
Sorbonne Université

Master Thesis

Plasticine: A flexible buffer management
scheme for data center networks

Vamsi Addanki (3875663)
Sorbonne Université

Supervisors:
Prof. Laurent Vanbever

ETH Zurich
Maria Apostalaki

ETH Zurich
Prof. Sebastien Tixeuil

Sorbonne Université

September 12, 2020

Contents

Acknowledgments 5

Work-place, team and contribution 6

Abstract 7

1 Introduction 8
1.1 Good old Moore’s law days and ATM . 8
1.2 End of Moore’s law and DCNs . 9
1.3 Buffer management: forgotten since 1997 10
1.4 Contributions . 11

2 Background and Motivation 12
2.1 Preliminaries . 12
2.2 Datacenter traffic and bursts . 14
2.3 Buffer requirement . 15

2.3.1 TCP . 16
2.3.2 Data Center TCP (DCTCP) . 16
2.3.3 Buffer requirement VS utilization (Ideal VS Real world) 16

2.4 Buffer management . 18
2.4.1 Dynamic Threshold (DT) . 18
2.4.2 DT’s inefficiencies . 19

3 Plasticine Overview 22

4 Plasticine Analysis 24
4.1 Assumptions . 24
4.2 Plasticine . 24
4.3 Steady-State Analysis . 25
4.4 Transient-State Analysis . 26

4.4.1 Case-1 . 28
4.4.2 Case-2 . 30

4.5 How it all relates to Burst-Tolerance . 31

1

CONTENTS 2

5 Evaluation 33
5.1 Methodology . 34
5.2 Topology . 34
5.3 Results . 35

5.3.1 Burst Absorption . 35
5.3.2 Flow completion times (FCT) for short flows 36
5.3.3 Buffer Occupancy and throughput 38
5.3.4 TCP and DCTCP interactions . 40
5.3.5 WAN and DC traffic interactions 41

Variation across Burst sizes . 41

6 Conclusion 44

Bibliography 46

List of Figures

2.1 Input traffic is distinguished per priority (color). Each port has a different
queue for each priority. Queues share the buffer at the device-level and
the bandwidth at the port-level according to the buffer management and
scheduling respectively. 13

2.2 Workloads based on measurements from Microsoft and Facebook data cen-
ter networks. 15

2.3 Mismatch in the objectives of buffer management that is oblivious to traffic
types. 17

2.4 The variation of max buffer utilization of TCP and DCTCP using a leaf-
spine topology and websearch workload. DT here is the conventional buffer
management algorithm (See Sec. 2.4) . 17

2.5 DT algorithm and it’s inefficiencies 19

5.1 Topology . 33
5.2 % of queries that experience zero loss (representing burst absorption). (i)

Plasticine bridges the gap between DcTcp and Tcp (ii) Plasticine
achieves ≈ 5% and ≈ 60% gain with DcTcp and Tcp respectively (iii) The
performance degrade with DcTcp from single queue to multiple queue per
port scenarios show how DcTcp fails to adapt it’s K parameter, allowing
for more buffer utilization leading to low burst absorption. 35

5.3 Average Query completion times, showing Plasticine outperforms in
both single and multi queue architectures. 37

5.4 99%-ile FCT for short flows (< 100KB) from background traffic. (i) In
single queue per port, bursts do not significantly impact short flows 99%-
ile FCTs as can be seen from relatively no variation (ii) In multi queue
per port, DT and CS experience a shoot up in FCTs as the bursts start
to interfere where the interference is due to drastic reduction in threshold
of other queues caused by high priority queue occupancy by bursts. (iii)
Plasticine offers best FCT performance for short flows. 38

5.5 Buffer Occupancy comparison in a pure DC traffic-mix setup. 39

3

LIST OF FIGURES 4

5.6 Evaluation using TCP and DCTCP mixed traffic pattern showing how
burst absorption and flow completion times are severely affected in the
case of Dynamic Threshold and Complete Sharing while Plasticine suc-
cessfully limits TCP buffer consumption enabling high burst absorption
and low flow completion times for short flows 40

5.7 % of queries that experience zero loss i.e., burst absorption in WAN+DC
traffic-mix showing how DT and Comp.Sharing suffer from the presence
of WAN traffic while Plasticine still achieves high burst-absorption with
a 40 + % gain. 41

5.8 Average Query Completion Times in WAN+DC traffic-mix. Plasticine
achieves 40ms and 30ms lower query completion times in 5:1 and 1:5 Wan,
DC traffic ratios. 42

5.9 99%-ile flow completion times for short-flows (< 100KB) in a WAN+DC
traffic-mix. 43

5.10 Buffer occupancy and throughput comparisons in WAN+DC traffic-mix.
Plasticine successfully reduces the average buffer utilizations, strategi-
cally utilizes the 99%-ile buffer space as the burst sizes increase and achieves
on-par throughput in both 5:1 and 1:5 WAN/DC traffic mix ratios. 43

Acknowledgments

I would like to thank Prof. Laurent Vanbever for the thesis proposal and giving me the
opportunity to work under his supervision. I would also like to thank Maria Apostalaki,
a PhD student supervised by Prof. Laurent Vanbever, for her supervision and intellec-
tual support. Finally, I would thank Sorbonne Université administration and academic
supervisor Prof. Sebastien Tixeuil who enabled a path towards my research interests.

5

Work-place, team and contribution

My thesis work is carried as part of Networked Systems Group (NSG) lab at ETH Zurich,
Switzerland. The lab is headed by Prof. Laurent Vanbever.

The work being presented in this thesis is a result of collective work among Maria
Apostalaki, Myself, Prof. Laurent Vanbever and Prof. Manya Ghobadi. My specific con-
tributions in this thesis are formulating the algorithm (with support from Maria Aposta-
laki), mathematical analysis of our solution, establishing it’s bounds and evaluation.

Fig. 5.1, 3.1a, 3.1b, 2.1 are taken from Maria Apostalaki. Some of the content from
the on-going work on writing a paper, has been re-used in this thesis.

6

Abstract

Network devices today share buffer across output queues to avoid drops during transient
congestion with less buffer space, thus with a lower cost, per chip. While effective most
of the time, this sharing can cause undesired interactions among seemingly independent
traffic, especially in case of high load. As a result, low-priority traffic can cause increased
packet loss to high-priority traffic, intra-DC traffic can impair WAN throughput and long
flows can prevent the buffer for absorbing incoming bursts. The cause of this perhaps
unintuitive outcome is today’s buffer sharing techniques that are unable to guarantee
isolation even to a small portion of the traffic, without statically allocating buffer space.
To address this issue we designed Plasticine a novel buffer management scheme which
offers strict isolation guarantees without keeping the buffer idle and is practical in to-
day’s hardware. We found that Plasticine: (i) significantly improves query completion
times (≈> 30% compared to state-of-the-art solution) while achieving on-par throughput
compared to convectional buffer management algorithms as well as TCP nuances; (ii)
improves short-flow completion times; Our proposal is the first attempt to address the
problems of bursts in today’s data center networks from a buffer management perspective.

7

Chapter 1

Introduction

The internet is majorly a packet switched network and works as a best-effort service. As
opposed to traditional circuit switched networks, transmission in packet switched network
can happen at any time and does not require reservation of resources such as bandwidth.
The incoming traffic at each hop in such networks is unpredictable and not necessarily
bounded by the outgoing transmission capacity limits. This leads to transient congestion
events and packet loss. As a result, network devices make use of buffer space to reduce
packet drops during transient congestion. Further, in-order to maximize the output link
utilization, numerous studies in the past discuss the appropriate buffer sizing per port
[18] [12] [8] based on dynamics of the widely used TCP protocol.

Due to cost, unpredictable needs and implementation complexity modern devices re-
sort to buffers that are shared among all ports [10, 1, 7, 18, 17]. This unavoidably requires
a Buffer Management algorithm that splits the buffer among all the queues. A buffer man-
agement algorithm can be as conservative as diving the buffer into equal parts among all
queues or as liberal as allowing every queue to use as much buffer as available. The former
leads to under-utilization of buffer and the latter leads to unfair and over-utilization of
buffer.

1.1 Good old Moore’s law days and ATM

Decades ago, buffer space wasn’t a scare resource with moore’s law governing the relation
between memory and capacity growth. A buffer management algorithm had four basic
requirements for it’s allocation scheme (i) fairness, (ii) maximize buffer utilization, (iii)
adapt to load variations and (iv) isolation.

Fairness Sharing network resources fairly improves performance and enables QoS guar-
antees [25]. A buffer management algorithm should allocate buffer fairly to traffic classes
of equal priority across all the ports. Additionally the algorithm should support weighted
fair allocation among different traffic classes across all the ports.

Maximize buffer utilization A buffer management algorithm should not dissipate net-
work resources and should allow for fully utilizing the available buffer space to (i) reduce

8

1.2. END OF MOORE’S LAW AND DCNS 9

packet loss, (ii) maximize link utilization.

Adapt to load variations Changes in load conditions leads to growth in queue lengths.
A buffer management algorithm, while aiming to maximize utilization, should also adapt
to load conditions and be able to adjust the allocations across all the queues to accommo-
date the load variations on a given queue without losses until a steady state fair allocation
is reached.

Isolation Satisfying loss requirements and proving certain isolation offers guarantees,
deterministic and predictable performance. A buffer management algorithm should effec-
tively isolate and guarantee buffer space for high priority traffic classes.

ATM networks allowed buffer management algorithm to easily achieve the above re-
quirements mainly due to the design and available information in such networks.

• ATM networks used call admission control (CAC) that enabled deriving numerous
parameters for a buffer management algorithm to consider such as buffer occupancy
per connection, per loss priority etc. [16],

• Loss priorities were known prior and instantly available to a buffer management
algorithm for each arriving cell. [14]

• Isolation was easily possible as a result of reservations. [16]

Such information is not available in today’s IP networks and makes buffer management
significantly challenging to satisfy the above key requirements. Furthermore, the traffic
volume and diversity in traffic-mix have significantly changed over the years.

1.2 End of Moore’s law and DCNs

Numerous observations from research and industry have been made in the wake of end
of moore’s law [23]. One such observation includes the mismatch in the growth of on-
chip memory and transmission capacity. As a result, due to cost reasons, today’s data
center networks resort to shallow buffers. Additionally, traffic patterns in today’s data
center networks are highly unpredictable and have widely varying needs leading to two
key requirements from a buffer management algorithm that are orthogonal to each other.

Minimize buffer utilization The traffic in data center networks is majorly comprised
of short flows (< 100KB), latency and loss sensitive flows that are of highest priority
[5] [21]. In order to reduce packet drops from such flows, the buffer needs to maintain
enough headroom i,e. remaining space. As a result, the buffer allocation needs to be
minimized and bounded such that low priority traffic and long flows are limited in the
buffer they can use.

Maximize buffer allocation In addition to short-flows and deadline flows, data center
traffic consists of micro-bursts which requires a large amount of buffer space for a short
duration of time. In-order to accommodate bursts, the buffer allocation needs to be
maximized such that a burst always finds enough buffer space avoiding packet drops.

1.3. BUFFER MANAGEMENT: FORGOTTEN SINCE 1997 10

Reducing and bounding the allocation leads to a higher available buffer for high priority
flows. However, the reduced allocation itself limits the performance of high priority flows
since they cannot make use of the actual remaining space.

