
Adaptive Protocols and
Reconfigurable Optical

Interconnects
for Datacenter Networks

vorlegt von
Vamsi Addanki, M.Sc.

ORCID: 0000-0002-0577-0413

an der Fakultät IV – Elektrotechnik und Informatik, Technische Universität Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:
Vorsitzender: Prof. Dr. Axel Küpper
Gutachter: Prof. Dr. Stefan Schmid
Gutachter: Prof. Dr. Rachit Agarwal
Gutachter: Prof. Dr. Michael Schapira
Gutachterin: Prof. Dr. Anja Feldmann
Gutachterin: Prof. Dr. Maria Apostolaki

Tag der wissenschaftlichen Aussprache: 13. Dezember 2024

Berlin 2025

https://orcid.org/0000-0002-0577-0413

1

To Mom and Dad

2

Acknowledgments
I am deeply grateful to my PhD advisor, Stefan Schmid, for the opportunity to
pursue this thesis. His guidance, unwavering support, and encouragement have
been invaluable throughout my research. I feel fortunate to have had an advisor
who strikes the perfect balance — and has shown me how to find it myself —
between addressing fundamental questions and designing practical, real-world
systems. Stefan not only pointed me to the right direction but also taught me
fundamental concepts, techniques, and gave me the freedom to explore and develop
my ideas. I am grateful for his mentorship, which has been instrumental in shaping
my research and my career.

I would like to extend my heartfelt thanks to Chen Avin for his thought-
provoking discussions, insightful feedback, and invaluable guidance. I am deeply
grateful to Maciej Pacut for introducing me to the field of online algorithms. I
would also like to thank Maria Apostolaki, whose co-supervision of my MSc thesis
and continuous encouragement inspired me to pursue a PhD. I am also grateful
to Manya Ghobadi for her guidance, for hosting me as a visiting student at MIT,
and for her valuable insights and feedback. My sincere gratitude goes to Laurent
Vanbever for his supervision during my MSc thesis and for supporting me through
the PhD application process. I am thankful to Wei Bai, Prateesh Goyal and
Ilias Marinos, for introducing me to timely and important problems in hyperscale
datacenters. Additionally, I wish to thank my former supervisors, Dario Rossi,
Leonardo Linguaglossa, and Luigi Iannone, whose guidance and support laid the
foundation for this journey.

I would like to extend my sincere gratitude to the members of my thesis
committee for their invaluable time in reviewing this work. I am also deeply grateful
to the anonymous reviewers in the double-blind peer-review process of Networking
conferences for their thoughtful comments and constructive suggestions, which
greatly enriched this work. Additionally, I have had the privilege of collaborating
with many talented researchers from around the world: Maria Apostolaki, Chen
Avin, Wei Bai, Manya Ghobadi, Prateesh Goyal, Theo Jepsen, Ilias Marinos,
Oliver Michel, Maciej Pacut, Gábor Rétvári, Laurent Vanbever, and many others,
whose insights and perspectives have profoundly shaped my research.

Heartfelt thanks to the members of the INET group for their engaging dis-
cussions, unwavering support, random coffee breaks, and memorable weekends.
Thanks not only for random whiteboard sessions but also for joining random
concert plans.

I am profoundly grateful to my family for their boundless love, encouragement,
and support. Special thanks to my sister for her invaluable support on various
occasions. I also want to honor my late grandfathers, whose guidance and wishes
inspired me to pursue my PhD. A heartfelt thanks to my dad, who has always
been my blueprint for work ethic.

Lastly, I want to express special thanks to all the great musicians, including
my mom, whose music and life journeys have been a constant source of inspiration
and motivation in all my work.

3

4

Abstract
Datacenter networks form the backbone of modern computing and storage, driving
the expansion of online services and applications. As these networks evolve,
the demand for higher bandwidth and lower latency has increased significantly.
Recently, GPU clusters have emerged within datacenters for large-scale distributed
training, presenting unique networking challenges.

This thesis addresses several critical challenges in datacenter networks—congestion
control, load balancing, buffer sharing, and reconfigurable optical interconnects—and
is structured into three main parts.

First, we address the transport protocol problem in modern datacenters. We
propose PowerTCP, a novel congestion control algorithm that dynamically adjusts
the congestion window based on the bandwidth-window product (or “power”),
a new congestion indicator. Through both analytical and empirical validation,
we demonstrate PowerTCP’s practicality in datacenter networks, showing that it
meets key requirements for high throughput and low latency. We further introduce
Ethereal, a transport protocol specifically designed for distributed training work-
loads in leaf-spine topologies. Ethereal achieves optimal load balancing, akin to
packet spraying, by minimally splitting a few application flows while maintaining
single-path transport semantics from the network’s perspective. Empirically, we
show that Ethereal surpasses state-of-the-art algorithms in collective communica-
tion completion times.

Second, we tackle the buffer-sharing problem in datacenter switches. We
propose ABM, an innovative buffer-sharing algorithm that ensures isolation across
different traffic classes while improving burst absorption. As an extension, we
introduce Reverie, a solution that enables lossy and lossless traffic to coexist within
the same network. Reverie preserves isolation between these traffic types while
enhancing burst absorption and flow completion times for both. Additionally, we
propose Credence, the first buffer-sharing algorithm to integrate machine-learned
predictions. Our analysis shows that Credence achieves near-optimal throughput
under perfect predictions and performs effectively even with imperfect predictions,
significantly improving flow completion times in empirical tests.

Finally, as Moore’s law approaches its limits, we address the challenge of high-
performance optical interconnects in datacenter networks. We present the first
formal result on the throughput of periodic networks, establishing an equivalence
to a corresponding static network. Based on this result, we propose Mars, a
demand-oblivious reconfigurable optical interconnect that achieves near-optimal
throughput and low latency across various traffic patterns, even with shallow buffers.
Additionally, we introduce Vermilion, a demand-aware optical interconnect that
dynamically reconfigures according to traffic patterns. Our analysis and empirical
results show that Vermilion delivers high throughput across diverse traffic patterns,
exceeding the throughput capabilities of demand-oblivious interconnects.

5

6

Zusammenfassung
Rechenzentrumsnetzwerke bilden das Rückgrat moderner Computer- und Speicher-
systeme und treiben die Expansion von Online-Diensten und -Anwendungen voran.
Mit der Weiterentwicklung dieser Netzwerke steigt die Nachfrage nach höherer
Bandbreite und geringerer Latenz deutlich. In jüngster Zeit sind GPU-Cluster
für groß angelegte verteilte Trainingsaufgaben in Rechenzentren entstanden und
stellen besondere Herausforderungen an die Netzwerktechnik.

Diese Arbeit behandelt mehrere zentrale Herausforderungen in Rechenzentrum-
snetzwerken—Staukontrolle, Lastverteilung, Pufferspeicherung und rekonfigurier-
bare optische Interconnects—und ist in drei Hauptteile gegliedert.

Zunächst beschäftigen wir uns mit dem Transportprotokollproblem in modernen
Rechenzentren. Wir schlagen PowerTCP vor, einen neuartigen Algorithmus zur
Staukontrolle, der das Staukontrollfenster dynamisch auf Grundlage des Produktes
aus Bandbreite und Fenster (oder „Power“), einem neuen Stauindikator, anpasst.
Durch analytische und empirische Validierung zeigen wir, dass PowerTCP für
Rechenzentrumsnetzwerke praktisch ist und wichtige Anforderungen an hohen
Durchsatz und geringe Latenz erfüllt. Zusätzlich stellen wir Ethereal vor, ein Trans-
portprotokoll, das speziell für verteilte Trainingsaufgaben in Leaf-Spine-Topologien
entwickelt wurde. Ethereal erreicht eine optimale Lastverteilung, ähnlich dem
„Packet Spraying“, indem es einige wenige Anwendungsflüsse minimal aufteilt,
während es aus Sicht des Netzwerks eine Single-Path-Transportsemantik beibehält.
Empirisch zeigen wir, dass Ethereal in Bezug auf die Kollektivkommunikationsab-
schlusszeiten den aktuellen Stand der Technik übertrifft.

