization, and timestamps. As an optimization, the
queue depth and utilization are encoded in the same field, indicating
only one of the two (if there is queuing, the link is implicitly fully
utilized). The echo fields are not touched by the switch; they contain
the telemetry from the data path that is sent back from the receiver.

In order to reduce data and compute overheads, instead of stor-
ing the telemetry per-hop, the telemetry is aggregated. This way,
the host only receives telemetry that it needs, from the most con-
gested link along the path (a switch only tags the packet if its local
congestion is greater than that encountered by the packet so far).
The total size of the option is a mere 12 bytes, which is significantly
smaller than the current approach of appending INT at every-hop.

Typically, INT systems tag all packets, which causes excess com-
putational overhead at the receiver. Not only is the host INT pro-
cessing logic invoked for every packet, but it also causes interference
with the Linux network stack. Specifically, it ‘breaks’ generic receive
offload (GRO) [12], which is responsible for coalescing multiple
MTU-sized packets into a jumbo packet, and passing it up the stack
for TCP processing. GRO only coalesces packets with matching
headers (excluding sequence numbers). Because TCP-INT modifies
the TCP header, each packet has a different header, so GRO will not
coalesce them, but pass them up individually to the TCP stack. This
causes a significant hit to performance, which could be avoided by
tagging less frequently.

To reduce these computational overheads, TCP-INT tags some
packets. The tagratio parameter controls the probabilistic frequency
of tagging packets. E.g., tagratio= 1 tags every packet, while tagra-
tio= 32, in expectation, tags one in every 32 packets. Furthermore,
TCP-INT can do dynamic tagging, instead of using a fixed tagratio.
The sender dynamically adjusts the tagratio, based on the sending
rate. It finds the lowest frequency (to not hurt throughput) while
ensuring timely delivery of INT.

In this work, we always use a static tagratio. We leave it to future
work to extend our CCA implementation to dynamically change
the tagratio. We evaluate the impact of the tagratio on throughput
(see section 5), and provide initial insights on how it can be tuned.

3.2 Control Law Framework
We develop a control law framework that unites INT and conges-
tion control in an eBPF program running in the Linux kernel. Our
control law framework supports implementing CCAs within the
generalization discussed in [1].

Our eBPF program implements a class of congestion control
algorithms that update the window size based on multiplicative

increase and multiplicative decrease (MIMD) with an additive in-
crease factor. Specifically, we implement the generalized control
law framework presented in [1]. It works as follows:

𝑤𝑖 (𝑡 + 𝛿) ← 𝛾 ·
(
𝑤𝑖 (𝑡) ·

𝑒

𝑓 (𝑡) + 𝛽𝑖
)
+ (1 − 𝛾) ·𝑤𝑖 (𝑡)

where𝑤𝑖 (𝑡) denotes the congestion window size at time 𝑡 , 𝛽𝑖 is a
parameter which denotes the additive increase, 𝛾 is a parameter
which denotes the smoothing factor. Here, 𝑒 and 𝑓 (𝑡) act as MIMD.
𝑒 is the desired equilibrium which is set at initialization time and
𝑓 (𝑡) is the feedback value measured and calculated by the algorithm.
Various algorithms can be captured by our control law framework
based on the choice of 𝑒 and 𝑓 (𝑡) as described in [1].

4 IMPLEMENTATION
We implemented our CCA model as an eBPF program that uses
telemetry delivered by TCP-INT (see section 3) runningwith Tofino [14]
P4 [11] switches. For the control model, we chose power as the in-
put (i.e. 𝑓 (𝑡)) to embody the PowerTCP [1] CCA. In the process, we
identified few shortcomings of eBPF, resolved them and submitted
patches which have since been merged upstream.

4.1 eBPF Program
At a high-level, our eBPF program performs three main tasks: (i)
extract INT from received packets; (ii) calculate necessary inputs for
the specific control law (i.e. power for PowerTCP); and (iii) finally
execute the control model and update the congestion window and
pacing rate.