While the recent advancements in congestion control aim at mitigating this issue,
the problem still remains under high loads where the inter-flow arrival times reduces
resulting in high arrival rates which cannot be controlled. Furthermore, congestion control
algorithms have no means of feedback to indicate the overall buffer state in the network
device. As a result, a buffer management algorithm is not allowed to allocate high amount
of buffer to a single port, making a loop back into the orthogonal requirement problem
i,e. minimizing and maximizing at the same time.

1.3 Buffer management: forgotten since 1997

Dynamic Threshold (DT) [9] that was initially proposed in 1997 is still the state-of-the-art
and most commonly used buffer management algorithm by multiple vendors and operators
such as Broadcom [10], Cisco [2], Yahoo [15], Alibaba [19]. In particular, DT allocates
space per queue based on unused buffer space and a static parameter. As a result, DT does
not control the absolute remaining buffer, meaning that its burst-tolerance and achieved
throughput is dependent on the input traffic. Worse yet, DT treats buffer occupancy
as a scalar unit, ignoring how it evolves. This can lead to extreme unfair scenarios, as
miss-behaving traffic can easily monopolize the buffer.

An advanced version of Dynamic Threshold was also proposed inorder to serve multiple
loss priorities [14], that was capable of allocating more buffer to highly loss sensitive traffic
classes and less buffer to loss-tolerant traffic classes. The requirements for Dynamic
Threshold for Multiple loss priorities: (i) Prior knowledge of loss priority, (ii) Number
of packets belonging to a traffic class occupying buffer in a queue and (iii) Overall buffer
occupancy of a traffic class across all the ports. As mentioned earlier, such information
was available in ATM networks from CAC but IP networks do not provide with such
information. The most commonly used version of Dynamic threshold is the one originally
proposed for single loss priority making it an allocation scheme that is oblivious to traffic
classes and network priorities.

Furthermore, in addition to the mentioned problems, there are certain fundamental
problems with DT’s allocation scheme and does not satisfy the needs of today’s data
center networks, which we will discuss in detail in Chapter. 2

So far the shortcomings of buffer management algorithms are well hidden behind poor
monitoring. Instrumenting buffer occupancy to observe its workings in commodity devices
is proven to be either too coarse-grained or unreliable. Indeed, a recent measurement study
in Yahoo [15] only reports buffer occupancy per minute, while finer-grained measurements
in Facebook, resulted in high rates (1%-100%) of missed intervals.

We believe it is high time to revisit buffer management for three main reasons. First,
buffer cost starts to become an issue [18]. Second, buffer management algorithms that are
used today were designed with assumptions about the network that do not hold anymore,
e.g., infrequent bursts, single first-in-first-out queues, prior notion of loss priority and

1.4. CONTRIBUTIONS 11

resource reservations, etc. Finally, programmable devices make the first step towards
accurate buffer monitoring by exposing buffer metrics, even though they keep the buffer
management away from the programmer’s hands.

1.4 Contributions

To address all the issues mentioned in the previous sections, we design Plasticine.
Plasticine is a practical buffer management algorithm that achieves high-burst tol-
erance guarantees, without sacrificing throughput by dynamically allocating the buffer.
Plasticine is also fair among queues while respecting their relative priority. Plas-
ticine achieves these using three key insights. First, aggregated buffer occupancy needs
to be bounded to be predictable. Second, per-port buffer allocation should be propor-
tionate to the port’s service rate, as we know from the long conversation about buffer
sizing [13, 11, 18]. Third, the traffic of equivalent priorities needs to be treated fairly.

This thesis is organized as follows. In the next Chapter, we describe in detail the
problems of state-of-the-art buffer management schemes and inefficiencies of congestion
control. We give an overview of our proposal Plasticine in Chapter. 3 and analyze
its key properties, bounds in Chapter. 4. In Chapter. 5, we evaluate Plasticine with
simulations using a data center topology and realistic workloads. Chapter. 6 concludes
this thesis.

Chapter 2

Background and Motivation

In this chapter, we first give a brief description of the context and architecture that we
will refer to in the rest of this thesis. Later in this chapter, we discuss (i) The nature
of DCN traffic and it’s buffer requirements (ii) The role of congestion control, it’s buffer
requirements, where it shines and where it fails, (iii) Most common buffer-management
schemes and inefficiencies. Overall the aim of this chapter is to showcase the problems of
buffer-management that have been overlooked so far.

2.1 Preliminaries

Fig. 2.1 shows a simplistic architecture of a shared memory switch focusing on the com-
ponents (i) ports, (ii) queues, (iii) enqueue, (iv) dequeue, (v) priority and (vi) shared
memory.

Ports A port is a physical network interface card that receives and transmits packets
on to the wire. It is characterized by it’s transmission capacity i.e., the maximum rate
at which it can transmit packets on to the wire. Routing tables determine the output
port for an input packet. When the packet arrival rate at a port exceeds it’s transmission
capacity, packets are buffered in a queue.

Queues A port is equipped with a single or multiple queues. The commonly deployed
queue structure in the network devices is a First-In-First-Out (FIFO) queuing discipline.
FIFO queues are easy to implement in hardware as they only require a push at the tail
and pop at the head operations. With a single queue per port, all the packets arriving at
the output port are pushed into the same queue. For the sake of isolation, one could prefer
a multiple queue per port architecture. Classification techniques (for example, based on
traffic class mapping) determine the queue at a given output port for buffering a packet.

Enqueue Enqueue corresponds to a push operation for a queue. A switch’s memory is
limited and hence queues have thresholds i.e., the maximum number of packets buffered
in a queue is limited by it’s assigned threshold. Upon the arrival of a packet, the Traffic
Manager (TM) decides whether it will be enqueued or dropped. To that end, TM com-
pares the length of the queue that the packet is destined to with its assigned threshold.
If the queue is shorter than this threshold, the packet is enqueued. To do so, the TM

12

2.1. PRELIMINARIES 13

Figure 2.1: Input traffic is distinguished per priority (color). Each port has a different
queue for each priority. Queues share the buffer at the device-level and the bandwidth at
the port-level according to the buffer management and scheduling respectively.

stores the packet in the shared buffer until the packet is transmitted and performs a push
operation, effectively adding a pointer to a linked list that corresponds to the queue.

Dequeue Dequeue corresponds to a pop operation for a queue. Unlike enqueue, the
dequeue rate is limited by a port’s transmission capacity. In a single queue per port
architecture, the dequeue rate of a queue equals the port’s transmission capacity. In
a multi queue per port architecture, the TM uses a scheduling algorithm to select a
non empty queue of a port to perform dequeue operation. Nevertheless, the scheduling
algorithm ensures that the total dequeue rate of all the queues of a port equals the port’s
transmission capacity (unless explicit reservations are made). The most commonly used
scheduling algorithms are Round Robin (RR) and Strict Priority (SP). In RR, the
dequeue operations happen in a cyclic manner from all the non-empty queues of a port.
As a result, the transmission capacity of the port is effectively split equally among the
active/non-empty queues. When using SP , each queue is assigned a priority (see next
paragraph) and SP always selects the highest priority queue that is non-empty for a
dequeue operation. SP offers certain isolation in terms of latency i.e., the queuing delays
of high priority queues are not effected by low priority queues. A common mis-conception
is that priority queuing isolates high priority traffic. We shall show later in this chapter
how poor buffer management leads to cross-priority interference leading to high priority
packet drops.

Priority In this work, we refer to priority only in two contexts (i) Buffer and (ii) Schedul-
ing. Queues are assigned priorities and treated preferentially either for buffer or schedul-
ing. The switch is often shared among multiple applications or tenants with different
performance and/or isolation needs. As an intuition, a delay-sensitive application re-
quires queue isolation and preferential dequeue to minimize queuing delays, whereas a
loss-sensitive application requires more buffer to avoid losses. Similarly, one application
might be more critical for the operator and need not be influenced by other traffic, es-
sentially requiring stricter isolation guarantees. A high priority in the context of buffer

2.2. DATACENTER TRAFFIC AND BURSTS 14

relates to higher thresholds for the corresponding queue. In the context of scheduling a
priority relates to preferential dequeue operations from the corresponding queue. Often
both the priority notions correlate with each other in network policies.

Shared Memory All the queues in a switch share a common memory space to buffer
packets. Denote the queue length of a queue at port i with priority p as Qi

p, and a total
buffer space of B. The shared memory poses the following restriction i.e., the sum of all
the queue lengths is less than or equal to the total buffer space.

ΣiΣpQ
i
p <= B (2.1)

In a nutshell, given the above restriction, the job of a buffer management algorithm is
to control the thresholds for each queue so as to achieve the key requirements discussed
in Chapter. 1. Eq. 2.1 makes it clear why a poor buffer management can lead to high-
priority packet drops i.e., if low priority queues tend to occupy significantly large amount
of buffer leaving no buffer for high priority, even though it is thought to be isolated due
to priority queuing and SP scheduling.

2.2 Datacenter traffic and bursts

The data center traffic characteristics are quite different from internet traffic. Recent
studies reveal measurements from Microsoft, Facebook, Google [5] [21]. The traffic can be
classified in to three main categories (i) Short flows, (ii) Long flows and (iii) Bursts each
having significantly different buffer requirements. Fig. 2.2 shows the flow-size distributions
of Websearch [5], cache-follower and hadoop workloads [21].

Short flows A majority of flows in data center traffic are short flows. In particular,
websearch workload consists of 70% of flows which are less than a 100KB in size. Short
flows do not consume much buffer and a short flow completion time is desirable. Packet
loss for such flows significantly impacts their flow completion times as a result of timeouts.

Long flows 90% of data bytes in the traffic comes from long flows while only 30%
of the flows are long. Long flows add a significant buffer pressure and are tolerant to
packet losses. The importance of long flows is their contribution to throughput and link
utilization.

Bursts A burst is characterized by a very high arrival rate of packets at the switch for
a short duration of time. Bursts originate mainly due to tcp-incast scenarios, common
in query-response type of applications. Packet loss and timeouts in a query response
significantly impacts the query completion times. As a result, due to the nature of bursts,
they require a large amount of buffer space for a short duration of time.

Many ports using buffer is not uncommon A high resolution measurement study on
Facebook data centers [24], shows that it is not uncommon that almost all the ports are
simultaneously using the buffer. In particular, the study shows, hadoop workload forces
towards extreme scenarios such as 100% of hotports in a switch. A large number of ports
simultaneously using buffer puts a heavy burden on buffer management.

2.3. BUFFER REQUIREMENT 15

We will show in the next section, the effects of TCP and recently famed DCTCP on
the buffer utilization and their inefficiencies to guarantee burst absorption.

100 101 102 103 104 105 106 107

FlowSize (Bytes)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F
Fb cache
Fb hadoop
web search (DcTcp)

Figure 2.2: Workloads based on measurements from Microsoft and Facebook data center
networks.