Im zweiten Teil befassen wir uns mit dem Pufferspeicherungsproblem in
Switches von Rechenzentren. Wir schlagen ABM vor, einen innovativen Pufferspe-
icherungsalgorithmus, der eine Isolation zwischen verschiedenen Verkehrsklassen
gewährleistet und gleichzeitig die Aufnahme von Bursts verbessert. Als Erweiterung
stellen wir Reverie vor, eine Lösung, die ermöglicht, dass verlustbehafteter und ver-
lustfreier Verkehr im gleichen Netzwerk koexistieren. Reverie bewahrt die Isolation
zwischen diesen Verkehrstypen und verbessert gleichzeitig die Burstaufnahme und
Abschlusszeiten von Flüssen beider Typen. Darüber hinaus schlagen wir Credence
vor, den ersten Pufferspeicherungsalgorithmus, der maschinell erlernte Vorhersagen
integriert. Unsere Analyse zeigt, dass Credence bei perfekten Vorhersagen nahezu
optimalen Durchsatz erreicht und auch bei unvollkommenen Vorhersagen effektiv
arbeitet. Unsere empirischen Tests zeigen, dass Credence die Abschlusszeiten für
Rechenzentrums-Workloads erheblich verbessert.

Schließlich, da das Ende von Moore’s Law näher rückt, befassen wir uns mit
der Herausforderung leistungsstarker optischer Interconnects in Rechenzentrum-
snetzwerken. Wir präsentieren das erste formale Ergebnis über den Durchsatz
periodischer Netzwerke und zeigen dabei eine Äquivalenz zu einem entsprechenden
statischen Netzwerk auf. Auf Grundlage dieses Ergebnisses schlagen wir Mars
vor, einen nachfrageunabhängigen rekonfigurierbaren optischen Interconnect, der
nahezu optimalen Durchsatz und geringe Latenz über verschiedene Verkehrsmuster
hinweg erreicht, selbst bei geringen Puffern. Zusätzlich stellen wir Vermilion vor,
einen nachfragebewussten optischen Interconnect, der sich dynamisch je nach

7

8

Verkehrsmustern rekonfiguriert. Unsere Analyse und empirischen Ergebnisse
zeigen, dass Vermilion bei verschiedenen Verkehrsmustern einen hohen Durchsatz
erzielt und die Durchsatzgrenzen nachfrageunabhängiger Interconnects ßbertrifft.

Contents

Adaptive Protocols and Reconfigurable Optical Interconnects for
Datacenter Networks

Acknowledgments 3

Abstract 5

Zusammenfassung 7

1 Preface 13
1.1 Problems . 13
1.2 Thesis Outline & Contributions . 15

I Datacenter Transport 23

2 Congestion Control 25
2.1 Motivation . 27

2.1.1 Desirable Control Law Properties 29
2.1.2 A Simplified Analytical Model 30
2.1.3 Drawbacks of Existing Control Laws 33
2.1.4 Lessons Learned and Design Goals 35

2.2 Power-Based Congestion Control 35
2.2.1 The Notion of Power . 35
2.2.2 Benefits of Power-Based CC 36
2.2.3 The PowerTCP Algorithm 36
2.2.4 Properties of PowerTCP 38
2.2.5 θ-PowerTCP: Standalone Version 41
2.2.6 Deploying PowerTCP . 42

2.3 Evaluation . 43
2.3.1 Setup . 44
2.3.2 Results . 45

2.4 Case Study: Reconfigurable DCNs 49
2.5 Related Work . 51
2.6 Summary . 52

3 Load Balancing 53
3.1 Motivation . 55

3.1.1 Repetitive Incasts at the Edge 55
3.1.2 Non-uniform Load in the Core 56
3.1.3 Poor Completion Time . 56

3.2 Singlepath vs Multipath . 57
3.3 Ethereal Transport for AI . 59
3.4 Preliminary Results . 60
3.5 Epilogue . 63

9

10 CONTENTS

II Datacenter Switch Buffer Sharing 65

4 Buffer Sharing with Lossy Traffic 67
4.1 Motivation . 69

4.1.1 Desirable Properties . 69
4.1.2 Limitations of Existing Approaches 71
4.1.3 Drawbacks of the State-of-the-Art Buffer Management Scheme 72

4.2 Active Buffer Management . 74
4.2.1 The ABM Algorithm . 75
4.2.2 ABM’s Properties . 75
4.2.3 Optimizing for Datacenter Workloads 77
4.2.4 ABM’s Practical Considerations 78

4.3 Analysis . 79
4.3.1 Model . 79
4.3.2 Formalizing ABM’s Allocation 79
4.3.3 Steady-State Analysis . 80
4.3.4 Transient-State Analysis . 82

4.4 Evaluation . 87
4.4.1 Setup . 88
4.4.2 ABM’s Performance . 89
4.4.3 ABM’s Performance in Shallow Buffers 93
4.4.4 ABM’s Performance with Periodic & Infrequent α Updates 94

4.5 Related Work . 94
4.6 Summary . 95

5 Buffer Sharing with Lossy & Lossless Traffic 97
5.1 Motivation . 100

5.1.1 Buffer Issues in Datacenters 100
5.1.2 Buffer Sharing Practices . 100
5.1.3 Root Causes of the Buffer Issues 104

5.2 Reverie . 108
5.2.1 Single Buffer Pool for Isolation 108
5.2.2 Low-Pass Filter for Burst Absorption 109
5.2.3 The Workings of Reverie 110
5.2.4 The Properties of Reverie 111
5.2.5 Implementation Feasibility 113

5.3 Evaluation . 113
5.3.1 Setup . 114
5.3.2 Results . 116

5.4 Related Work . 119
5.5 Summary . 120

6 Augmenting Buffer Sharing with ML Predictions 121
6.1 Motivation . 123

6.1.1 Buffer Sharing from Online Perspective 124
6.1.2 Drawbacks of Traditional Approaches 125
6.1.3 Predictions: A Hope for Competitiveness 127

6.2 Prediction-Augmented Buffer Sharing 129
6.2.1 Overview . 129

CONTENTS 11

6.2.2 Credence . 130
6.2.3 Properties of Credence . 131
6.2.4 Practicality of Credence 138

6.3 Evaluation . 139
6.3.1 Setup . 139
6.3.2 Results . 141

6.4 Additional Results . 146
6.5 Related Work . 146
6.6 Future Work . 147

6.6.1 Systems for In-Network Predictions 148
6.6.2 Theory for Performance Guarantees 149

6.7 Summary . 149

III Reconfigurable Datacenter Networks 151

7 Oblivious Optical Interconnects 153
7.1 Preliminaries: Throughput of Static Topologies 155

7.1.1 Paths and Flow in Static Graphs 156
7.1.2 Throughput of Static Graphs 157
7.1.3 TUB and its Limitations . 158

7.2 Background: Periodic Reconfigurable Networks 158
7.2.1 Periodic Reconfigurable Topologies 159
7.2.2 Graph Theoretic Model of Periodic ToR-to-ToR Connectivity160

7.3 Motivation: Fundamental Tradeoffs of Periodic RDCNs 161
7.3.1 Throughput of Periodic RDCNs 161
7.3.2 Delay of Periodic RDCNs 173
7.3.3 Buffer Requirements of Periodic RDCNs 175
7.3.4 Remarks and Discussion on Theorems 13-16 177
7.3.5 Tradeoffs & Optimization Opportunity 178

7.4 Mars: Near-Optimal Throughput RDCN with Shallow Buffers . . 179
7.4.1 Overview . 179
7.4.2 Properties of Mars . 180
7.4.3 Interconnect . 182
7.4.4 Example: deBruijn-based Emulated Graph 182

7.5 Evaluation . 184
7.5.1 Setup . 185
7.5.2 Results . 187

7.6 Discussion . 189
7.7 Related Work . 190
7.8 Summary . 191

8 Demand-Aware Optical Interconnects 193
8.1 Motivation . 195

8.1.1 Throughput of Periodic Networks 197
8.1.2 Drawbacks of Oblivious Periodic Networks 199
8.1.3 A Case for Demand-Aware Networks 200
8.1.4 Linear Program Formulation 202
8.1.5 Design Challenges & Roadmap 203