We use PowerTCP in the model running in our eBPF program.
For PowerTCP, 𝑓 (𝑡) is based on the notion of power, i.e. set to
(𝑞(𝑡) + 𝑏 · 𝜏) · (¤𝑞(𝑡) + 𝜇) where 𝑞(𝑡) is the queue length of the
bottleneck link, 𝑏 · 𝜏 is the bandwidth-delay product, ¤𝑞(𝑡) is the
queue length gradient and 𝜇 is the bottleneck link utilization. We
next describe the overall workflow of our framework.
Upon acknowledgment: The entry point to our workflow is the
reception of an acknowledgment (ACK). Specifically, the kernel by
default provides this entry point within the tcp_ack() function
where it executes any function registered under cong_control
(or cong_avoid) after processing the acknowledgement packet.
We register a function telemetry_cong_control() in our eBPF
program which triggers further processing of the INT data carried
by the ACK.
Extracting INT values: For every incoming TCP segment, TCP-
INT extracts the custom TCP option from the header if present.
Telemetry values from the option are stored in an SK_STORAGE
map to be retrieved by other eBPF or user space programs. Later,
our congestion control framework reads the stored values with
bpf_sk_storage_get() from the map.
Packet timestamps: CCAs within our control law framework
require precise packet timestamps for calculating RTT. While ker-
nel timestamps are readily available, we also support the use of
hardware timestamps from the NIC. To do so, we accquire the
timestamp value assigned to a packet (from its struct sk_buff).
The last hardware timestamp received by a socket is stored in a
designated SK_STORAGE map which we later use for our control
law. Unfortunately, tcp_congestion_ops functions implemented

TCP’s Third Eye: Leveraging eBPF for Telemetry-Powered Congestion Control eBPF ’23, September 10, 2023, New York, NY, USA

0 5 10
Time (s)

0

500

1000

Qu
eu

e
de

pt
h

(K
B)

Cubic PowerTCP

(a) PowerTCP maintains near-zero
queuing, whereas Cubic has high
queueing delays.

0 5 10
Time (s)

1

10
15
20
25

Th
ro

ug
hp

ut
 (G

bp
s)

Cubic PowerTCP

(b) PowerTCP fairly shares the
bandwidth across two flows
whereas Cubic remains unfair at
small times scales.

1 4 16 ≈ no INT
tagratio

10

15

20

Th
ro

ug
hp

ut
 (G

bp
s)

GRO off GRO on

(c) GRO significantly improves
throughput (without INT) but
GRO breaks under frequent INT
i.e, as tagratio gets closer to 1.

1500 4000 7000 9000
MTU (bytes)

10

15

20

25

Th
ro

ug
hp

ut
 (G

bp
s)

GRO on

(d) As the MTU size increases, the
Kernel can cope with through-
put even with frequent INT i.e.,
tagratio = 1.

Figure 3: Visibility into the network fabric via INT brings significant performance benefits for kernel TCP: low latency without
losing throughput while maintaining fairness. GRO introduces interesting tradeoffs in our current implementation: packets
carry INT within the TCP options which interferes with GRO batching.

in a kernel module have no direct access to struct sk_buff and
cannot natively access hardware timestamps.
Calculating 𝑓 (𝑡):We use INT values to compute 𝑓 (𝑡) depending
on the specific choice of 𝑓 (𝑡). For instance, in the case of PowerTCP,
we get 𝑞(𝑡) and 𝜇 from the INT values. We then use the time dif-
ference between two successive acknowledgements to calculate
the gradient ¤𝑞(𝑡). Finally, we calculate 𝑓 (𝑡) and apply smoothing
with an exponentially weighted moving average (EWMA). The
smoothed value of 𝑓 (𝑡) is then used for updating the window sizes.
Updating the window sizes and pacing rate:We update window
sizes based on the control law described above. We then divide the
updated window size with base RTT 𝜏 (a parameter) to set the
pacing rate.