2.3 Buffer requirement

Buffer requirement is the minimum required buffer in-order to maximize link utilization
and throughput. This requirement is heavily dependent on the dynamics of end-host
congestion control. The widely used TCP utilizes as much buffer as allocated until a loss
is detected i.e., when the buffer overflows, leaving no remaining buffer for important short-
flows and bursts. Motivating on this observation, DCTCP was recently proposed which
exploits ECN marking to control the buffer utilization of long flows, effectively leaving
headroom for short flows and bursts. DCTCP gained fame as it offered a significant
improvement over TCP in terms of buffer utilization, short flows and bursts performance.
However, as we shall show in this section, DCTCP in-itself cannot control the overall
buffer occupancy in a switch and fails to differentiate between traffic classes. As a result,
even DCTCP is prone to poor burst absorption capabilities. As mentioned in Chapter 1
we bring to focus the long forgotten buffer management that inhibits burst absorption
capabilities even with advanced congestion control algorithms such as DCTCP . Later in
this work, using our proposed buffer management scheme (Sec. 3), we show a median of
60% improvement in burst absorption (Sec. 5) even with traditional TCP .

2.3. BUFFER REQUIREMENT 16

2.3.1 TCP

TCP is by default a loss based congestion control algorithm. As a result, the buffer
utilization tends to maximum allocated buffer. It is well studied in the past and has been
concluded that synchronized TCP flows require a buffer space equal to the Bandwidth
Delay Product (BDP) to achieve full link utilization. Data centers have very short RTT
values ranging from 100µs − 1ms. As a result, the buffer requirement is significantly
lower for example with 1Gbps links, BDP ≈ 25KB. However, in-order to limit the buffer
utilization by long flows to exact BDP , the buffer allocation needs to be set to BDP which
inturn dramatically effects the performance of short and bursty flows. Clearly there is a
need for differentiation between short and long flows in buffer allocation. DCTCP gets
around this problem by using marking schemes to limit the buffer utilization by long
flows.

2.3.2 Data Center TCP (DCTCP)

A careful observation of traffic characteristic in data centers led to the proposal of
DCTCP [5]. In particular, DCTCP exploits ECN marking to reduce the buffer utiliza-
tion of long flows to a maximum of K +N where K = BDP/7 is the marking threshold
and N is the number of synchronized long flows. The marking threshold K is a network
device configuration where every queue starts marking packets when it’s length exceeds
the marking threshold. Although DCTCP offers a significant benefit over TCP, it has
several downsides such as requirement of a full control over data center, coexistence with
TCP, failure to sustain low buffer utilization under high-loads and concurrency.

Observation 1. DCTCP uses a static K parameter that is determined based on trans-
mission capacity C and round-trip time RTT and does not adapt to multi queue per port
architecture. In a single queue per port scenario if a port consumes K+N buffer, the same
port with capacity C with 2 queues consumes 2×(K+N) buffer.

2.3.3 Buffer requirement VS utilization (Ideal VS Real world)

The purpose of this section is to bring to focus (i) the mismatch in the requirement and
utilization of buffer (ii) how conventional buffer management limits burst-absorption.

Fig. 2 shows how DCTCP ’s buffer utilization increases dramatically with increasing
load. Although DCTCP is believed to reduce buffer utilization, as load increases it does
not satisfy the low buffer occupancy requirements anymore. As a consequence the original
purpose of DCTCP i.e., to maintain headroom for short flows and bursts doesn’t hold
well.

Observation 2. As the load increases, even DCTCP tends to utilize more buffer, as much
as TCP in extreme cases.

One can argue that at high loads, the buffer allocation can be increased so as to
accommodate bursts and short flows. However, the buffer space is limited and further

2.3. BUFFER REQUIREMENT 17

TCP
DCTCP

Decided by buffer-Management

K+N

M
ax

Q

ue
ue

TCP
DCTCPQ

ue
ue

le

ng
th

Decided by buffer-Management

Total Shared Memory

TCP DCTCP

Q
ue

ue

le
ng

th

Why not increase this
limit to increase
burst-tolerance with
Dctcp?

At high-loads/ high concurrency

Increasing the
limit higher will
have adverse
effects at
high-loads or
even worse with
malicious flows.

Figure 2.3: Mismatch in the objectives of buffer management that is oblivious to traffic
types.

20 40 60 80 90 95 99 120 150
Background-Traffic Load (%)

0

20

40

60

80

100

Bu
ffe

r O
cc

up
an

cy
 (%

)
99

-p
er

ce
nt

ile

Web search Workload
DT+DcTcp DT+NewReno

Figure 2.4: The variation of max buffer utilization of TCP and DCTCP using a leaf-
spine topology and websearch workload. DT here is the conventional buffer management
algorithm (See Sec. 2.4)

increasing or allowing queues to grow as much as possible, has adverse effects. such as
unfair buffer utilization across ports, malicious flows monopolizing the buffer etc., .

Observation 3. Based on Observation. 2 and in addition due to security and fairness
concerns, conventional buffer management algorithms should not allocate large amount of
buffer to a single queue.

Finally, based on Observation. 2 and Observation. 3, buffer cannot be allocated ar-
bitrarily large. However bursts require significantly large amount of buffer for a short
duration of time. As a result, the burst absorption capabilities of buffer is severely ef-

2.4. BUFFER MANAGEMENT 18

fected, even in cases where enough remaining buffer space is available.

Observation 4. Burst absorption even with DCTCP is limited due to conventional buffer
management (Dynamic Threshold) which is not allowed to allocate more buffer.

After understanding the limitations of congestion control in buffer occupancy and
burst-tolerance, we were interested in investigating the buffer management itself i.e., the
algorithm which assign thresholds to the queues. Indeed, the core of the problem of
short flows and burst absorption lies in buffer management algorithm. Additionally, after
Observation. 2, 4, 3 one could easily argue about separation of bursts into a different
queue. However, this does not help either due to the inefficiencies of buffer management
algorithms which will be made clear in the next section.

2.4 Buffer management

2.4.1 Dynamic Threshold (DT)

DT [9] allows each queue to grow up to a dynamically-assigned threshold. It computes this
threshold for each queue as the product of the unused buffer with a predefined parameter
αp specified for a priority as shown in Eq.2.3 and Fig. 2.5a illustrates the relationship
between the αp parameter, the thresholds computed by DT and the unused/remaining
buffer.

Threshold = αp · (RemainingBuffer) (2.2)

Tp(t) = αp · (B −Q(t)) (2.3)

dTp(t)

dt
= −αp ·

dQ(t)

dt
(2.4)

B : Total buffer space of the device

Q(t) : Total buffer occupancy at time t

DT is the current default approach, used by multiple vendors, including Broadcom [20].
Its main strength is that it is adaptive to the load. Indeed, buffer allocation by DT is
inversely related to the buffer utilization, in other words, directly proportional to remain-
ing buffer. Changes in load conditions leads to changes in queue lengths which in-turn
leads to threshold changes of each queue along a straight line corresponding to it’s αp as
shown in Fig. 2.5a.

While the operators can define a different α value per queue, they often resolve in
defaults or arbitrary selected values since there is no way to optimally configure it. For
instance, Yahoo mentions they use α = 8 while Cisco has α = 14 [15], [2].

2.4. BUFFER MANAGEMENT 19

Observe from Eq. 2.3 and Eq. 2.4 that, the threshold calculations are continuous in
time. The threshold is effected by total buffer occupancy i.e. the buffer occupancy of
all the queues, including the queue under consideration. This dependency of threshold
on total buffer occupancy leads to two distinct states, a Steady-State when the load
conditions are stable. Thus, the queue occupancies are lower than or equal to a threshold
and a Transient-State when load conditions change drastically, leading to a potential
mismatch.

0 20 40 60 80 100
% of Buffer Remaining

0

100

200

300

400

500

%
 o

f
B

u
ff

e
r

T
h
re

sh
o
ld

= 1

= 5= ~= ~= ~

Threshold > 100% > Remaining

0% < Threshold < Remaining

Remaining < Threshold < 100%

Threshold = x Remaining
(y=ax)

(a) DT − Algorithm, lin-
ear relationship between
the instantaneous buffer-
allocation (Threshold) per
queue, the remaining buffer
and α parameter.

0 5 10 15 20 25 30 35 40
No.of Queues (n)

0

20

40

60

80

100

%
 o

f B
uf

fe
r For any

limn > BufferOccupancy() = 100%
(Unbounded Allocations)

BufferOccupancy (= 0.1)
BufferOccupancy (= 1)
BufferOccupancy (= 10)
BufferOccupancy (= 100)

(b) Classless Example
showing the Unbounded
evolution of total buffer
allocations/steady-state
occupancy by n queues for
different α parameter values.

0 5 10 15 20 25 30 35 40
No.of Queues of low-priority class

0

20

40

60

80

100

%
 o

f B
uf

fe
r

Low Priority Class > High Priority Class

(Inter-Class Dependency)

BufferOccupancy (Low Priority Class = 1)
BufferOccupancy (High Priority Class = 10)

(c) Classful Example show-
ing how buffer-allocations for
queues of one priority class
depend on other priority
classes leading to high inter-
priority-class dependancy.

2 3 4 5 6 7 8 9 10
Burst arrival rate (x10Gbps)

0

25

50

75

100

125

150

175

200

Bu
rs

t T
ol

er
an

ce
 (0

%
 lo

ss
 ra

te
) (

M
b)

State: Ports=10 Saturated Queues/port=1 (Low-Priority)
State: Ports=40 Saturated Queues/port=1 (Low-Priority)

(d) Example showing how unbounded-
allocations and inter-class-dependence
affects burst-tolerance. A comparison
of burst-tolerance in a buffer state with
10 saturated queues vs 40 saturated
queues.

2 4 6 8 10 12 14 16 18 20
Burst arrival rate (x10Gbps)

0

25

50

75

100

125

150

175

200

Bu
rs

t T
ol

er
an

ce
 (0

%
 lo

ss
 ra

te
) (

M
b)

State: Ports=1 Saturated Queues/port=8 (Low-Priority)
State: Ports=8 Saturated Queues/port=1 (Low-Priority)

(e) Example showing how burst-
tolerance is effected due to the in-
ability of DT to differentiate between
two different states with same number
of queues but with different aggregate
service capacities.

Figure 2.5: DT algorithm and it’s inefficiencies

2.4.2 DT’s inefficiencies

While dynamic, DT allocates the buffer assuming a best case scenario, namely infrequent
changes in load conditions, a single first-in-first-out queue per port. As a result, DT
remains incompatible for today’s data center networks as we will show in this section. In

2.4. BUFFER MANAGEMENT 20

particular the incompatibility of DT in today’s networks arises where devices have multiple
queues per port, multiple priority classes defined by operators, varying scheduling policies
and high frequency of micro-bursts (leading to high frequency changes in load conditions).

Unbounded Buffer Allocation The first version of DT was proposed as a classless
buffer management scheme with single FIFO queue per port where it is desirable to
have dynamic allocations which sum up to full utilization of buffer when many queues are
saturated. However, the classful extension of DT follows the same fundamental algorithm
with a difference that each priority class can be mapped to an αp leading to proportionate
buffer allocation based on priority. In Fig. 2.5b, we show the evolution of buffer occupancy
with number of queues (n) of a single-class (classless) for different values of chosen αp
parameter. The total buffer occupancy in a classless scheme is given by (B − B

(1+n·αp)
).