12 CONTENTS

8.2 Towards Demand-Aware Periodic Networks 204
8.2.1 Vermilion . 204
8.2.2 Throughput Guarantees of Vermilion 207
8.2.3 Practicality of Vermilion . 208

8.3 Evaluation . 209
8.3.1 Flow Completion Times & Link Utilization 209
8.3.2 Throughput . 211

8.4 Limitations and Future Work . 213
8.5 Related Work . 213
8.6 Summary . 214

9 Augmenting Demand-Aware Interconnects with Predictions 215
9.1 Background & Motivation . 218
9.2 Preliminaries and Problem Formulation 219

9.2.1 Throughput of Periodic Networks 219
9.2.2 Online Periodic Network Design 220
9.2.3 Online Periodic Network Design with Predictions 221

9.3 Analysis of BvN Decomposition-Based Demand-Aware Networks . . 223
9.4 Analysis of Vermilion with Predictions 224
9.5 Randomized Algorithm and Tradeoff Curves 227
9.6 Evaluation . 229

9.6.1 Setup . 231
9.6.2 Results . 231

9.7 Related Work . 233
9.8 Discussion . 234

9.8.1 Limitations . 234
9.8.2 Open Questions . 235

9.9 Summary . 236

10 Future Research Directions 237
10.1 Systems and Infrastructure for AI/ML Workloads 237
10.2 Learning-Augmented Systems . 239

11 Conclusion 241

References 271

1
Preface
Datacenter networks are the backbone of modern computing and storage, driving
the rapid expansion of online services and applications. As datacenter networks
evolve, the demand for higher bandwidth and lower latency has increased signifi-
cantly. In fact, the aggregate traffic generated by servers in Google datacenters
increased by 50x within a span of six years between 2008 and 2014, indicating an
exponential growth [246]. The aggregate traffic and network demand is expected
to increase even faster with the emergence of GPU clusters within datacenters, in
the context of large-scale distributed training.

The performance of applications running in a datacenter critically depends
on the underlying infrastructure and the protocol stack. More than a decade
after the inception of hyperscale datacenters and the advent of software-defined
networking [160], several challenges remain in the design and operation of datacenter
networks. Novel network architectures such as RDMA [58,105, 194, 212,287], NIC
offload [200], programmable switches [73], reconfigurable networks [104], and
optical interconnects [60,79,109,189,221] have been shown to improve scalability
and performance but have also introduced novel challenges.

1.1 Problems

In this thesis, we focus on three key challenges in datacenter networks: (i) transport
protocol, (ii) buffer sharing and (iii) network topology.
Transport protocol: Server networking stack typically employs a congestion
control algorithm to control the rate of transmission, effectively dictating the net-
work utilization and the latency observed by the applications in a datacenter [164].
Several algorithms have been proposed in the past decade [35,193,259] that are
tailored for datacenter networks. The gradual shift from Kernel networking to
fully hardware-accelerated networking has also necessitated the redesign of these
algorithms. Further, the increase in bandwidth of network links and the decrease
in latency of network devices have also necessitated a rethinking of the design
of these algorithms. The challenge is to design a congestion control algorithm
that is responsive, fair, and efficient, while ensuring that it can be deployed in
practice. Importantly, RDMA networks have also introduced a new class of con-
straints e.g., ordered packet delivery, zero packet loss, and flow control, that
need to be considered in the design of these algorithms. Unfortunately, existing
algorithms [164,173,193,287] have limitations in terms of throughput, convergence,
and responsiveness. While a congestion control algorithm controls the rate of
transmission, a load balancing algorithm determines the path taken by packets in
the network, aiming to uniformly distribute the load across the network topology.

13

14 Chapter 1. Preface

Equal cost multipath (ECMP) routing based on 5-tuple hash has long been used by
network switches to achieve load balancing. However, hash collisions in ECMP can
lead to suboptimal load balancing, congestion, long queueing delays, and increased
flow completion times. These limitations are more pronounced in the context of
distributed training workloads [13,71] since the tail completion time of collective
communication is critical for the overall training time. In view of these problems,
this thesis aims at answering the following questions:

Question 1 (Congestion control). If the switches in the network support fine-
grained congestion feedback with in-band network telemetry, then can we design
an end-host congestion control algorithm that converges to near-zero queue lengths
without losing throughput?

Question 2 (Load balancing). Given a large-scale fattree datacenter topology
running a distributed training workload, can we design a load balancing algorithm
that achieves near-optimal performance without requiring significant modifications
to commodity network hardware?

Buffer sharing: Network switches utilize buffers to manage transient traffic
bursts and enhance network utilization. Typically, buffer space is shared across
all the ports of a switch. In the early stages of networking, on-chip buffer space
was abundant, leading to concerns about bufferbloat [107]. However, in modern
high-speed datacenter networks, the slowdown of Moore’s law has made buffers a
limited and costly resource, resulting in the widespread use of shallow buffers [75].
This trend in shrinking buffer sizes poses a significant challenge to consistently
absorb transient bursts in the network traffic. Buffer sharing has become a
critical issue in datacenter switches, particularly in lossless RDMA networks.
The primary challenge lies in developing buffer sharing algorithms that not only
maximize network utilization but also improve burst absorption, which is crucial
for datacenter workloads. We tackle the following questions in this thesis, aiming
to answer both the practical and theoretical aspects of buffer sharing algorithms:

Question 3 (Practical buffer sharing). Can we design a buffer sharing algorithm
for datacenter switches that provides predictable burst absorption, fairness, and
isolation across traffic classes, while remaining implementable in hardware?

Question 4 (Optimal buffer sharing). Under practical constraints, how close can
we get to the performance of an ideal buffer sharing algorithm that has complete
foresight of future traffic?

Reconfigurable optical interconnects: The topology of a datacenter network
is a key factor in determining the performance of the applications it supports. It
influences the routing of packets, the number of hops traversed, and the latency
experienced. The topology also directly impacts the network’s throughput, fault tol-
erance, and overall cost. Traditionally, datacenter topologies have been constructed
using electrical packet switches, represented as static graphs [31,65,157,179,256,281].
However, with the advent of optical switches and reconfigurable networks, new
possibilities have emerged for datacenter topology design. Optical switches offer
better bandwidth scalability and energy efficiency compared to electrical switches,

Chapter 1.2. Thesis Outline & Contributions 15

with the potential to provide higher throughput and lower latency for datacenter
workloads. This has spurred substantial research into reconfigurable optical inter-
connects [60,188,189,246]. However, there is limited understanding in the literature
regarding the throughput bounds of such networks, and how demand-oblivious
and demand-aware network designs compare in terms of performance. We tackle
several fundamental questions on the design and performance of reconfigurable
networks in this thesis:

Question 5 (Demand-oblivious periodic reconfigurable network). What is the
design space for demand-oblivious reconfigurable networks, and what are the
tradeoffs between throughput, delay and buffer requirements?

Question 6 (Demand-aware periodic reconfigurable network). To what extent can
demand-aware periodic networks improve throughput compared to their demand-
oblivious counterparts?

Question 7 (Demand-aware network design under demand uncertainty). Can
we design demand-aware networks that are robust to demand estimation errors,
without compromising throughput when the estimations are correct?

1.2 Thesis Outline & Contributions
This thesis is organized into three parts, focusing on the three problems described
in the previous section. Each part consists of chapters that delve into the problem
and propose solutions that answer the main questions posed in the previous section.
The chapters are organized as follows:
Part I: Datacenter Transport

• Chapter 2 presents PowerTCP, a congestion control algorithm that is
tailored for the needs of modern datacenter networks. Increasingly stringent
throughput and latency requirements in datacenter networks demand fast
and accurate congestion control. We observe that the reaction time and
accuracy of existing datacenter congestion control schemes are inherently
limited. They either rely only on explicit feedback about the network state
(e.g., queue lengths in DCTCP [35]) or only on variations of state (e.g., RTT
gradient in TIMELY [193]). To overcome these limitations, we propose
a novel congestion control algorithm, PowerTCP, which achieves much
more fine-grained congestion control by adapting to the bandwidth-window
product (referred as ‘‘Power’’ in this work). PowerTCP leverages in-band
network telemetry [156] to react to changes in the network instantaneously
without loss of throughput and while keeping queues short. Due to its
fast reaction time, our algorithm is particularly well-suited for dynamic
network environments and bursty traffic patterns. We show analytically and
empirically that PowerTCP can significantly outperform the state-of-the-
art in both traditional datacenter topologies and emerging reconfigurable
datacenters where frequent bandwidth changes make congestion control
challenging. In traditional datacenter networks, PowerTCP reduces tail
flow completion times of short flows by 80% compared to DCQCN [287]
and TIMELY [193], and by 33% compared to HPCC [173] even at 60%
network load. In reconfigurable datacenters, PowerTCP achieves 85% circuit

16 Chapter 1. Preface

utilization without incurring additional latency and cuts tail latency by at
least 2x compared to existing approaches.