4.2 Kernel Patches
While working on the implementation, we identified two shortcom-
ings in the kernel for eBPF-based CCAs:
• eBPF programs required defining both cong_avoid() as well
as cong_control(), even though the former is not used in
the network stack when the latter is defined.
• eBPF programs were not allowed to control the socket pacing
rate, i.e. they did not have write access to
sk_pacing_rate and sk_pacing_status in struct sock,
even when implementing and registering cong_control().

We submitted patches to the eBPF maintainers to resolve both
shortcomings, along with minor bug fixes to bpftool and libbpf. Our
patches were accepted and are included in the Linux kernel starting
with version 6.0.

5 EVALUATION
In evaluating our framework, we have two main questions: (i) Does
our telemetry-based CCA provide benefits, in terms of throughput,
latency and fairness? (ii) Is there a performance overhead of the
increased visibility (i.e. INT)? Our small-scale testbed consists of 3
hosts connected to a Tofino [14] switch. All the hosts are connected
to the switch using 25Gbps links. We deploy TCP-INT [22] and
our eBPF-based CCA model on the hosts. We configure the CCA
model to use PowerTCP [1]. We use Linux kernel version 6.1 at the

hosts, following the general recommendations in the literature for
performance tuning and have an average RTT of ≈ 80𝜇𝑠 between
the hosts.

5.1 Performance Benefits
Low latencywithout losing throughput:We generated an incast
by sending two flows from different hosts to a common receiver
host. Figure 3a shows that, at full throughput, PowerTCP keeps
queuing close to zero. Cubic however, fills up the bottleneck queue,
incurring long queuing delays.
Rapid convergence to fairness even at small timescales: First
we run two Cubic flows, then two PowerTCP flows. In fig. 3b, we
observe how the two flows share the bottleneck link bandwidth. We
see that PowerTCP rapidly converges and sustains fairness at very
small timescales. Since Cubic relies on loss as a congestion signal, it
is unable to converge quickly and does not achieve fairness within
this timescale.

5.2 Trade-offs
Given the performance benefits of using INT for congestion con-
trol in the Linux kernel, we take a deep dive into the overhead of
the framework. Interestingly, we analyze tradeoffs in terms of the
freshness and accuracy of INT vs throughput.
Throughput vs INT tagging frequency:With higher INT tagging
frequency, i.e, with lower tagratio, the kernel receives fresh and
more accurate information about the state of the bottleneck. To
understand the overhead of just processing INT in the kernel, we
run TCP-INT with Cubic. The kernel only receives and echos INT
but does not use INT for CCA purposes. This allows us to study the
overhead without the nuances of congestion control accuracy. In
this case, as we see in fig. 3c, a lower tagratio significantly impacts
the average throughput. As the tagratio increases, i.e. hosts receive
INT less frequently, the throughput increases. This is caused by
GRO, i.e. frequent tagging results in breaking batching. As we see
from fig. 3c, at tagratio 1, the throughput with GRO enabled is close
to the throughput achieved without GRO and INT disabled.
Throughput vs MTU size: At a constant throughput, the maxi-
mum transmitted size (MTU) plays a key role in kernel’s packet

eBPF ’23, September 10, 2023, New York, NY, USA Hinz et al.

processing rate. As we saw in fig. 3c, which uses a small MTU of
1500, Cubic only comes close to maximum throughput when INT is
less frequent. In fig. 3d, we run Cubic along with TCP-INT, but fix
the tagratio to 1 i.e, every packet is tagged. We observe that as the
MTU size increases, the throughput reaches close to full throughput
even with tagratio 1. This indeed confirms that significant kernel
overhead is due to batching (which is performed by GRO), as in-
creasing the MTU reduces the required packet processing rate.