It can be observed that for any chosen αp parameter, the buffer occupancy tends to
B i.e 100% of buffer, which leads to uncontrollable and unbounded buffer allocations.
As a result of applying the same fundamental allocation scheme for multiple priorities
(classful), different priorities are inter-dependent on the occupancies of each other. In
Fig. 2.5c, we show an example with 2 priority classes where one is of high-priority (αp =
10) and the other of low-priority (αp = 1). As the number of saturated queues of low-
priority class increase, the buffer-allocation for queues of high-priority class are heavily
impacted.

The consequence of unbounded and inter-class-dependent buffer allocations, in Fig 2.5d
we show an example with 10 ports and 40 ports each with a single saturated queue of
a low-priority class (αp = 1) showing how the burst-tolerance (assuming that the burst
packets are sent to a queue of high-priority class αp = 10) is affected.

We argue that, in today’s networks, especially considering micro-burst events which
are often mapped to queues of high-priority class in buffer management schemes, an
unbounded and class-inter-dependent buffer allocation scheme cannot provide guaranteed
services.

DT is oblivious to service capacity The threshold or in other words buffer allocation
by DT algorithm is only based on unused buffer space, which makes DT a scalar and
single-dimensional algorithm. Although such an algorithm was proposed based on single
FIFO queue per port assumptions, various vendors such as cisco, broadcom have adopted
the same algorithm for multiple queue per port switch models. As an example, it can
be observed from Eq. 2.3 that, DT allocates same buffer space to a queue with service
capacity C and another queue with C/8. When multiple queues share the capacity of
the output port, the service capacity of the queue becomes dependent on the scheduling
policies. Under such circumstances, DT is oblivious to service capacity. To illustrate
the problem in relation to today’s networks, in Fig. 2.5e we show an example with 2
different states which are indeed equivalent for DT resulting in same buffer allocation in
both states. It can be observed from Fig. 2.5e, how burst-tolerance is heavily impacted
in the case with 1 port and 8 queues/port 1p8q (low-priority class) due to low rate of

change of occupied buffer by queues of low-priority class (dQL(t)
dt

). It can be observed
from Eq. 2.4 how the rate of change of threshold is related to the rate of change of total
occupied buffer space. Given such a behavior, we argue that DT being oblivious to service

2.4. BUFFER MANAGEMENT 21

capacity, cannot provide any guaranteed services for high-priority classes.
In the next Chapter we propose Plasticine suitable today’s data center networks,

intuitively solving the inefficiencies of DT.

Chapter 3

Plasticine Overview

To address the shortcomings of DT, we design Plasticine a novel priority-based buffer
management scheme designed to offer isolation, effectively minimizing cross-priority side
effects and providing strict burst-tolerance guarantees. Next, we describe the key insights
behind Plasticine’s design.

Plasticine is a priority-based scheme. Plasticine manages the buffer at the priority
level in two ways. First, Plasticine decides the threshold of each queue considering its
priority and the aggregated buffer usage of the priority. To that end, Plasticine requires
the operator to define an α parameter per priority as opposed to an α parameter per-queue
that DT requires. This is an intuitive configuration as traffic that belongs to the same
priority will have similar requirements from the buffer. For example, some priority might
be able to tolerate loss but not delay (low α), while another might display micro-bursting
behavior (high α). Second, Plasticine distinguishes priorities to those that require
strict isolation guarantees (isolation priorities) and those that share the buffer fairly,
proportionately to their α values (regular priorities). Distinguishing priorities based on
their isolation requirements allows Plasticine to find a trade-off between burst-tolerance
and high buffer utilization. For example, the operator can allow both (i) highly bursty
traffic, such as Map-Reduce jobs, to use the buffer during an incast as if they were alone

(a) Plasticine allocates less space
per queue (6 packets) if those share a
port’s service rate.

(b) The burst is fully absorbed despite
the low dequeue rate as there is re-
maining buffer.

Figure 3.1: Plasticine allocates buffer per queue proportionately to its service rate,
thus keeping the buffer ready for a burst.

22

23

in it (without statically allocating it); and (ii) storage traffic to use just enough buffer to
facilitate high throughput whenever possible.

Plasticine offers isolation per priority. Plasticine dynamically bounds buffer usage
per priority to prevent any priority to monopolize the buffer. If the buffer utilization per
priority is unbounded, as it is for DT, any single priority can exhaust buffer resources
simply by employing multiple queues, as was illustrated in Fig. 2.5b. Unlike DT that
would uncontrollably allocate space for each new queue of the yellow priority, Plasticine
splits a dynamically-bounded priority-share among queues of that priority. Effectively, it
allows the critical red-priority queue to allocate 30 packets regardless of the number of
queues the yellow priority has in the buffer, as shown in Fig. 3.1b. Note, though, that
no allocation is static. Namely, if the red-queue does not use/need its maximum buffer
occupancy, the yellow priority will get more. Thus, Plasticine’s dynamic allocation
cannot be achieved by conventional techniques such as statically allocating space to each
queue (complete partitioning) or to a group of queues (application pools) or by statically
configuring a different ratio of α values. All of the aforementioned alternatives would lead
to buffer under-utilization.

Plasticine makes bursts first-class citizens in the buffer. Plasticine allows the
operator to provide strict burst-tolerance guarantees, to isolation priorities while not
starving the rest of the traffic. To that end, Plasticine continually guards the buffer
occupancy to ensure that (i) there is always enough unoccupied buffer space; and/or (ii)
adequate aggregate dequeue rate to accommodate a burst. Note that the two conditions
need not both hold. On the one hand, an incoming burst can be absorbed regardless of
the free buffer space at its arrival iff the aggregate dequeue rate of the allocated buffer
space is at least as high as the enqueue rate. On the other hand, if one or a few ports
consume the buffer, thus the aggregated dequeue rate is low, the unoccupied buffer needs
to be sufficient to accommodate an incoming burst. Thus, Plasticine would limit each
queue to 6 packets, as shown in Fig. 3.1b as a penalty to their low dequeue rate. As a
result, when the same 20:1 burst arrives, instead of being heavily dropped as in DT, it
will be entirely absorbed by the buffer, as shown in Fig. 3.1b.

Chapter 4

Plasticine Analysis

A general analysis of Plasticine algorithm is described in this chapter. In particular,
steady-state, transient-state, the key properties, guidelines to determine parameters and
the guarantees are described analytically.

4.1 Assumptions

The analysis is based on a fluid model where packet (bits) arrivals and departures are
assumed to be fluid and deterministic. A switch with arbitrary number of ports with
arbitrary number of queues per port is assumed. In particular, each port has only one
queue per priority.

B : Total shared buffer space of switch.
Q(t) : Instantaneous occupied buffer space at time t
αp : Quantification of priority level, a parameter for buffer-management algorithm.

4.2 Plasticine

Plasticine works based on two-levels of hierarchy i.e priority and groups. The general
notion of priority remains same. In addition, Plasticine requires the priorities to be
divided in-to groups, shared and isolated. A shared group contains priorities which share
the buffer fairly proportionate to their alpha values. An isolated group is achieved simply
by creating a group consisting of single priority.

Plasticine buffer-management algorithm requires an αp parameter per priority. The
buffer-allocation is based on threshold calculations per queue. In particular, the threshold
of a queue at port i, of priority p and belonging to a group g is calculated by Plasticine
algorithm as,

Threshold = (alpha)× (FairShare)× (Norm.DequeueRate)× (remaining) (4.1)

i.e,

24

4.3. STEADY-STATE ANALYSIS 25

T ip(t) = αp · βg(p)(t) · γip(t) · (B −Q(t)) (4.2)

where, βg(p)(t) is the inverse of the total number of congested queues in group g(p) (to
which the priority p belongs to) at time t and γip(t) is the normalized dequeue rate (or
normalized service capacity) of the queue at time t.

Observe that, βg(p)(t) remains same for all the priorities belonging to a group and can
be expressed as βG(t) where G denotes the group g(p).

Here after for simplicity ωip(t) is defined as,

ωip(t) = αp · βG(t) · γip(t) (4.3)

Key properties of Omega:∑
i

∑
p∈G

ωip(t) = βG(t) ·
∑
i

∑
p∈G

αpγ
i
p(t) (4.4)

If, all the queues of all priorities of group G share same alpha parameters (say αG)
and have same normalized dequeue rate at time t (say γG), then Eq. 4.4 reduces to,∑

i

∑
p∈G

ωip(t) = αG · γG (4.5)

Further, if γG = 1, ∑
i

∑
p∈G

ωip(t) = αG (4.6)

In general there exists a limit given by,∑
i

∑
p∈G

ωip(t) ≤ max(αp) = αGmax (4.7)

We will see later, how these properties enable Plasticine to achieve certain isolation
and burst-tolerance guarantees.

4.3 Steady-State Analysis

In this subsection, it is assumed that load-conditions remain stable and a steady-state
of buffer is achieved. Following this assumption, all the equations in this subsection are
expressed without the time variable. Under this state, the queue lengths remain stable
at less than or equal to the corresponding threshold. For simplicity, it is assumed that
all the queues-lengths are at their respective thresholds. Then the total buffer occupancy
can be expressed as,

Q =
∑
i

∑
p

Qi
p (4.8)

4.4. TRANSIENT-STATE ANALYSIS 26

From the assumption that the queue-lengths are equal to their thresholds, using Eq. 4.2
and Eq. 4.3,

Q =
∑
i

∑
p

ωip · (B −Q) (4.9)

Solving for Q(t) gives,

Q =
B
∑

i

∑
p ω

i
p

1 +
∑

i

∑
p ω

i
p

(4.10)

where ωip is given by Eq. 4.3
Using, Eq. 4.10, the remaining buffer space B −Q(t) can be expressed as,

Remaining =
B

1 +
∑

i

∑
p ω

i
p

(4.11)

Under steady-state, from Eq. 4.11 and Eq. 4.2, the threshold of a queue at port i and
of priority p is given by,

T ip =
B · ωip

1 +
∑

i

∑
p ω

i
p

(4.12)

Key properties of Remaining Buffer space:
Using the notion of groups, Eq. 4.11, can be expanded as,

Remaining =
B

1 +
∑

g

∑
i

∑
p∈g ω

i
p

(4.13)

Using the maximum limit of ω property from Eq. 4.7,

Remaining ≥ B

1 +
∑

g α
g
max

(4.14)

This key property shows how the remaining buffer space and buffer-occupancy are
bounded.

For example, lets consider, there exists two priorities p0 and p1 with alpha parameters
α0 and α1, each of which belongs to a separate group. The remaining buffer space,
irrespective of the number of queues and their dequeue rates, Eq. 4.14 can be expressed
as,

Remaining ≥ B

1 + α0 + α1

(4.15)

4.4 Transient-State Analysis

Given a steady-state of buffer assuming that all the queue lengths are controlled by a
threshold, when traffic to empty queues appear, load conditions change. The new queues

4.4. TRANSIENT-STATE ANALYSIS 27

increase in length creating changes in the remaining buffer. As a result, the thresholds
and queue lengths under go a transient state. Due to the appearance of new queues, ωip
of some of the existing queues get affected due to the changes in βp (number of queues
belonging to a group) and γip (normalized dequeue rate). Let Ce denote the set of queues
whose ωip gets affected and Cne denote the set of queues whose ωip does not get affected.
Note that the ωip values of Ce only reduce. (It is not possible that ωip increases due the
appearance of a new queue). For simplicity lets denote the queue at port i and of priority
p with ordered pairs as (i, p). The set of ordered pairs of existing queues is denoted as
Sold. The ordered pairs of new queues that trigger transient state are denoted as Snew.
Observe that Sold = Cne ∪ Ce.