• Chapter 3 presents Ethereal, a load balancing algorithm tailored for modern
GPU clusters. Large-scale distributed training in production datacenters con-
stitutes a challenging workload bottlenecked by network communication. In
response, both major industry players (e.g., Ultra Ethernet Consortium [13])
and parts of academia [71] have surprisingly, and almost unanimously, agreed
that packet spraying is necessary to improve the performance of large-scale
distributed training workloads. In this work, we challenge this prevailing
belief and pose the question: How close can a singlepath transport approach
an optimal multipath transport? We demonstrate that singlepath transport
(from a NIC’s perspective) is sufficient and can perform nearly as well as an
ideal multipath transport with packet spraying, particularly in the context
of distributed training in leaf-spine topologies. Our assertion is based on
four key observations about workloads driven by collective communication
patterns: (i) flows within a collective start almost simultaneously, (ii) flow
sizes are nearly equal, (iii) the completion time of a collective is more crucial
than individual flow completion times, and (iv) flows can be split upon
arrival. We analytically prove that singlepath transport, using minimal flow
splitting (at the application layer), is equivalent to an ideal multipath trans-
port with packet spraying in terms of maximum congestion. Our preliminary
evaluations support our claims. This work suggests an alternative agenda
for developing next-generation transport protocols tailored for large-scale
distributed training.

Part II: Datacenter Switch Buffer Sharing

• Chapter 4 presents ABM, a buffer sharing algorithm for datacenter switches.
Today’s network devices share buffer across queues to avoid drops during
transient congestion and absorb bursts. As the buffer-per-bandwidth-unit
in datacenter decreases, the need for optimal buffer utilization becomes
more pressing. Typical devices use a hierarchical packet admission control
scheme: First, a Buffer Management (BM) scheme decides the maximum
length per queue at the device level and then an Active Queue Management
(AQM) scheme decides which packets will be admitted at the queue level.
Unfortunately, the lack of cooperation between the two control schemes leads
to (i) harmful interference across queues, due to the lack of isolation; (ii)
increased queueing delay, due to the obliviousness to the per-queue drain time;
and (iii) thus unpredictable burst tolerance. To overcome these limitations,
we propose ABM, Active Buffer Management which incorporates insights
from both BM and AQM. Concretely, ABM accounts for both total buffer
occupancy (typically used by BM) and queue drain time (typically used
by AQM). We analytically prove that ABM provides isolation, bounded
buffer drain time and achieves predictable burst tolerance without sacrificing
throughput. We empirically find that ABM improves the 99th percentile
flow completion times for short flows by up to 94% compared to the state-
of-the-art buffer management. We further show that ABM improves the
performance of advanced datacenter transport protocols in terms of flow

Chapter 1.2. Thesis Outline & Contributions 17

completion times by up to 76% compared to DCTCP [35], TIMELY [193] and
PowerTCP [21] under bursty workloads even at moderate load conditions.

• Chapter 5 presents Reverie, a buffer sharing algorithm that builds upon
ABM in order to serve both lossless and lossy traffic classes. The switch
buffers in datacenters today are dynamically shared by traffic classes with
different loss tolerance and reaction to congestion signals. In particular,
while legacy applications use loss-tolerant transport, e.g., DCTCP [35], newer
applications require lossless datacenter transport, e.g., RDMA over Converged
Ethernet [116]. Unfortunately, as we analytically show in this work, the
buffer-sharing practices of today’s datacenters pose a fundamental limitation
to effectively isolate RDMA and TCP while also maximizing burst absorption.
We identify two root causes: (i) the buffer-sharing for RDMA and TCP relies
on two independent and often conflicting views of the buffer, namely ingress
and egress; and (ii) the buffer-sharing scheme micromanages the buffer and
overreacts to the changes in its occupancy during transient congestion. In
this work, we present Reverie, a buffer-sharing scheme, which, unlike prior
works, is suitable for both lossless and loss-tolerant traffic, providing isolation
and better burst absorption than state-of-the-art buffer-sharing schemes. At
the core of Reverie lies a unified (consolidated ingress and egress) admission
control that jointly optimizes the buffers for both RDMA and TCP. Reverie
allocates buffer based on a low-pass filter that naturally absorbs bursty queue
lengths during transient congestion within the buffer limits. Our evaluation
shows that Reverie can improve the performance of RDMA as well as TCP
in terms of flow completion times by up to 33%.

• Chapter 6 presents Credence, a first buffer sharing algorithm augmented
with machine-learned predictions. Packet buffers in datacenter switches are
shared across all the switch ports in order to improve the overall through-
put. The trend of shrinking buffer sizes in datacenter switches makes buffer
sharing extremely challenging and a critical performance issue. Literature
suggests that push-out buffer sharing algorithms have significantly better
performance guarantees compared to drop-tail algorithms. Unfortunately,
switches are unable to benefit from these algorithms due to lack of support
for push-out operations in hardware. Our key observation is that drop-tail
buffers can emulate push-out buffers if the future packet arrivals are known
ahead of time. This suggests that augmenting drop-tail algorithms with
predictions about the future arrivals has the potential to significantly im-
prove performance. This work is the first research attempt in this direction.
We propose Credence, a drop-tail buffer sharing algorithm augmented with
machine-learned predictions. Credence can unlock the performance only
attainable by push-out algorithms so far. Its performance hinges on the
accuracy of predictions. Specifically, Credence achieves near-optimal perfor-
mance of the best known push-out algorithm LQD (Longest Queue Drop)
with perfect predictions, but gracefully degrades to the performance of the
simplest drop-tail algorithm Complete Sharing when the prediction error gets
arbitrarily worse. Our evaluations show that Credence improves throughput
by 1.5x compared to traditional approaches. In terms of flow completion
times, we show that Credence improves upon the state-of-the-art approaches
by up to 95% using off-the-shelf machine learning techniques that are also

18 Chapter 1. Preface

practical in today’s hardware. We believe this work opens several interesting
future work opportunities both in systems and theory that we discuss at the
end of Chapter 6.

Part III: Reconfigurable Datacenter Networks

• Chapter 7 presents Mars, an oblivious optical interconnect that maximizes
throughput within the delay and buffer constraints of the network. This chap-
ter also presents fundamental throughput and latency bounds for oblivious
optical interconnects, including their buffer requirements. The performance
of large-scale computing systems often critically depends on high-performance
communication networks. Dynamically reconfigurable topologies, e.g., based
on optical circuit switches, are emerging as an innovative new technology
to deal with the explosive growth of datacenter traffic. Specifically, peri-
odic reconfigurable datacenter networks (RDCNs) such as RotorNet [189],
Opera [187] and Sirius [60] have been shown to provide high throughput, by
emulating a complete graph through fast periodic circuit switch scheduling.
However, to achieve such a high throughput, existing reconfigurable network
designs pay a high price: in terms of potentially high delays, but also, as
we show as a first contribution in this work, in terms of the high buffer
requirements. In particular, we show that under buffer constraints, emulating
the high-throughput complete graph is infeasible at scale, and we uncover
a spectrum of unvisited and attractive alternative RDCNs, which emulate
regular graphs, but with lower node degree than the complete graph.
We present Mars, a periodic reconfigurable topology which emulates a d-
regular graph with near-optimal throughput. In particular, we systematically
analyze how the degree d can be optimized for throughput given the available
buffer and delay tolerance of the datacenter. We further show empirically
that Mars achieves higher throughput compared to existing systems when
buffer sizes are bounded.