6 LOOKING INTO THE FUTURE
Our eBPF-based control law framework empowers kernel TCP with
telemetry-based congestion control algorithms, offering significant
performance benefits. We showed that it is possible to obtain the
benefits of advanced congestion control without modifying the host
stack or overhauling the network. By using a standard protocol (i.e.
TCP), it is suitable for brownfield deployment where not all switches
are telemetry-enabled. We hope that this will open avenues for
widespread adoption of telemetry-based protocols (not just CCAs)
at end-hosts, for example routing storage traffic [40], path load
balancing [32] and flow scheduling [8]. With future support for
offloading eBPF to hardware [10, 24], our telemetry-based CCA
could even run directly in the NIC. We believe that standardizing
the use of INT at lower-level protocols—like IP header options or a
custom header (which are both not yet accessible by eBPF)—would
make our framework accessible to protocols beyond TCP, while
also alleviating overheads (such as breaking GRO). To this end, a
corresponding feature support from the eBPF community would
be valuable.

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers of this paper
for their useful feedback. This work is part of a project that has
received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation pro-
gramme, consolidator project Self-Adjusting Networks (AdjustNet),
grant agreement No. 864228, Horizon 2020, 2020-2025.

REFERENCES
[1] Vamsi Addanki, Oliver Michel, and Stefan Schmid. 2022. PowerTCP: Pushing

the Performance Limits of Datacenter Networks. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22). USENIX Association,
Renton, WA, 51–70. https://www.usenix.org/conference/nsdi22/presentation/
addanki

[2] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,
David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport
Protocols in High-Speed NICs. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20). USENIX Association, Santa Clara, CA,
93–109. https://www.usenix.org/conference/nsdi20/presentation/arashloo

[3] Serhat Arslan, Stephen Ibanez, Alex Mallery, Changhoon Kim, and Nick McKe-
own. 2021. NanoTransport: A Low-Latency, Programmable Transport Layer for
NICs. In Proceedings of the ACM SIGCOMM Symposium on SDN Research (SOSR)
(SOSR ’21). Association for Computing Machinery, New York, NY, USA, 13–26.
https://doi.org/10.1145/3482898.3483365

[4] Serhat Arslan and Nick McKeown. 2020. Switches Know the Exact Amount
of Congestion. In Proceedings of the 2019 Workshop on Buffer Sizing (BS ’19).
Association for Computing Machinery, New York, NY, USA, Article 10, 6 pages.
https://doi.org/10.1145/3375235.3375245

[5] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre, Paramvir
Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,
et al. 2023. EmpoweringAzure Storagewith {RDMA}. In 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23). 49–67.

[6] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, Istvan Haller,
Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn Thomsen, et al.
2020. Sirius: A flat datacenter network with nanosecond optical switching. In
Proceedings of the ACM SIGCOMM 2020 Conference. 782–797.

[7] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi,
Minian Yu, and Michael Mitzenmacher. 2020. PINT: Probabilistic In-Band Net-
work Telemetry. In Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication (SIGCOMM ’20). As-
sociation for Computing Machinery, New York, NY, USA, 662–680. https:
//doi.org/10.1145/3387514.3405894

[8] Cristian Hetnandez Benet, Andreas Kassler, Gianni Antichi, Theophilus A. Ben-
son, and Gergely Pongracz. 2021. Providing In-network Support to Coflow
Scheduling. In 2021 IEEE 7th International Conference on Network Softwarization
(NetSoft). 235–243. https://doi.org/10.1109/NetSoft51509.2021.9492530

[9] Ramyashree Venkatesh Bhat, Jetmir Haxhibeqiri, Ingrid Moerman, and Jeroen
Hoebeke. 2021. Adaptive transport layer protocols using in-band network
telemetry and eBPF. In 2021 17th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob). IEEE, 241–246.
https://ieeexplore.ieee.org/abstract/document/9606378

[10] Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salvatore Pontarelli,
Giuseppe Siracusano, Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. 2020. hXDP: Efficient Software
Packet Processing on FPGA NICs. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). USENIX Association, 973–990.
https://www.usenix.org/conference/osdi20/presentation/brunella

[11] Mihai Budiu and Chris Dodd. 2017. The p416 programming language. ACM
SIGOPS Operating Systems Review 51, 1 (2017), 5–14.