The arrival rate of traffic at each new queue is denoted by r and the arrival process is
fluid and deterministic. At t = 0,

T ip(0) =
ωip ·B

1 +
∑

∀(i,p)∈Sold

ωip
(4.16)

Qi
p(0) =


ωi
p·B

1+

∑
∀(i,p)∈Sold

ωip
, for ∀(i, p) ∈ Sold

0 , for ∀(i, p) ∈ Snew

(4.17)

At t = 0+, ωip of Ce change and remain same for the entire duration of transient state.
At the same time, the ωip of Cne remain unchanged. Hence such changes are assumed to
happen and the time variable is dropped for ωip in the equations.

From Eq. 4.2, the rate of change of thresholds and queue lengths can be expressed as
follows,

dT ip(t)

dt
= −ωip ·

∑
∀(i,p)∈Sold∪Snew

dQi
p(t)

dt
(4.18)

dQi
p(t)

dt
=


−γip , if Qi

p(t) > Tp(t) and ∀(i, p) ∈ Sold
max[−γip,min[dTp(t)

dt
, r − γip]] , if Qi

p(t) = Tp(t) and ∀(i, p) ∈ Sold
r − γip , if Qi

p(t) < Tp(t) and ∀(i, p) ∈ Snew
(4.19)

It can be proved by contradiction that
dT i

p(t)

dt
≤ 0 < r − γip. Solving Eq. 4.18 and

Eq. 4.19 for t = 0+,

(
dT ip(t)

dt

)
(t=0+)

= −ωip ·

 ∑
∀(i,p)∈Sold

max[−γip,
dTp(t)

dt (t=0+)
]

−ωip · ∑
∀(i,p)∈Snew

(r−γip) (4.20)

Recall that Sold = Ce ∪ Cne. All the queues belonging to Ce, will experience a change
in their ωip values at t = 0+ resulting in their queue-lengths greater than threshold. As

4.4. TRANSIENT-STATE ANALYSIS 28

a result, the rate of change of their queue lengths is their corresponding dequeue rates.
Eq. 4.20 can then be expanded as,

(
dT ip(t)

dt

)
(t=0+)

= −ωip ·

 ∑
∀(i,p)∈Ce

−γip

− ωip ·
 ∑
∀(i,p)∈Cne

max[−γip,
dTp(t)

dt (t=0+)
]


−ωip ·

∑
∀(i,p)∈Snew

(r − γip)

(4.21)
From Eq. 4.21, arrival rate of traffic in new queues i.e r can be expressed as,

r =

∑
∀(i,p)∈Snew∪Ce

γip∑
∀(i,p)∈Snew

1
−

dT i
p(t)

dt (t=0+)
+ ωip ·

 ∑
∀(i,p)∈Cne

max[−γip,
dTp(t)

dt (t=0+)
]


ωip ·

∑
∀(i,p)∈Snew

1
(4.22)

By applying summation across ∀(i, p) ∈ Ce over Eq. 4.21 (will be seen later how this
will be useful), r can be expressed as,

r =

∑
∀(i,p)∈Snew∪Ce

γip∑
∀(i,p)∈Snew

1
−

(
∑

i,p∈Cne

dT ip(t)

dt
) +

 ∑
∀(i,p)∈Cne

max[−γip,
dTp(t)

dt
]

 · ∑
∀(i,p)∈Cne

ωip

(
∑

∀(i,p)∈Cne

ωip) · (
∑

∀(i,p)∈Snew

1)

(4.23)

Now it can be observed that the value of r influences for all ∀(i, p) ∈ Ce,
(
dT i

p(t)

dt

)
(t=0+)

.

In other words, the value of r influences the total i.e
∑
∀(i,p)∈Ce

(
dT i

p(t)

dt

)
(t=0+)

which is the

aggregate rate at which thresholds drop for the non affected set of queues i.e Cne.

4.4.1 Case-1

In this case, the arrival rate r is such that, the queues belonging to Cne are able to reduce
in length exactly tracking the changes in their thresholds. As a result their queue-lengths
remain equal to the threshold throughout the transient state i.e,(

dT ip(t)

dt

)
(t=0+)

≥ −γip (4.24)

leading to, ∑
∀(i,p)∈Cne

(
dT ip(t)

dt

)
(t=0+)

≥
∑

∀(i,p)∈Cne

−γip (4.25)

4.4. TRANSIENT-STATE ANALYSIS 29

Using Eq. 4.24 and Eq. 4.25 in Eq. 4.23, the condition on r can be expressed as,

r ≤

∑
∀(i,p)∈Snew∪Ce

γip∑
∀(i,p)∈Snew

1
+

 ∗∑
∀(i,p)∈Cne

γip

 ·
1 +

∑
∀(i,p)∈Cne

ωip

(
∗∑

∀(i,p)∈Cne

ωip) · (
∑

∀(i,p)∈Snew

1)

(4.26)

Note that in Eq. 4.23, we deliberately apply summation over ∀(i, p) ∈ Cne which can
be a null set. If Cne = φ, by applying summation over ∀(i, p) ∈ Ce in Eq. 4.21, r condition
can be expressed as,

r ≤

∑
∀(i,p)∈Snew

γip∑
∀(i,p)∈Snew

1
+

 ∑
∀(i,p)∈Ce

γip

 ·
1 +

∑
∀(i,p)∈Ce

ωip

(
∑

∀(i,p)∈Ce

ωip) · (
∑

∀(i,p)∈Snew

1)
(4.27)

For generalization, observe the “*” over the summation terms in Eq. 4.26. Here after,
the convention follows that, where ever “*” appears, it means that, the summation is
deliberate and can be interchanged between ∀(i, p) ∈ Cne and ∀(i, p) ∈ Ce if Cne = φ. All
the other summations have usual meaning.

Substituting Eq.4.24 and Eq.4.25 in Eq. 4.21 and using the result in Eq. 4.19 gives,

(
dTp(t)

dt

)
(t=0+)

=

−ωip ·

 ∑
∀(i,p)∈Ce

−γip +
∑

∀(i,p)∈Snew

(r − γip)


1 +

∑
∀(i,p)∈Cne

ωip
(4.28)

(
dQi

p(t)

dt

)
(t=0+)

=



−ωip ·

 ∑
∀(i,p)∈Ce

−γip +
∑

∀(i,p)∈Snew

(r − γip)


1+

∑
∀(i,p)∈Cne

ωip
, for ∀(i, p) ∈ Cne

−γip , for ∀(i, p) ∈ Ce
r − γip , for ∀(i, p) ∈ Snew

(4.29)
These differential equations will be valid as long as Qi

p(t) = T ip(t) for ∀(i, p) ∈ Cne &&
Qi
p(t) ≥ T ip(t) for ∀(i, p) ∈ Ce && Qi

p(t) < T ip(t) for newly created queues i.e ∀(i, p) ∈ Snew.
Solving these equation, using the initial conditions, Eq. 4.16 and Eq. 4.17 leads to,

4.4. TRANSIENT-STATE ANALYSIS 30

T ip(t) =
ωip ·B

1 +
∑

∀(i,p)∈Sold

ωip
−

ωip ·

 ∑
∀(i,p)∈Ce

−γip +
∑

∀(i,p)∈Snew

(r − γip)

 · t
1 +

∑
∀(i,p)∈Cne

ωip
(4.30)

Qi
p(t) =



ωip ·B
1+

∑
∀(i,p)∈Sold

ωip
−

ωip · t · (
∑

∀(i,p)∈Ce

−γip +
∑

∀(i,p)∈Snew

(r − γip))

1+

∑
∀(i,p)∈Cne

ωip
, for ∀(i, p) ∈ Cne

ωip ·B
1+

∑
∀(i,p)∈Sold

ωip
− γip · t ,for ∀(i, p) ∈ Ce

(r − γip) · t , for ∀(i, p) ∈ Snew
(4.31)

As we can observe from Eq. 4.30 and Eq. 4.31, the new queues will grow in length
without dropping packets upto a time say t1ip when the threshold equals the queue length.
It is considered that t1ip denotes the time at which a new queue of priority p at port i first
touches the threshold. The transient state continues after t1ip until all the queues achieve
a steady state occupancy. By equating Eq. 4.30 and Eq. 4.31 for the case of ∀(i, p) ∈ Snew,
t1ip can be obtained as,

t1ip =

ωip ·B · (1 +
∑

∀(i,p)∈Cne

ωip)

(1 +
∑

∀(i,p)∈Sold

ωip) · ((r − γip) · (1 +
∑

∀(i,p)∈Cne

ωip) + ωip · (
∑

∀(i,p)∈Ce

−γip +
∑

∀(i,p)∈Snew

(r − γip)))

(4.32)

4.4.2 Case-2

In this case, the arrival rate r is such that, the queues belonging to Cne are unable to
reduce in length in accordance with the changes in their thresholds. As a result their
queue-lengths remain greater that the threshold throughout the transient state i.e,(

dT ip(t)

dt

)
(t=0+)

< −γip (4.33)

leading to, ∑
∀(i,p)∈Cne

(
dT ip(t)

dt

)
(t=0+)

<
∑

∀(i,p)∈Cne

−γip (4.34)

4.5. HOW IT ALL RELATES TO BURST-TOLERANCE 31

Using Eq. 4.33 and Eq. 4.34 in Eq. 4.23, the condition on r can be expressed as,

r >

∑
∀(i,p)∈Snew∪Ce

γip∑
∀(i,p)∈Snew

1
+

 ∗∑
∀(i,p)∈Cne

γip

 ·
1 +

∑
∀(i,p)∈Cne

ωip

(
∗∑

∀(i,p)∈Cne

ωip) · (
∑

∀(i,p)∈Snew

1)

(4.35)

if Cne = φ, then r the above condition is expressed as,

r >

∑
∀(i,p)∈Snew

γip∑
∀(i,p)∈Snew

1
+

 ∑
∀(i,p)∈Ce

γip

 ·
1 +

∑
∀(i,p)∈Ce

ωip

(
∑

∀(i,p)∈Ce

ωip) · (
∑

∀(i,p)∈Snew

1)
(4.36)

Following similar procedure as in Case-1, the equations for Case-2 can be easily de-
termined. Finally, the time t1ip at which one of the queues that belong to Snew touches
it’s threshold can be expressed as,

t1ip =
ωip ·B1 +

∑
∀(i,p)∈Sold

ωip

 ·
(r − γip) + ωip ·

 ∑
∀(i,p)∈Sold

−γip +
∑

∀(i,p)∈Snew

(r − γip)


(4.37)

4.5 How it all relates to Burst-Tolerance

Denote Burst-Tolerance for a queue of priority p at port i as Burstip can be defined as

Burstip = r · t1ip (4.38)

where r is the arrival rate of traffic.
Then, the maximum burst that can pass without experiencing drops is given by

Burstip. Say an operator specifies Burstip i.e r and t1ip to be guaranteed to pass at
all times. How can αp be optimized?