• Chapter 8 presents Vermilion, a simple demand-aware optical interconnect
that breaks the throughput bounds of existing periodic demand-oblivious
networks. The increasing gap between datacenter traffic volume and the
capacity of electrical switches has driven the development of reconfigurable
network designs utilizing optical circuit switching. Recent advancements,
particularly those featuring periodic fixed-duration reconfigurations, have
achieved practical end-to-end delays of just a few microseconds. However,
current designs rely on multi-hop routing to enhance utilization, which can
lead to a significant reduction in worst-case throughput and added overhead
from congestion control and routing complexity. These factors pose significant
operational challenges for the large-scale deployment of these technologies.
We present Vermilion, a reconfigurable optical interconnect that breaks
the throughput barrier of existing periodic reconfigurable networks, without
the need for multi-hop routing — thus eliminating congestion control and
simplifying routing to direct communication. Vermilion adopts a demand-
aware approach while retaining the simplicity of periodic fixed-duration
reconfigurations, similar to RotorNet [189]. We establish throughput bounds
for Vermilion, demonstrating that it achieves at least 33% more throughput in

Chapter 1.2. Thesis Outline & Contributions 19

the worst-case compared to existing designs. The key innovation of Vermilion
is its short demand-aware periodic schedule, derived using a matrix rounding
technique. This schedule is then combined with a demand-oblivious periodic
schedule to efficiently manage any residual demand. Our evaluation results
support our theoretical findings, revealing significant performance gains for
datacenter workloads.

• Chapter 9 augments Vermilion with machine-learned predictions about
the network demand matrix and analyzes its performance under demand
uncertainty. As Moore’s Law approaches its limits, reconfigurable optical
interconnects are becoming increasingly vital for accommodating the rapid
growth of datacenter traffic. In this context, periodic and fixed-duration
circuit-switching technologies have emerged as viable solutions. However,
the scheduling of these circuits is typically derived offline in a demand-
oblivious manner, failing to adapt to evolving traffic patterns. Recent
studies have established a throughput bound of 1

2 for demand-oblivious
periodic circuit-switching networks [18,42]. Notably, the existing algorithm
Vermilion [17] breaks this bound, achieving a throughput of 2

3 through
a demand-aware approach while utilizing fixed-duration periodic circuit
switching. This advancement relies on the assumption that communication
patterns — represented by the underlying demand matrix — are known
in advance. A critical and unresolved question remains: To what extent
can demand-aware networks enhance throughput in the presence of demand
uncertainty?
In this work, we build upon the Vermilion algorithm [17] to enhance the
design of reconfigurable optical networks using machine-learned predictions.
Our main contribution is the formalization of demand-aware network design
in an online setting aimed at maximizing throughput, relying solely on his-
torical communication patterns without foresight into future demands. We
augment Vermilion with machine-learned predictions regarding the underly-
ing demand matrix and analyze its performance through competitive analysis.
We demonstrate that the augmented Vermilion achieves γ−1

γ
-consistency

under perfect predictions and exhibits 1
2·γ -robustness under arbitrarily poor

predictions, where γ serves as a trust factor. Moreover, we introduce a
randomized algorithm based on Vermilion, revealing an entire spectrum
of consistency-robustness tradeoff curves. We evaluate the performance of
Vermilion with predictions through extensive simulations on both real-world
and synthetic traffic matrices under varying prediction accuracies. Our
results underscore the potential of machine-learned predictions to enhance
the throughput of reconfigurable optical interconnects while highlighting the
challenges posed by prediction errors.
This work is a first research effort and represents an initial exploration
towards integrating machine learning into the design of reconfigurable optical
networks. We believe this work opens several opportunities for future research
in both systems and theory, which we discuss at the end of Chapter 9.

During the course of my work on this thesis, several papers have been published
or are currently under submission. Some chapters in this thesis are based on these
papers, while others have been excluded to ensure a cohesive and comprehensive

20 Chapter 1. Preface

narrative. The papers included in this thesis primarily reflect my contributions,
supported by valuable intellectual input from my co-authors. Notably, Maria
Apostolaki is a co-first author on ABM [16], where she identified the main drawbacks
of the state-of-the-art. My contributions involved the analysis of the existing
literature, as well as the design and analysis of ABM. In the other works, the first
author served as the primary contributor.

[17] Vermilion: A Traffic-Aware Reconfigurable Optical Interconnect with
Formal Throughput Guarantees
Vamsi Addanki, Chen Avin, Goran Dario Knabe, Giannis Patronas, Dimitris
Syrivelis, Nikos Terzenidis, Paraskevas Bakopoulos, Ilias Marinos, Stefan
Schmid.
(Under Review) Paper

[22] Vermilion, Pt. 2: Tradeoffs between Throughput and Prediction Accu-
racy in Reconfigurable Optical Interconnects
Vamsi Addanki, Maciej Pacut, Leon Kellerhals, Goran Dario Knabe and
Stefan Schmid.
(Under Review)

[20] Ethereal: Divide and Conquer Network Load Balancing in Large-Scale
Distributed Training
Vamsi Addanki, Prateesh Goyal, Ilias Marinos, and Stefan Schmid.
(Under Review) Paper

[177] Pyrrha: Congestion-Root-Based Flow Control to Eliminate Head-of-
Line Blocking in Datacenter
Kexin Liu, Zhaochen Zhang, Chang Liu, Yizhi Wang, Qingyue Wang,
Vamsi Addanki, Stefan Schmid, Wei Chen, Xiaoliang Wang, Jiaqi Zheng,
Wenhao Sun, Tao Wu, Ke Meng, Fei Chen, Weiguang Wang, Wanchun Dou,
Guihai Chen, and Chen Tian.
USENIX NSDI 2025 Paper

[28] Dequeue Rate-Agnostic Switch Buffer Sharing through Packet Queueing
Delay
Krishna Agrawal, Vamsi Addanki, and Habib Mostafaei.
CoNEXT-SW 2024 Paper

[122] Starlink Performance through the Edge Router Lens
Sarah-Michelle Hammer, Vamsi Addanki, Max Franke, and Stefan Schmid.
LEO-NET 2024 Paper

[24] Credence: Augmenting Datacenter Switch Buffer Sharing with ML
Predictions
Vamsi Addanki, Maciej Pacut, and Stefan Schmid.
USENIX NSDI 2024 Paper Slides Code

[19] Reverie: Low Pass Filter-Based Switch Buffer Sharing for Datacenters
with RDMA and TCP Traffic
Vamsi Addanki, Wei Bai, Stefan Schmid, and Maria Apostolaki.
USENIX NSDI 2024 Paper Slides Code

https://arxiv.org/pdf/2504.09892
https://arxiv.org/pdf/2407.00550
https://www.usenix.org/system/files/nsdi25-liu-kexin.pdf
https://doi.org/10.1145/3694812.3699924
https://doi.org/10.1145/3697253.3697273
https://www.usenix.org/system/files/nsdi24-addanki-credence.pdf
https://www.vamsiaddanki.net/slides/credence-slides-nsdi2024.pdf
https://github.com/inet-tub/ns3-datacenter
https://www.usenix.org/system/files/nsdi24-addanki-reverie.pdf
https://www.vamsiaddanki.net/slides/reverie-slides-nsdi2024.pdf
https://github.com/inet-tub/ns3-datacenter

Chapter 1.2. Thesis Outline & Contributions 21

[127] TCP’s Third-Eye: Leveraging eBPF for Telemetry-Powered Congestion
Control
Jörn-Thorben Hinz, Vamsi Addanki, Csaba Györgyi, Theo Jepsen, and Ste-
fan Schmid.
eBPF 2023 (SIGCOMM Workshop) Paper Slides Code

[18] Mars: Near-Optimal Throughput with Shallow Buffers in Reconfig-
urable Datacenter Networks
Vamsi Addanki, Chen Avin, and Stefan Schmid.
ACM SIGMETRICS 2023 Paper Slides

[23] Self-Adjusting Partially Ordered Lists
Vamsi Addanki, Maciej Pacut, Arash Pourdamghani, Gábor Rétvári, Stefan
Schmid, and Juan Vanerio.
IEEE INFOCOM 2023 Paper