[12] Qizhe Cai, ShubhamChaudhary,Midhul Vuppalapati, JaehyunHwang, and Rachit
Agarwal. 2021. Understanding Host Network Stack Overheads. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference (SIGCOMM ’21). Association for
Computing Machinery, New York, NY, USA, 65–77. https://doi.org/10.1145/
3452296.3472888

[13] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2017. BBR: congestion-based congestion control. Commun. ACM
60, 2 (2017), 58–66.

[14] Intel Corporation. 2020. Intel Tofino. (2020). Retrieved June 9,
2023 from https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-series.html.

[15] Wesley Eddy. 2022. Transmission Control Protocol (TCP). RFC 9293. (Aug. 2022).
https://doi.org/10.17487/RFC9293

[16] Matt Fleming. 2017. A thorough introduction to eBPF. (2017). https://lwn.net/
Articles/740157/

[17] Sally Floyd, Dr. K. K. Ramakrishnan, and David L. Black. 2001. The Addition of
Explicit Congestion Notification (ECN) to IP. RFC 3168. https://doi.org/10.17487/
RFC3168

[18] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.
Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-Architecting Datacenter
Networks and Stacks for Low Latency andHigh Performance. In Proceedings of the
ACM SIGCOMM 2017 Conference. 29–42. https://doi.org/10.1145/3098822.3098825

[19] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agarwal. 2020. TCP ≈ RDMA:
CPU-efficient Remote Storage Access with i10. In 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 20). USENIX Association, Santa
Clara, CA, 127–140. https://www.usenix.org/conference/nsdi20/presentation/
hwang

[20] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, Muhammad Shah-
baz, Changhoon Kim, and Nick McKeown. 2021. The nanoPU: A Nanosec-
ond Network Stack for Datacenters. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). USENIX Association, 239–256.
https://www.usenix.org/conference/osdi21/presentation/ibanez

[21] Dell Technologies Blog Ihab Tarazi. 2021. The Future of Software-defined
Networking for Storage Connectivity . (2021). Retrieved June 9,
2023 from https://www.dell.com/en-us/blog/the-future-of-software-defined-
networking-for-storage-connectivity/.

[22] Grzegorz Jereczek, Theo Jepsen, Simon Wass, Bimmy Pujari, Jerry Zhen, and
Jeongkeun Lee. 2022. TCP-INT: Lightweight Network Telemetry with TCP
Transport. In Proceedings of the SIGCOMM ’22 Poster and Demo Sessions (SIG-
COMM ’22). Association for Computing Machinery, New York, NY, USA, 58–60.
https://doi.org/10.1145/3546037.3546064

[23] The kernel development community. 2014. eBPF Instruction Set Specification,
v1.0. (2014). https://www.kernel.org/doc/html/latest/bpf/instruction-set.html

https://www.usenix.org/conference/nsdi22/presentation/addanki
https://www.usenix.org/conference/nsdi22/presentation/addanki
https://www.usenix.org/conference/nsdi20/presentation/arashloo
https://doi.org/10.1145/3482898.3483365
https://doi.org/10.1145/3375235.3375245
https://doi.org/10.1145/3387514.3405894
https://doi.org/10.1145/3387514.3405894
https://doi.org/10.1109/NetSoft51509.2021.9492530
https://ieeexplore.ieee.org/abstract/document/9606378
https://www.usenix.org/conference/osdi20/presentation/brunella
https://doi.org/10.1145/3452296.3472888
https://doi.org/10.1145/3452296.3472888
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://doi.org/10.17487/RFC9293
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://doi.org/10.17487/RFC3168
https://doi.org/10.17487/RFC3168
https://doi.org/10.1145/3098822.3098825
https://www.usenix.org/conference/nsdi20/presentation/hwang
https://www.usenix.org/conference/nsdi20/presentation/hwang
https://www.usenix.org/conference/osdi21/presentation/ibanez
https://www.dell.com/en-us/blog/the-future-of-software-defined-networking-for-storage-connectivity/
https://www.dell.com/en-us/blog/the-future-of-software-defined-networking-for-storage-connectivity/
https://doi.org/10.1145/3546037.3546064
https://www.kernel.org/doc/html/latest/bpf/instruction-set.html