Given an arrival rate r, at a given state of buffer, whether r satisfies Case-1 or Case-2,
observe that t1ip of Case-1 is always greater than Case-2.

Let αL denote the maximum alpha value for the queues of Sold. Additionally, for
simplicity and to aim at worst-case, it is assumed that, αL is the maximum alpha value

4.5. HOW IT ALL RELATES TO BURST-TOLERANCE 32

for both Cne and Ce. Then from the properties of Omega, for a burst than happens on a
queue at port i and of priority p, for Case-1 and Case-2, from Eq. 4.32 and Eq. 4.35, the
conditions in terms of ωip can be expressed as,

αL



≤ 1
∑

∀(i,p)∈Snew

1

∗∑
∀(i,p)∈Cne

γip

 ·
r −


∑

∀(i,p)∈Snew∪Ce

γip∑
∀(i,p)∈Snew

1


− 1·!(Cne==φ)

Case-1

> 1
∑

∀(i,p)∈Snew

1

∗∑
∀(i,p)∈Cne

γip

 ·
r −


∑

∀(i,p)∈Snew∪Ce

γip∑
∀(i,p)∈Snew

1


− 1·!(Cne==φ)

Case-2

(4.39)

Let αH denote the alpha parameter for the new queues. For a burst with arrival rate
r upto time t to pass, it is required that t <= t1ip. Then, whether αL is determined based
on the above guideline or chosen based on steady-state allocations, αH can be expressed
as,

αH ≥
1

γip · βig(p)
·

t · (r − γip) · (1 + αL)

B − t ·

 ∑
∀(i,p)∈Ce

−γip +
∑

∀(i,p)∈Snew

(r − γip)

 (4.40)

Note that, in Eq. 4.40, when the denominator is less than or equal to 0, αH has no
meaning.

Chapter 5

Evaluation

Figure 5.1: Topology

In our evaluation we want to answer four main questions. First, how does Plas-
ticine compares against different buffer management schemes? Second, can the benefits
of Plasticine be achieved if DCTCP is in place? Third, is Plasticine’s performance
impacted by traffic of mixed CC?

We found that,

33

5.1. METHODOLOGY 34

• Plasticine achieves lower flow completion times and on-par throughput with con-
ventional buffer management schemes that utilize more buffer.

• Advanced TCP versions such as DCTCP that require end-hosts collaboration, only
alleviate buffer utilization problems but are heavily impacted by tcp-incast problems
due to inefficiencies of underlying buffer-management schemes.

• Plasticine is not effected by CC and allows for co-existence without any impact
on burst tolerance.

5.1 Methodology

Our evaluation is based on ns3 [3] simulations. We implemented DCTCP based on the
online available ns2 code which was used in the evaluation of DCTCP. Our implementation
of different buffer-management in ns3 is made available online.

We report 5 performance metrics throughout our evaluation (i) Burst Absorption:
The number of queries that experience zero loss (ii) Average query completion times
(iii) 99%-ile flow completion time (iv) Average and 99%-ile buffer utilization (v) Average
aggregate throughput of uplinks in our topology. All the reported metrics are an average
over 10 simulations.

5.2 Topology

We evaluate Plasticine’s performance in a Leaf Spine topology [4] shown in Fig. 5.1.
Our topology consists of 2 leaves, 2 spines with 4 links between each leaf↔spine and 40
servers connected to each leaf (oversubscription of 5). ECMP is used to load-balancing
traffic across uplinks.

Traffic mix We use two traffic distributions namely web search and query traffic. In
the case of web search we used flow size distribution from [5] and tuned the mean of
poisson inter-arrivals such that a certain load is achieved. We set the load to 90% over
the uplinks in our topology (Fig. 5.1). We refer to this type of traffic as Background
traffic. In the case of queries we assume that a query arrives at each server according to
a poisson process with mean 1 query/second. Each query consists of a server attached to
a leaf requesting Query-Size file from all the servers connected to the other leaf. Each
request is then responded by 40 servers each transmitting 1

40
of the file. All the query

responses start with open tcp window leading to 1 : 40 worst-case incast scenario. A
query is completed when the requester receives Query-Size file. We refer to this type of
traffic as foreground traffic.

Priorities and αp We consider two different cases in our evaluation (i) Switches have
single queue per port and packets do not carry priority tags. (ii) Packets are marked with
priority tags at the sender and such a tag is used for in-network priorities and queuing.

We use two αp values, αL = 0.5 and αH = 20 for low priority and high priority
respectively. In the case with single queue per port, αL is used for all the queues in the

5.3. RESULTS 35

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

0

20

40

60

80

100

%
 o

f
q

u
e
ri

e
s

th
a
t

e
x
p

e
ri

e
n
ce

 z
e
ro

 l
o
ss

(B
u
rs

t
A

b
so

rp
ti

o
n
)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

0

20

40

60

80

100

Plasticine+TCP

Plasticine+DCTCP

Comp. Sharing+TCP

Comp. Sharing+DCTCP

Dyn. Thresh+TCP

Dyn. Thresh+DCTCP

Intelligent Buffer+TCP

(a) Single priority queue per port (b) Multiple priority queues per port

Figure 5.2: % of queries that experience zero loss (representing burst absorption). (i)
Plasticine bridges the gap between DcTcp and Tcp (ii) Plasticine achieves ≈ 5% and
≈ 60% gain with DcTcp and Tcp respectively (iii) The performance degrade with DcTcp
from single queue to multiple queue per port scenarios show how DcTcp fails to adapt
it’s K parameter, allowing for more buffer utilization leading to low burst absorption.

switch. In the case with in-network priorities, the highest priority queue at each port is
configured with αH and all the other queues are configured with αL.

Additionally in the case of Plasticine, foreground traffic is mapped to the highest
priority with αH = 20 and to a group with index 0. Background traffic flows are mapped
to αL = 0.5 and to a group with index 1. All the queues are DropTail expect in the
evaluations with DCTCP. In the evaluations with DCTCP, all queues are RED with min
and max threshold set to 20 (K = 20) for 1Gbps links following the recommendations
in [5]. TCP minRTO is set to 100ms.

5.3 Results

5.3.1 Burst Absorption

We first evaluate the burst absorption capabilities by measuring the percentage of queries
in our traffic-mix that experience zero loss. A query response from multiple servers creates
an in-cast scenario leading to a burst at the switch. In Fig. 5.2, we vary the burst sizes
and measure the burst absorption capabilities of different buffer management schemes
using TCP and DCTCP. We observe that Plasticine achieves the best burst absorption
in both single and multiple queues per port scenarios. From Fig. 5.2a, we observe that
Plasticine achieves over 70% higher burst absorption compared to DT with TCP and
DCTCP. Plasticine limits the buffer occupancy of long flows to a maximum of α · B

1+α
≈

33% of total buffer where α = 0.5. Additionally, Plasticine prioritizes bursts enabling
high burst absorption with predictable performance. We notice that a significant drop in

5.3. RESULTS 36

performance of DT is mainly due to it’s inability to prioritize bursts and allocate more
buffer.

We then evaluate in a scenario where end-hosts add priority tags to packets. In
particular, query traffic (foreground) flows carry highest priority tag and background
traffic flows carry 4 low priority tags chosen uniformly at random by the end-hosts. All
the switches are equipped with multiple queues per port, where traffic is split in to queues
based on priority tags. DT is configured with a high αH value for highest priority queue
so as to allocate as much buffer as available for bursts. In this scenario, we are interested
in the performance gain obtained from isolating the bursts to a separate queue. We
observe from Fig. 5.2b that Plasticine still achieves the best burst absorption, 30%
higher than DT and 35% higher than CS with DCTCP. Enabling packet priority tags,
and priority queuing increased the burst absorption capabilities of DT . Given that bursts
are prioritized in all the algorithms, our result in Fig. 5.2b focuses on the abilities of
different buffer management schemes in (i) limiting long flows and (ii) providing more
buffer to bursts. We observe that even after prioritizing bursts, DT ′s burst absorption is
still 60% and 30% lower than Plasticine with TCP and DCTCP respectively.

Plasticine achieves better QCTs: Our previous results on burst absoption showed
that Plasticine achieves the best burst absorption compared to the state-of-the-art
solutions. We are now interested in the real impact of burst absorption on average Query
Completion Times (QCT). The QCT is the time difference between the receipt of a query
request and the arrival of complete QuerySize data at the receiver. We observe from
Fig. 5.3a that Plasticine achieved ≈ 115ms lower QCTs than DT with DCTCP and
≈ 18ms lower QCTs than CS with DCTCP. Further even when bursts are prioritized in
a multi queue per port architecture, we observe from Fig. 5.3b that Plasticine achieved
≈ 21ms lower QCTs. Indeed it is clear that, better burst absorption leads to better query
completion times.

The case of Complete Sharing: Certain control over queue lengths without the need
for buffer management can be achieved with DCTCP as can be seen from Fig. 5.5 where
the average buffer occupancy with Complete Sharing is around 20% with DCTCP and 80%
with TCP. As complete sharing is analogous to a case with no buffer management, this
result shows the capability of DCTCP to control queue lengths. In this case, simply leaving
the buffer with no buffer management could enable high burst absorption. However, the
burst tolerance of Complete Sharing with TCP is poor and especially leads to throughput
loss as can be seen in Fig. 5.5. Nevertheless, Plasticine achieves 10% higher burst
absorption than Complete Sharing by (i) dynamically limiting the buffer occupancy of
long flows, (ii) prioritizing bursts and reducing the allocation for long flows if needed for
a short time to provide further more buffer to bursts.

5.3.2 Flow completion times (FCT) for short flows

We consider flows which are less than a 100KB in size as short flows. FCT for such flows
is mainly effected by (i) queuing delay, (ii) packet loss, eventually timeouts and (iii)
number of round trips spent before completion. In the presence of bursts and long flows,

5.3. RESULTS 37

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

1

5

10

50

100

300

A
v
g

.
Q

C
T
 (

m
s)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

1

5

10

50

100

300

Plasticine+TCP

Plasticine+DCTCP

Comp. Sharing+TCP

Comp. Sharing+DCTCP

Dyn. Thresh+TCP

Dyn. Thresh+DCTCP

Intelligent Buffer+TCP

(a) Single priority queue per port (b) Multiple priority queues per port

Figure 5.3: Average Query completion times, showing Plasticine outperforms in both
single and multi queue architectures.

we first evaluated the performance of short flows in a single queue per port architecture.
We observe from Fig. 5.4a that 99 percentile flow completion times are significantly lower
with Plasticine in comparison to other buffer management schemes. In particular,
Plasticine achieved≈ 10 times lower FCTs than the state-of-the-art Dynamic Threshold
(DT) when TCP is used as congestion control. The poor performance with DT is due
to the presence of bursts that severely effect short flows. With DT, bursts and long
flows consume majority of a queue’s allocated buffer leaving little to no buffer for short
flows. As a result, short flows experience timeouts even if the overall buffer has remaining
space (see Fig. 5.5). As expected, DCTCP improved FCTs for DT, however still ≈ 2
times higher than Plasticine. On the other hand, the FCTs of Plasticine with TCP
and DCTCP show a counter-intuitive result. First, Plasticine achieves lower FCTs
with both TCP and DCTCP due to actively limiting long flows buffer occupancy and
prioritizing short flows. Second, DCTCP under high loads has queue lengths frequently
exceeding the marking threshold. As a result, short flows are prone to excessive marking
feedback resulting in a relatively slower completion of flows. Nevertheless the difference
is not significant.