[16] ABM: Active Buffer Management in Datacenters
Vamsi Addanki, Maria Apostolaki, Manya Ghobadi, Stefan Schmid, and
Laurent Vanbever.
ACM SIGCOMM 2022 Paper Slides Code

[21] PowerTCP: Pushing the Performance Limits of Datacenter Networks
Vamsi Addanki, Oliver Michel, and Stefan Schmid.
USENIX NSDI 2022 Paper Slides Code

https://dl.acm.org/doi/abs/10.1145/3609021.3609295
https://www.vamsiaddanki.net/slides/tcpthirdeye-slides-ebpf2023.pdf
https://github.com/inet-tub/powertcp-linux
https://dl.acm.org/doi/10.1145/3579312
https://www.vamsiaddanki.net/slides/mars-sigmetrics2023.pdf
https://doi.org/10.1109/INFOCOM53939.2023.10228937
https://dl.acm.org/doi/abs/10.1145/3544216.3544252
https://www.vamsiaddanki.net/slides/abm-slides-sigcomm2022.pdf
https://github.com/inet-tub/ns3-datacenter
https://www.usenix.org/system/files/nsdi22-paper-addanki_3.pdf
https://www.vamsiaddanki.net/slides/powertcp-slides-nsdi2022.pdf
https://github.com/inet-tub/ns3-datacenter

22 Chapter 1. Preface

Part I
Datacenter Transport

23

2
Congestion Control
The performance of more and more cloud-based applications critically depends on
the underlying network, requiring datacenter networks (DCNs) to provide extremely
low latency and high bandwidth. For example, in distributed machine learning
applications that periodically require large data transfers, the network is increasingly
becoming a bottleneck [173]. Similarly, stringent performance requirements are
introduced by today’s trend of resource disaggregation in datacenters where fast
access to remote resources (e.g., GPUs or memory) is pivotal for the overall system
performance [173]. Building systems with strict performance requirements is
especially challenging under bursty traffic patterns as they are commonly observed
in datacenter networks [53,83,219,271,282].

These requirements introduce the need for fast and accurate network resource
management algorithms that optimally utilize the available bandwidth while
minimizing packet latencies and flow completion times. Congestion control (CC)
plays an important role in this context being ‘‘a key enabler (or limiter) of
system performance in the datacenter’’ [164]. In fact, fast reacting congestion
control is not only essential to efficiently adapt to bursty traffic [149,230], but is
also becoming increasingly important in the context of emerging reconfigurable
datacenter networks (RDCNs) [55,60,109,163,187,189,234]. In these networks,
a congestion control algorithm must be able to quickly ramp up its sending rate
when high-bandwidth circuits become available [201].

Traditional congestion control in datacenters revolves around a bottleneck link
model: the control action is related to the state i.e., queue length at the bottleneck
link. A common goal is to efficiently control queue buildup while achieving high
throughput. Existing algorithms can be broadly classified into two types based
on the feedback that they react to. In the following, we will use an analogy to
electrical circuits1 to describe these two types. The first category of algorithms
react to the absolute network state, such as the queue length or the RTT: a
function of network ‘‘effort’’ or voltage defined as the sum of the bandwidth-delay
product and in-network queuing. The second category of algorithms rather react
to variations, such as the change of RTT. Since these changes are related to the
network ‘‘flow’’, we say that these approaches depend on the current defined as
the total transmission rate. We tabulate our analogy and corresponding network
quantities in Table 2.1. According to this classification, we call congestion control
protocols such as CUBIC [118], DCTCP [35], or Vegas [74] voltage-based CC
algorithms as they react to absolute properties such as the bottleneck queue length,
delay, Explicit Congestion Notification (ECN), or loss. Recent proposals such as

1This analogy is inspired from S. Keshav’s lecture series based on mathematical foundations
of computer networking [154]. We emphasize that our power analogy is meant for the networking
context considered in this work and it should not be applied to other domains of science.

25

26 Chapter 2. Congestion Control

Figure 2.1: Existing congestion control algorithms are fundamentally limited to
a single dimension in their window (or rate) update decisions and are unable to
distinguish between two scenarios across multiple dimensions.

Quantity Analogy
Total transmission rate (network flow) Current (λ)
BDP + buffered bytes (network effort) Voltage (ν)

Current × Voltage Power (Γ)

Table 2.1: Analogy between metrics in networks and in electrical circuits. Note
that the network here is the ‘‘pipe’’ seen by a flow and not the whole network.

TIMELY [193] are current-based CC algorithms as they react to the variations,
such as the RTT-gradient. In conclusion, we find that existing congestion control
algorithms are fundamentally limited to one of the two dimensions (voltage or
current) in the way they update the congestion window.

We argue that the input to a congestion control algorithm should rather be
a function of the two-dimensional state of the network (i.e., both voltage and
current) to allow for more informed and accurate reaction, improving performance
and stability. In our work, we show that there exists an accurate relationship
between the optimal adjustment of the congestion window, the network voltage and
the network current. We analytically show that the optimal window adjustment
depends on the product of network voltage and network current. We call this
product network power: current × voltage, a function of both queue lengths
and queue dynamics.

Figure 2.1 illustrates our classification. Existing protocols depend on a single
dimension, voltage or current. This can result in imprecise congestion control as
the protocol is unable to distinguish between fundamentally different scenarios,
and, as a result, either reacts too slowly or overreacts, both impeding performance.
Accounting for both voltage and current, i.e., power, balances accurate inflight
control and fast reaction, effectively providing the best of both worlds.

In this chapter we present PowerTCP, a novel power-based congestion control
algorithm that accurately captures both voltage and current dimensions for every
control action using measurements taken within the network and propagated
through in-band network telemetry (INT). PowerTCP is able to utilize available

Chapter 2.1. Motivation 27

bandwidth within one or two RTTs while being stable, maintaining low queue
lengths, and resolving congestion rapidly. Furthermore, we show that PowerTCP
is Lyapunov-stable, as well as asymptotically stable and has a convergence time
as low as five update intervals (§2.2.4). This makes PowerTCP highly suitable
for today’s datacenter networks and dynamic network environments such as in
reconfigurable datacenters.

PowerTCP leverages in-network measurements at programmable switches to
accurately obtain the bottleneck link state. Our switch component is lightweight
and the required INT header fields are standard in the literature [173]. We also
discuss an approximation of PowerTCP for use with non-programmable, legacy
switches.

To evaluate PowerTCP, we focus on a deployment scenario in the context of
RDMA networks where the CC algorithm is implemented on a NIC. Our results
from large-scale simulations show that PowerTCP reduces the 99.9-percentile
short flow completion times by 80% compared to DCQCN [287] and by 33%
compared to the state-of-the-art low-latency protocol HPCC [173]. We show that
PowerTCP maintains near-zero queue lengths without affecting throughput
or incurring long flow completion times even at 80% load. As a case study, we
explore the benefits of PowerTCP in reconfigurable datacenter networks where
it achieves 80 − 85% circuit utilization and reduces tail latency by at least 2×
compared to the state-of-the-art [201]. Finally, as a proof-of-concept [127], we
implemented PowerTCP in the Linux kernel and the telemetry component on
an Intel Tofino programmable line-rate switch using P4 [90].

In summary, our key contributions in this chapter are:

■ We reveal the shortcomings of existing congestion control approaches which
either only react to the current state or the dynamics of the network, and
introduce the notion of power to account for both.

■ PowerTCP, a power-based approach to congestion control at the end-host
which reacts faster to changes in the network such as an arrival of burst,
fluctuations in available bandwidth etc.,

■ An evaluation of the benefits of PowerTCP in traditional DCNs and
RDCNs.

■ As a contribution to the research community and to facilitate future work,
all our artefacts have been made publicly available at:
https://github.com/inet-tub/ns3-datacenter.