TCP’s Third Eye: Leveraging eBPF for Telemetry-Powered Congestion Control eBPF ’23, September 10, 2023, New York, NY, USA

[24] Jakub Kicinski and Nicolaas Viljoen. 2016. eBPF Hardware Offload to SmartNICs:
cls bpf and XDP. Proceedings of netdev 1 (2016).

[25] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian
Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,
Michael Ryan, David Wetherall, and Amin Vahdat. 2020. Swift: Delay is Simple
and Effective for Congestion Control in the Datacenter. In Proceedings of the ACM
SIGCOMM 2020 Conference. 514–528. https://doi.org/10.1145/3387514.3406591

[26] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. 2019. HPCC:
High precision congestion control. In Proceedings of the ACM Special Interest
Group on Data Communication. 44–58.

[27] Rui Miao, Bo Li, Hongqiang Harry Liu, and Ming Zhang. 2019. Buffer sizing with
HPCC. (2019).

[28] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David
Zats. 2015. TIMELY: RTT-Based Congestion Control for the Datacenter. In
Proceedings of the ACM SIGCOMM 2015 Conference. 537–550. https://doi.org/
10.1145/2785956.2787510

[29] John Nagle. 1984. Congestion Control in IP/TCP Internetworks. RFC 896. (Jan.
1984). https://doi.org/10.17487/RFC0896

[30] Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal, Srinivas
Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari Balakrishnan. 2018.
Restructuring endpoint congestion control. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication. 30–43. https://doi.org/
10.1145/3230543.3230553

[31] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukarram Tariq, Rui
Wang, Jianan Zhang, Virginia Beauregard, Patrick Conner, Steve Gribble, et al.
2022. Jupiter evolving: Transforming google’s datacenter network via optical
circuit switches and software-defined networking. In Proceedings of the ACM
SIGCOMM 2022 Conference. 66–85.

[32] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu, Gautam
Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David Wetherall, and Abdul
Kabbani. 2022. PLB: Congestion Signals Are Simple and Effective for Network
Load Balancing. In Proceedings of the ACM SIGCOMM 2022 Conference (SIGCOMM
’22). Association for Computing Machinery, New York, NY, USA, 207–218. https:
//doi.org/10.1145/3544216.3544226

[33] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.
2015. Inside the social network’s (datacenter) network. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication. 123–137.

[34] Pasi Sarolahti and Alexey Kuznetsov. 2002. Congestion Control in
Linux TCP. In USENIX Annual Technical Conference, FREENIX Track. 49–
62. https://www.usenix.org/legacy/event/usenix02/tech/freenix/full_papers/
sarolahti/sarolahti_html/

[35] Sandesh Dhawaskar Sathyanarayana, MaxHollingsworth,WenjiWu, and Richard
Cziva. 2022. Design, Implementation, and Evaluation of Host-based In-band Net-
work Telemetry for TCP. In 2022 Global Information Infrastructure and Networking
Symposium (GIIS). 62–67. https://doi.org/10.1109/GIIS56506.2022.9937001

[36] Siyuan Sheng, Qun Huang, and Patrick PC Lee. 2021. DeltaINT: Toward general
in-band network telemetry with extremely low bandwidth overhead. In 2021
IEEE 29th International Conference on Network Protocols (ICNP). IEEE, 1–11.