Next, we observe the effect on short flow completion times when the queuing inter-
ference from bursts is removed. Here, bursts are marked prior and hence are separated
to a high priority queue. Our evaluation in a single queue per port showed that short
flows experience timeouts due to the presence of bursts. However we show in Fig. 5.4b
that multi queue architecture and separation of bursts to a dedicated queue only wors-
ened the flow completion times, expect in the case of Plasticine. Multiple queues share
both buffer and dequeue rate at the same port. Plasticine pro-actively controls the
threshold to minimize queuing delays caused by long flows, thanks to the dequeue rate
factor in it’s allocation. As discussed in Sec. 2, none of the current buffer management
and congestion control mechanisms are capable of such adaptive buffer allocation based

5.3. RESULTS 38

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

5

10

50

100

300

9
9

%
-i

le
 F

C
T
 (

m
s)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

5

10

50

100

300

Plasticine+TCP

Plasticine+DCTCP

Comp. Sharing+TCP

Comp. Sharing+DCTCP

Dyn. Thresh+TCP

Dyn. Thresh+DCTCP

Intelligent Buffer+TCP

(a) Single priority queue per port (b) Multiple priority queues per port

Figure 5.4: 99%-ile FCT for short flows (< 100KB) from background traffic. (i) In single
queue per port, bursts do not significantly impact short flows 99%-ile FCTs as can be
seen from relatively no variation (ii) In multi queue per port, DT and CS experience a
shoot up in FCTs as the bursts start to interfere where the interference is due to drastic
reduction in threshold of other queues caused by high priority queue occupancy by bursts.
(iii) Plasticine offers best FCT performance for short flows.

on dequeue rates. Finally, we see from Fig. 5.4b and Fig. 5.4a that Plasticine achieved
significantly lower flow completion times for short flows, ≈ 10× with TCP and ≈ 2× with
DCTCP, irrespective of single or multiple queues per port sharing the buffer.

5.3.3 Buffer Occupancy and throughput

Finally, after comparing the performance metrics, we now compare the overall buffer oc-
cupancies and the achieved throughput. Indeed, a high burst absorption can be achieved
by overly dropping long flows causing throughput loss. Hence we are interested in under-
standing whether Plasticine’s performance gain costs any throughput loss. Additionally
we also measure buffer occupancies which explains the underlying reasons for the perfor-
mance of different buffer management algorithms shown in previous sections.

Plasticine achieves on-par throughput: All the performance gains shown in the
previous sections are achieved without any significant loss in throughput as seen in Fig. 5.5.
In particular, all the algorithms achieve similar throughput except Complete Sharing with
TCP which experiences significant throughput loss. It is an expected behavior with CS
as there is no control over buffer allocation and can lead to unfair buffer utilization and
consequently throughput loss. However we notice that, CS with DCTCP achieves on-
par throughput. This is due to the fact that DCTCP controls the buffer utilization and
under a controlled setup, there is simply no necessity for a buffer management scheme to
maintain fairness in buffer utilization. We show in the next section how CS falls back to
poor performance with (i) traffic-mix consisting both TCP and DCTCP (ii) presence of

5.3. RESULTS 39

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

10

20

40

60

80

100

A
v
g
.
B

u
ff

e
r

o
cc

u
p
a
n
cy

 (
%

)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

40

60

80

100

9
9

%
-i

le
 B

u
ff

e
r

o
cc

u
p
a
n
cy

 (
%

)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

70

80

90

100

A
v
g
.
U

p
lin

ks
 u

ti
liz

a
ti

o
n
 (

%
)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

10

20

40

60

80

100

A
v
g
.
B

u
ff

e
r

o
cc

u
p
a
n
cy

 (
%

)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

40

60

80

100
9

9
%

-i
le

 B
u
ff

e
r

o
cc

u
p
a
n
cy

 (
%

)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

70

80

90

100

A
v
g
.
U

p
lin

ks
 u

ti
liz

a
ti

o
n
 (

%
)

Plasticine+TCP

Plasticine+DCTCP

Comp. Sharing+TCP

Comp. Sharing+DCTCP

Dyn. Thresh+TCP

Dyn. Thresh+DCTCP

Intelligent Buffer+TCP

(a) Single priority queue per port
0 20 40 60 80

Query (Burst) size relative to buffer size (%)

10

20

40

60

80

100

A
v
g
.
B

u
ff

e
r

o
cc

u
p
a
n
cy

 (
%

)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

40

60

80

100

9
9

%
-i

le
 B

u
ff

e
r

o
cc

u
p
a
n
cy

 (
%

)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

70

80

90

100

A
v
g
.
U

p
lin

ks
 u

ti
liz

a
ti

o
n
 (

%
)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

10

20

40

60

80

100

A
v
g
.
B

u
ff

e
r

o
cc

u
p
a
n
cy

 (
%

)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

40

60

80

100

9
9

%
-i

le
 B

u
ff

e
r

o
cc

u
p
a
n
cy

 (
%

)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

70

80

90

100

A
v
g
.
U

p
lin

ks
 u

ti
liz

a
ti

o
n
 (

%
)

Plasticine+TCP

Plasticine+DCTCP

Comp. Sharing+TCP

Comp. Sharing+DCTCP

Dyn. Thresh+TCP

Dyn. Thresh+DCTCP

Intelligent Buffer+TCP

(b) Multiple priority queues per port

Figure 5.5: Buffer Occupancy comparison in a pure DC traffic-mix setup.

single UDP or malicious flow.

Plasticine efficiently reduces average buffer utilization We observe from Fig. 5.5
that with TCP, Plasticine enabled ≈ 30% lower average buffer utilization compared to
other buffer management schemes. As mentioned earlier, Plasticine limits the utiliza-
tion of long flows to a maximum of α · B

1+α
≈ 33% of buffer where α = 0.5. We observe

that the bound holds well, as can be seen from average buffer occupancies and 99-%ile
buffer occupancy at close to zero burst size. Further, DCTCP reduced the average buffer
utilization for all the schemes. Finally, we observe that Plasticine strategically allocates
the 99-%ile buffer that enables high burst absorption and better flow completion times.
On the other hand, we observe that DT and CS over allocate in average and in 99%-ile
even for small burst sizes, with out any significant benefit in such over allocations.

Overall, Plasticine achieves high Burst Absorption, improves Query Completion
Times and short-Flow Completion times, reduces average buffer utilization and still achieves
on-par throughput.

5.3. RESULTS 40

5.3.4 TCP and DCTCP interactions

We evaluate Plasticine performance in a mixed congestion control traffic pattern. Par-
ticularly, we generate the same traffic pattern as in the previous sections with a change
that, a flow is either DCTCP or TCP chosen uniformly at random. At all the network
devices, there exists a mechanism which splits DCTCP and TCP flows into two separate
queues, ECN enabled and tail drop queues respectively. The aim of this evaluation is
to find whether mixed CC effects the performance of Plasticine and how other buffer
management schemes work in this scenario.

We find that, although DCTCP consumes less buffer, TCP flows tend to overuse the
buffer in case of DT and even worse in case of Complete Sharing as observed in Fig. 5.6.
Plasticine dynamically allocates buffer to TCP flows to achieve high throughput. At
the same time, bounds the overall allocations leaving enough buffer for bursts and short
flows. Finally, Fig. 5.6 shows that Plasticine is unaffected even when TCP flows coexist
with DCTCP.

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

0

20

40

60

80

100

%
 o

f
q
u
e
ri

e
s

th
a
t

e
x
p
e
ri

e
n
ce

 z
e
ro

 l
o
ss

(B
u
rs

t
A

b
so

rp
ti

o
n
)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

25

50

75

100

125

150

175

200

9
9

%
-i

le
 F

C
T
 (

m
s)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

70

80

90

100

A
v
g
.
U

p
lin

ks
 u

ti
liz

a
ti

o
n
 (

%
)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

20

40

60

80

100

A
v
g
.
B

u
ff

e
r

o
cc

u
p
a
n
cy

 (
%

)
(T

o
ta

l)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

20

40

60

80

100

A
v
g
.
B

u
ff

e
r

o
cc

u
p
a
n
cy

 (
%

)
(E

C
N

-T
ra

ff
ic

 q
u
e
u
e
)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

20

40

60

80

100

A
v
g
.
B

u
ff

e
r

o
cc

u
p
a
n
cy

 (
%

)
(n

o
n
-E

C
N

-T
ra

ff
ic

 q
u
e
u
e
)

Plasticine Comp. Sharing Dyn. Thresh

Figure 5.6: Evaluation using TCP and DCTCP mixed traffic pattern showing how burst
absorption and flow completion times are severely affected in the case of Dynamic Thresh-
old and Complete Sharing while Plasticine successfully limits TCP buffer consumption
enabling high burst absorption and low flow completion times for short flows

5.3. RESULTS 41

5.3.5 WAN and DC traffic interactions

Finally, we evaluate our algorithm Plasticine in a setup where wide-area-network (WAN)
and data center (DC) network traffic coexist1. In particular, such a traffic-mix majorly
has a single point of congestion at the top of the rack switch. We set the intra-datacenter
RTT to 200µs and WAN RTT to 10ms. All the links in the network are 1Gbps except
the links connecting to WAN which are 10Gbps. We use DCTCP in all the evaluation
from here. WAN and DC are split into separate queues at the switches and a marking
threshold of 200 (and buffer management α = 0.75) and 20 packets (and buffer manage-
ment α = 1) is set for each queue respectively. A high alpha value α = 1024 is used
for all short and bursty flows in the case of Plasticine. We evaluate in two scenarios
where WAN to DC traffic ratio is 5:1 and 1:5 with an overall load of 80% on the uplinks.
We use weighted round-robin scheduling for the two queues whose weights are set to the
same ratio of traffic mix. Finally, the foreground query traffic is part of data center traffic
i.e., rack-to-rack. In this setup, we are interested in the abilities of buffer-management to
sustain good performance for data center traffic while not losing throughput of WAN. In
other words, isolation of the two traffic type. We use the same performance metrics as in
the previous sections to compare different buffer management schemes.

Variation across Burst sizes

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

0

20

40

60

80

100

%
 o

f
q

u
e
ri

e
s

th
a
t

e
x
p

e
ri

e
n
ce

 z
e
ro

 l
o
ss

(B
u
rs

t
A

b
so

rp
ti

o
n
)

5:1 WAN/DC

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

0

20

40

60

80

100
1:5 WAN/DC

Plasticine+DCTCP Comp. Sharing+DCTCP Dyn. Thresh+DCTCP

Figure 5.7: % of queries that experience zero loss i.e., burst absorption in WAN+DC
traffic-mix showing how DT and Comp.Sharing suffer from the presence of WAN traffic
while Plasticine still achieves high burst-absorption with a 40 + % gain.

First, we observe from Fig. 5.7 that Plasticine achieves significantly high burst ab-

1We only evaluate using DCTCP as congestion control, 1Gbps bottleneck and 10ms WAN RTT i.e.,
1.25MB of BDP. We use a total buffer size of 1MB. In this case, traditional TCP performs poorly as
Buffer < BDP even for single port. However DCTCP enables lower buffer requirement with a marking
threshold of ≈ 200KB in this case. For higher capacity links and today’s available buffer sizes often
experience Buffer < BDP and how to reduce the buffer requirement is a hot-topic in research [22] which
falls under congestion-control research and is out of scope of this thesis.