2.1 Motivation
We first provide a more detailed motivation of our work by highlighting the benefits
and drawbacks of existing congestion control approaches. In the following, voltage-
based CC refers to the class of end-host congestion control algorithms that react
to the state of the network in absolute values related to the bandwidth-delay
product, such as bottleneck queue length, delay, loss, or ECN; current-based
CC refers to the class of algorithms that react to changes in the state, such as the
RTT-gradient. Voltage-based CC algorithms are likely to exhibit better stability
but are fundamentally limited in their reaction time. Current-based CC algorithms

https://github.com/inet-tub/ns3-datacenter

28 Chapter 2. Congestion Control

(a) Voltage-based CC is oblivious to queue
buildup rate.

(b) Current-based CC is oblivious to queue
lengths.

(c) Voltage-based CC cannot differentiate case-2 vs case-3; whereas
current-based CC cannot differentiate case-1 vs case-3.

Figure 2.2: Existing CC schemes, classified as voltage and current-based, are
orthogonal in their response to queue length and queue buildup rate.

Chapter 2.1. Motivation 29

(a) Voltage-based CC
(RTT or queue length)
exhibits equilibrium
properties but has an
imprecise reaction leading
to throughput loss.

(b) Current-based CC
(RTT-gradient) reacts
faster but has no unique
equilibrium point, and is
thereby unable to stabilize
queue lengths.

(c) PowerTCP, a power-
based CC, exhibits equilib-
rium properties and has a
precise reaction to pertur-
bations.

Figure 2.3: Phase plots showing the trajectories of existing schemes and our ap-
proach PowerTCP from different initial states (circles) to equilibrium (triangles).
At each point on the plane, arrows show the direction in which the system moves.
An example is depicted with bottleneck link bandwidth 100Gbps and a base RTT
of 20µs. BDP is shown by a horizontal dotted line and any trajectory going below
this line indicates throughput loss.

detect congestion faster but ensuring stability may be more challenging. Indeed,
TIMELY [193], a current-based CC, deployed at Google datacenters, turned out
to be unstable [288] and evolved to SWIFT [164], a voltage-based CC.

Orthogonal to our approach, receiver-driven transport protocols [124,131,199]
have been proposed which show significant performance improvements. A receiver-
driven transport approach relies on the assumption that datacenter networks are
well-provisioned and claims that congestion control is unnecessary; for example
‘‘NDP performs no congestion control whatsoever in a Clos topology’’ [124]. The
key difference is that receiver-driven approaches take feedback from the ToR
downlink at the receiver which can only identify congestion at the last hop,
whereas sender-based approaches rely on a variety of feedback signals to identify
congestion anywhere along the path. In this work, we focus on the sender-based
congestion control approach which can in principle handle congestion anywhere
along the round-trip path between a sender and a receiver, even in oversubscribed
datacenters.

To take a leap forward and design fine-grained datacenter congestion control
algorithms, we present an analytical approach and study the fundamental problems
faced by existing algorithms. We first formally express the desirable properties
of a datacenter congestion control law (§2.1.1) and then analytically identify the
drawbacks of existing control laws (§2.1.3). Finally, we discuss the lessons learned
and formulate our design goals (§2.1.4).

2.1.1 Desirable Control Law Properties

Among various desired properties of datacenter congestion control, high throughput
and low tail latency are most important [35,173,193] with fairness and stability
being essential as well [277,288]. Achieving these properties simultaneously can
be challenging. For example, to realize high throughput, we may aim to keep
the queue length at the bottleneck link large; however, this may increase latency.

30 Chapter 2. Congestion Control

Thus, an ideal CC algorithm must be capable of maintaining near-zero queue
lengths, achieving both high throughput and low latency. It must further minimize
throughput loss and latency penalty caused by perturbations, such as bursty traffic.

In order to formalize our requirements, we consider a single-bottleneck link
model widely used in the literature [129, 192, 277, 288]. Specifically, we assume
that all senders use the same protocol, transmit long flows2 sharing a common
bottleneck link with bandwidth b, and have a base round trip time τ (excluding
queuing delays). In this model, equilibrium is a state reached when the window
size and bottleneck queue length stabilize. We now formally express the desired
equilibrium state that captures our performance requirements in terms of the sum
of window sizes of all flows (aggregate window size) w(t), bandwidth delay product
b · τ , and bottleneck queue length q(t):

0 < q(t) < ϵ (2.1)

b · τ ≤ w(t) < b · τ + ϵ

q̇(t) = 0; ẇ(t) = 0
where ϵ is a positive integer. First, this captures the requirement for high through-
put i.e., when w(t) > b · τ and q(t) > 0, the number of inflight bytes are greater
than the bandwidth-delay product (BDP) and the queue length is greater than
zero. Second, from w(t) < b · τ + ϵ and q(t) < ϵ, the queue length is at most ϵ,
thereby achieving low latency. Finally, for the system to stabilize, we need that
q̇(t) = 0 and ẇ(t) = 0.

As simple as these requirements are, it is challenging to control the aggregate
window size w(t) while CC operates per flow. In addition to the equilibrium state
requirement, we need fast response to perturbations. The response must minimize
the distance from the equilibrium i.e., minimize the latency or throughput penalty
caused by a perturbation (e.g., incast or changes in available bandwidth).

In this work, we ask two fundamental questions:
(Q1) Equilibrium point: Do existing algorithms satisfy the equilibrium state in
Eq. 2.1 for the aggregate window size?
In addition to the equilibrium behavior, we are also interested in the reaction to a
perturbation.
(Q2) Response to perturbation: What is the trajectory followed after a
perturbation, i.e., the dynamics of the bottleneck queue as well as the TCP window
sizes, from an initial point to the equilibrium point?

2.1.2 A Simplified Analytical Model
We now aim to analytically answer our questions above and shed light on the
inefficiencies of existing protocols, both voltage-based and current-based. Table 2.2
tabulates the main notations used in this chapter. We begin by simplifying
the congestion avoidance model of existing CC approaches we are interested in,
specifically delay, queue length, and RTT-gradient based CC approaches as follows:

wi(t + δt) = γ ·
(︄

wi(t) ·
e

f(t) + β

)︄
+ (1− γ) · wi(t) (2.2)

2Note that, although most DC flows are short flows, most DC traffic volume (bytes) is from
long flows [35,37].

Chapter 2.1. Motivation 31

Notation Description
b bottleneck bandwidth
q bottleneck queue length
τ base RTT
tf sender to bottleneck delay
θ round trip time RTT
wi window size of a flow i
w aggregate window size (of all flows)
γ EWMA parameter
β additive increase
e desired equilibrium point
f feedback
λi sending rate of a flow i
λ Current: aggregate sending rate
ν Voltage
Γ Power

Table 2.2: Key notations used in this chapter. Additionally for any variable say x,
ẋ denotes its derivative with respect to time i.e., dx

dt
.

Here wi is the window of a flow i, β is the additive increase term, e is the
equilibrium point that the algorithm is expected to reach, f(t) is the measured
feedback and γ is the exponential moving average parameter. A queue length-based
CC [173] sets the desired equilibrium point e as b · τ (BDP) and the feedback f(t)
as the sum of bottleneck queue length and BDP i.e., voltage (ν). A delay-based
CC [164] sets e to τ (base RTT) and the feedback f(t) as RTT which is the sum
of queuing delay and base RTT i.e., voltage

bandwidth (ν
b
). Similarly, the RTT-gradient

approach [193] sets e to 1 and the feedback f(t) as one plus RTT-gradient i.e.,
current

bandwidth (λ
b
). In the following, we further justify how Eq. 2.2 captures existing

control laws3. Note that our simplified model does not capture loss/ECN-based CC
algorithms; however, there exists rich literature on the analysis of loss/ECN-based
CC algorithms [129,183] including DCTCP [35,36]. We now use Euler’s first order
approximation to obtain the window dynamics as follows:

wi̇ (t) = γ

δt
·
(︄

wi(t) ·
e

f(t) − wi(t) + β

)︄
(2.3)

Each flow i has a sending rate λi and hence the bottleneck queue experiences an
aggregate arrival rate of λ. In our analogy, λ is the network current. We addition-
ally use the traditional model of queue length dynamics which is independent of
the control law [129,192]:

q̇(t) =
⎧⎨⎩λ(t− tf)− µ(t) q(t) > 0

0 otherwise
(2.4)

where λ(t) = w(t)
θ(t) . An equilibrium point is the window size we and queue length qe

that satisfies ẇ(t) = 0 and q̇(t) = 0.
3TIMELY [193], for example, is rate-based while our simplification is window-based. However,

window and rate are interchangeable for update calculations.