[37] Alexei Starovoitov and Daniel Borkmann. 2014. Classic BPF vs eBPF. https:
//www.kernel.org/doc/html/latest/bpf/classic_vs_extended.html

[38] Lizhuang Tan, Wei Su, Wei Zhang, Jianhui Lv, Zhenyi Zhang, Jingying Miao,
Xiaoxi Liu, and Na Li. 2021. In-band network telemetry: A survey. Computer
Networks 186 (2021), 107763. https://doi.org/10.1016/j.comnet.2020.107763

[39] The P4.org Applications Working Group. 2020. In-band Network Telemetry (INT)
Dataplane Specification. (2020). https://p4.org/p4-spec/docs/INT_v2_1.pdf

[40] Shuai Wang, Kaihui Gao, Kun Qian, Dan Li, Rui Miao, Bo Li, Yu Zhou, Ennan
Zhai, Chen Sun, Jiaqi Gao, Dai Zhang, Binzhang Fu, Frank Kelly, Dennis Cai,
Hongqiang Harry Liu, and Ming Zhang. 2022. Predictable VFabric on Informative
Data Plane. In Proceedings of the ACM SIGCOMM 2022 Conference (SIGCOMM
’22). Association for Computing Machinery, New York, NY, USA, 615–632. https:
//doi.org/10.1145/3544216.3544241

[41] Simon Wass and Jeongkeun Lee. 2022. TCP-INT: Intel’s Lightweight Network
Telemetry Improves Visibility and Control for TCP Workloads. (2022). Retrieved
June 10, 2023 from https://medium.com/intel-tech/tcp-int-intels-lightweight-
network-telemetry-improves-visibility-and-control-for-tcp-workloads-
74c7c55910e.

[42] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. ACM
SIGCOMM Computer Communication Review 45, 4 (2015), 523–536.

https://doi.org/10.1145/3387514.3406591
https://doi.org/10.1145/2785956.2787510
https://doi.org/10.1145/2785956.2787510
https://doi.org/10.17487/RFC0896
https://doi.org/10.1145/3230543.3230553
https://doi.org/10.1145/3230543.3230553
https://doi.org/10.1145/3544216.3544226
https://doi.org/10.1145/3544216.3544226
https://www.usenix.org/legacy/event/usenix02/tech/freenix/full_papers/sarolahti/sarolahti_html/
https://www.usenix.org/legacy/event/usenix02/tech/freenix/full_papers/sarolahti/sarolahti_html/
https://doi.org/10.1109/GIIS56506.2022.9937001
https://www.kernel.org/doc/html/latest/bpf/classic_vs_extended.html
https://www.kernel.org/doc/html/latest/bpf/classic_vs_extended.html
https://doi.org/10.1016/j.comnet.2020.107763
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://doi.org/10.1145/3544216.3544241
https://doi.org/10.1145/3544216.3544241
https://medium.com/intel-tech/tcp-int-intels-lightweight-network-telemetry-improves-visibility-and-control-for-tcp-workloads-74c7c55910e
https://medium.com/intel-tech/tcp-int-intels-lightweight-network-telemetry-improves-visibility-and-control-for-tcp-workloads-74c7c55910e
https://medium.com/intel-tech/tcp-int-intels-lightweight-network-telemetry-improves-visibility-and-control-for-tcp-workloads-74c7c55910e

	Abstract
	1 Introduction
	2 Background
	2.1 eBPF for Congestion Control
	2.2 In-band Network Telemetry
	2.3 INT-based Congestion Control

	3 TCP's Third Eye
	3.1 Seeing with TCP-INT
	3.2 Control Law Framework

	4 Implementation
	4.1 eBPF Program
	4.2 Kernel Patches

	5 Evaluation
	5.1 Performance Benefits
	5.2 Trade-offs

	6 Looking into the Future
	References