5.3. RESULTS 42

sorption ≈ 40%. greater than Complete Sharing (CS) and ≈ 80% greater than Dynamic
Threshold (DT). In particular, CS and DT perform much worse than in the pure DC
scenario (Fig, 5.2a 5.2b). On the other hand, Plasticine performs well effectively iso-
lating different traffic types. Plasticine dynamically allocates buffer to WAN traffic
and bounds them to a maximum of α × B

1+α
≈ 40% of buffer, where α = 0.75. At the

same time Plasticine bounds the long flow buffer occupancy of data center traffic to a
maximum of α × B

1+α
≈ 50% of buffer, where α = 1. Finally, Plasticine allocates as

much buffer as need to short and bursty flows enabling a high burst absorption without
interference from WAN traffic.

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

1

5

10

50

100

300

A
v
g
.
Q

C
T
 (

m
s)

5:1 WAN/DC

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

1

5

10

50

100

300
1:5 WAN/DC

Plasticine+DCTCP Comp. Sharing+DCTCP Dyn. Thresh+DCTCP

Figure 5.8: Average Query Completion Times in WAN+DC traffic-mix. Plasticine
achieves 40ms and 30ms lower query completion times in 5:1 and 1:5 Wan, DC traffic
ratios.

Analogous to burst absorption, similar performance order is seen in Query completion
times in Fig. 5.8. High burst absorption enables better query completion times. As a
result, Plasticine achieves 40ms and 100ms lower query completion times compared to
CS and DT respectively with 5:1 WAN/DC traffic mix. In the scenario with lower volume
of WAN traffic, Plasticine still outperforms convention buffer management algorithms
with 30ms and 100ms lower query completion times compared to CS and DT respectively.

We observe from Fig. 5.9 that Plasticine outperforms in flow completion times for
short flows in data center traffic. In particular CS performs very poorly in flow completion
times although it performs well in burst absorption and query completion times. This is
due to the fact that CS allows each queue to take up as much buffer as available and has
no performance guarantees.

Finally, we show the buffer occupancy and achieved uplink utilizations in Fig. 5.10.
We observe that Plasticine enables a lower average buffer utilization on one hand and
dynamically takes more 99%-ile buffer to accomodate more buffer on the other hand. In
particular, we observe that although CS performs good enough in burst absorption and
query completion times, it experiences throughput loss when WAN traffic dominates in
the traffic-mix (5:1 WAN/DC).

To conclude, Plasticine effectively isolates the interactions between WAN and DC

5.3. RESULTS 43

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

5

10

50

100

300

9
9

%
-i

le
 F

C
T
 (

m
s)

5:1 WAN/DC

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

5

10

50

100

300
1:5 WAN/DC

Plasticine+DCTCP Comp. Sharing+DCTCP Dyn. Thresh+DCTCP

Figure 5.9: 99%-ile flow completion times for short-flows (< 100KB) in a WAN+DC
traffic-mix.

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

10

20

40

60

80

100

A
v
g

.
B

u
ff

e
r

o
cc

u
p

a
n
cy

 (
%

)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

40

60

80

100

9
9

%
-i

le
 B

u
ff

e
r

o
cc

u
p

a
n
cy

 (
%

)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

70

75

80

85

90

A
v
g

.
U

p
lin

ks
 u

ti
liz

a
ti

o
n
 (

%
)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

10

20

40

60

80

100

A
v
g

.
B

u
ff

e
r

o
cc

u
p

a
n
cy

 (
%

)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

40

60

80

100

9
9

%
-i

le
 B

u
ff

e
r

o
cc

u
p

a
n
cy

 (
%

)

0 20 40 60 80
Query (Burst) size relative to buffer size (%)

70

75

80

85

90

A
v
g

.
U

p
lin

ks
 u

ti
liz

a
ti

o
n
 (

%
)

Plasticine+DCTCP Comp. Sharing+DCTCP Dyn. Thresh+DCTCP

5
:1

 W
A

N
/D

C
1

:5
W

A
N

/D
C

Figure 5.10: Buffer occupancy and throughput comparisons in WAN+DC traffic-mix.
Plasticine successfully reduces the average buffer utilizations, strategically utilizes the
99%-ile buffer space as the burst sizes increase and achieves on-par throughput in both
5:1 and 1:5 WAN/DC traffic mix ratios.

traffic, achieves better performance for data center flows at the same time not losing
throughput in WAN.

Chapter 6

Conclusion

Today’s data center networks host applications whose workloads and aggregate traffic
patterns differ widely from internet traffic. In this aspect, numerous efforts in the recent
past were in the congestion control algorithms to reduce the buffer pressure. However
buffer problems still persist. In this thesis, we revisit the long forgotten buffer management
which is considered as a black box now. We show the inefficiencies of state-of-the-art
buffer management scheme Dynamic Thresholds and emphasize that the available buffer
managements do not address the needs of today’s data center networks. We then proposed
a novel buffer management algorithm Plasticine, analyze it in detail and establish it’s
theoretical bounds. An implementation of Plasticine on barefoot tofino (programmable
switch) will be presented in [6] and is out of scope of this thesis. Finally, we evaluate our
proposed algorithm Plasticine in a pure Data Center (DC) traffic, mixed congestion
control DC traffic, WAN and DC mixed traffic patterns, using simulations. Our evaluation
shows that Plasticine outperforms the state-of-the-art solutions with over ≈ 70% gain
in some cases and a minimum of 5% gain in all cases. Overall Plasticine enables high
burst absorption, better flow completion times, offers flexibility in isolating traffic classes
while still achieving on-par throughput.

44

Bibliography

[1] Input and output queueing. https://cs.nyu.edu/ anirudh/lectures/lec12.pdf.

[2] Nexus 9000 architecture. https://www.ciscolive.com/c/dam/r/
ciscolive/apjc/docs/2018/pdf/BRKDCT-3640.pdf.

[3] Ns3 network simulator. https://www.nsnam.org/.

[4] Alizadeh, M., and Edsall, T. On the data path performance of leaf-spine
datacenter fabrics. In 2013 IEEE 21st annual symposium on high-performance in-
terconnects (2013), IEEE, pp. 71–74.

[5] Alizadeh, M., Greenberg, A., Maltz, D. A., Padhye, J., Patel, P., Prab-
hakar, B., Sengupta, S., and Sridharan, M. Data center tcp (dctcp). ACM
SIGCOMM computer communication review 41, 4 (2011), 63–74.

[6] Anonymous. To be revealed in upcoming months (2020).

[7] Appenzeller, G., Keslassy, I., and McKeown, N. Sizing router buffers,
vol. 34. ACM, 2004.

[8] Beheshti, N., Ganjali, Y., Ghobadi, M., McKeown, N., and Salmon, G.
Experimental study of router buffer sizing. In Proceedings of the 8th ACM SIGCOMM
conference on Internet measurement (2008), pp. 197–210.

[9] Choudhury, A. K., and Hahne, E. L. Dynamic queue length thresholds for
shared-memory packet switches. IEEE/ACM Transactions On Networking 6, 2
(1998), 130–140.

[10] Das, S., and Sankar, R. Broadcom smart-buffer technology in data center
switches for cost-effective performance scaling of cloud applications. Broadcom White
Paper (2012).

[11] Dhamdhere, A., and Dovrolis, C. Open issues in router buffer sizing. ACM
SIGCOMM Computer Communication Review 36, 1 (2006), 87–92.

[12] Ganjali, Y., and McKeown, N. Update on buffer sizing in internet routers.
ACM SIGCOMM Computer Communication Review 36, 5 (2006), 67–70.

45

BIBLIOGRAPHY 46

[13] Ganjali, Y., and McKeown, N. Update on buffer sizing in internet routers.
ACM SIGCOMM Computer Communication Review 36, 5 (2006), 67–70.

[14] Hahne, E. L., and Choudhury, A. K. Dynamic queue length thresholds for
multiple loss priorities. IEEE/ACM Transactions On Networking 10, 3 (2002), 368–
380.

[15] He, Y., Batta, N., and Gashinsky, I. Understanding switch buffer utilization
in clos data center fabric.

[16] Krishnan, S., Choudhury, A. K., and Chiussi, F. M. Dynamic partitioning:
A mechanism for shared memory management. In IEEE INFOCOM’99. Conference
on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. The Future is Now (Cat. No.
99CH36320) (1999), vol. 1, IEEE, pp. 144–152.

[17] Mathis, M., and McGregor, A. Buffer sizing: a position paper.

[18] McKeown, N., Appenzeller, G., and Keslassy, I. Sizing router buffers (re-
duxß). ACM SIGCOMM Computer Communication Review (Oct. 2019).

[19] Miao, R., Li, B., Liu, H. H., and Zhang, M. Buffer sizing with hpcc.

[20] Opsasnick, E. Buffer management and flow control mechanism including packet-
based dynamic thresholding. US patent US7953002B2 .

[21] Roy, A., Zeng, H., Bagga, J., Porter, G., and Snoeren, A. C. Inside the
social network’s (datacenter) network. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication (2015), pp. 123–137.

[22] Saeed, A., Gupta, V., Goyal, P., Sharif, M., Pan, R., Ammar, M., Ze-
gura, E., Jang, K., Alizadeh, M., Kabbani, A., et al. Annulus: A dual
congestion control loop for datacenter and wan traffic aggregates. In Proceedings of
the Annual conference of the ACM Special Interest Group on Data Communication
on the applications, technologies, architectures, and protocols for computer commu-
nication (2020), pp. 735–749.

[23] Theis, T. N., and Wong, H.-S. P. The end of moore’s law: A new beginning for
information technology. Computing in Science & Engineering 19, 2 (2017), 41–50.

[24] Zhang, Q., Liu, V., Zeng, H., and Krishnamurthy, A. High-resolution mea-
surement of data center microbursts. In Proceedings of the 2017 Internet Measure-
ment Conference (2017), pp. 78–85.

[25] Zhou, Y. Resource allocation in computer networks: Fundamental principles and
practical strategies.

	Acknowledgments
	Work-place, team and contribution
	Abstract
	Introduction
	Good old Moore's law days and ATM
	End of Moore's law and DCNs
	Buffer management: forgotten since 1997
	Contributions

	Background and Motivation
	Preliminaries
	Datacenter traffic and bursts
	Buffer requirement
	TCP
	Data Center TCP (DCTCP)
	Buffer requirement VS utilization (Ideal VS Real world)

	Buffer management
	Dynamic Threshold (DT)
	DT's inefficiencies

	Plasticine Overview
	Plasticine Analysis
	Assumptions
	Plasticine
	Steady-State Analysis
	Transient-State Analysis
	Case-1
	Case-2

	How it all relates to Burst-Tolerance

	Evaluation
	Methodology
	Topology
	Results
	Burst Absorption
	Flow completion times (FCT) for short flows
	Buffer Occupancy and throughput
	TCP and DCTCP interactions
	WAN and DC traffic interactions
	Variation across Burst sizes

	Conclusion
	Bibliography