32 Chapter 2. Congestion Control

We now justify how the simplified model approximately captures the existing
control laws. Our simplified model for congestion window update at time t + δt
is defined in Eq. 2.5 as a function of current congestion window size, a target
e, the feedback f(t), an additive increase β and an exponential moving average
parameter γ.

wi(t + δt) = γ ·
(︄

wi(t) ·
e

f(t) + β

)︄
⏞ ⏟⏟ ⏞

update

+(1− γ) · wi(t)

⏞ ⏟⏟ ⏞
EW MA

(2.5)

where e and f(t) are given by,

e =

⎧⎪⎪⎨⎪⎪⎩
b · τ queue-length based CC
τ delay-based CC
1 RTT-gradient based CC

(2.6)

f(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q(t− θ(t) + tf) + b · τ queue-length based CC
q(t−θ(t)+tf)

b
+ τ delay-based CC

q̇(t−θ(t)+tf)
b

+ 1 RTT-gradient based CC
(2.7)

We first use Euler’s first order approximation and obtain the aggregate window
(∑︁w) dynamics for the simplified model,

ẇ(t) = γ

δt
·
(︄

w(t) · e

f(t) − w(t) + β

)︄
(2.8)

In order for the system to stabilize, we require q̇(t) = 0 and ẇ(t) = 0. Using
Eq. 2.17 and Eq. 2.8 and applying equilibrium conditions and assuming that f(t)
stabilizes,

qe = we − b · τ (2.9)

we = β̂

1− e
f

(2.10)

Recall that β̂ = ∑︁
βi

, the sum of additive increase terms of all flows sharing a
bottleneck. To show whether there exists a unique equilibrium point, it remains
to show whether Eq. 2.9 and Eq. 2.10 have a unique solution for we and qe. We
now show how the simplified model captures existing control laws and show the
equilibrium properties.

Queue length or inflight-based control law: Substituting e = b · τ and
f(t) = q(t− θ(t) + tf) + b · τ , we express the simplified queue length based control
law as,

wi(t + δt) = γ ·
(︄

wi(t) · b · τ
q(t− θ(t) + tf) + b · τ

+ β

)︄
+ (1− γ) · wi(t) (2.11)

notice that the update is an MIMD based on inflight bytes. Eq. 2.11 captures
control laws based on inflight bytes; for example HPCC [173].

Chapter 2.1. Motivation 33

There exists a unique equilibrium point for a system defined by a queue
length-based control law given Eq. 2.11 and the queue length dynamics given by
Eq. 2.17. It can be observed that Eq. 2.10 for queue length based control law gives
we = b · τ + β̂ and qe = β̂.

Delay-based control law: Substituting e = τ and f(t) = q(t−θ(t)+tf)
b

+ τ , we
express the simplified delay-based control law as,

wi(t + δt) = γ ·

⎛⎝ wi(t) · τ
q(t−θ(t)+tf)

b
+ τ

+ β

⎞⎠+ (1− γ) · wi(t) (2.12)

where the window update is an MIMD based on RTT. Eq. 2.12 captures control
laws based on RTT; for example FAST [144].

Similar to queue-length based CC, a system defined by delay-based control
law (Eq. 2.12 and the queue length dynamics (Eq. 2.17, there exists a unique
equilibrium point. It can be observed that Eq. 2.10 for delay-based control law
gives we = b · τ + β̂ and qe = β̂.

RTT-gradient based control law: Substituting e = 1 and f(t) = q̇(t−θ(t)+tf)
b

+1,
we express the simplified RTT-gradient based control law as,

wi(t + δt) = γ ·

⎛⎝ wi(t) · 1
q̇(t−θ(t)+tf)

b
+ 1

+ β

⎞⎠+ (1− γ) · wi(t) (2.13)

where the window update is an MIMD based on RTT-gradient. Eq. 2.13 by
rearranging the terms, captures control laws based on RTT-gradient such as
TIMELY [193].

In contrast to queue-length and delay-based CC, RTT-gradient based CC has no
unique equilibrium point since f(t) = q̇(t−θ(t)+tf)

b
+1 stabilizes when q̇ = 0. However

only q̇ = 0 leads to window dynamics Eq. 2.13 also to stabilize (ẇ = 0) at any
queue lengths. As a result under RTT-gradient control law, Eq. 2.9 and Eq. 2.10
do not have a unique solution and consequently we can state that RTT-gradient
based CC has no unique equilibrium point.

2.1.3 Drawbacks of Existing Control Laws
We now analyze the drawbacks of existing congestion control algorithms based on
the simplified model. We first show that existing control laws do not satisfy the
equilibrium state properties in Eq. 2.1 and then show the orthogonal behavior in
their response to queue length and queue buildup rate.
Equilibrium point: It is well-known from literature that loss/ECN-based schemes
operate by maintaining a standing queue [36,129,138]. For example, TCP NewReno
flows fill the queue to maximum (say qmax) and then react by reducing windows
by half. Consequently, the bottleneck queue-length oscillates between qmax and
qmax − b · τ or zero if qmax < b · τ . DCTCP flows oscillate around the marking
threshold K > b·τ

7 which depends on BDP [35]. This does not satisfy our stringent
requirement in Eq. 2.1. While ECN-based schemes reduce the amount of standing
queue required, we still consider the standing queue which is proportional to
bandwidth to be unacceptable given the increasing gap between bandwidth vs
switch buffers.

34 Chapter 2. Congestion Control

It can be shown that there exists a unique equilibrium point for queue length and
delay approaches (voltage-based CC) defined by Eq. 2.2. However, current-based
CC and, in particular, RTT-gradient approaches do not have a unique equilibrium
point suggesting a lack of control over queue lengths. Intuitively, RTT-gradient
approaches quickly adapt the sending rate to stabilize the RTT-gradient (θ̇ = q̇

b
)

which in turn only stabilizes the queue length gradient q̇(t) but fails to control the
absolute value of the queue length. It has indeed been shown that TIMELY, a
current-based CC does not have a unique equilibrium [288].

Figure 2.3 visualizes the system behavior according to the window dynamics
in Eq. 2.3 and the queue dynamics in Eq. 2.4. In Figure 2.3a we can see that
voltage-based CC eventually reaches a unique equilibrium point. In contrast, in
Figure 2.3b we see that current-based CC reaches different final points for different
initial points, indicating that there exists no unique equilibrium point thereby
violating the desired equilibrium state properties (Eq. 2.1). To give more context
on this observation, in Figure 2.2 we show the reactions of different schemes
for observed queue lengths and queue buildup rate. In Figure 2.2b, we can see
that current-based CC has the same reaction for different queue lengths but
exhibits a proportional reaction to queue buildup rate (Figure 2.2a); consequently,
current-based CC cannot stabilize at a unique equilibrium point.

■ Takeaway. While voltage-based CC can in principle meet the desired equilib-
rium state requirements in Eq. 2.1, current-based CC cannot.

Response to perturbation: We observe an orthogonal behavior in the responses
of voltage-based CC and current-based CC. In Figure 2.2b we show that voltage-
based CC has a proportional reaction to increased queue lengths but a current-based
CC approach has the same response for any queue length. Further in Figure 2.2a
we observe that current-based CC has a proportional reaction to the rate at which
queue is building up but a voltage-based CC has the same reaction for any rate of
queue build up. This orthogonality in existing schemes often results in scenarios
with either insufficient reaction or overreaction. To underline our observation,
we use the system of differential equations (Eq. 2.3 and Eq. 2.4) to observe the
trajectories taken by different control laws after a perturbation. We show the
trajectories in Figure 2.3. Specifically, Figure 2.3a shows that voltage-based CC
(queue length or delay based) eventually reaches a unique equilibrium point but
overreacts in the response and losing throughput (window < BDP and q(t) = 0)
almost for every initial point. In Figure 2.3b we observe that current-based
CC (RTT-gradient) reaches different end points for different initial states and
consequently does not have a single equilibrium point. However, we see that the
initial response is faster with current-based CC due to their use of RTT-gradient
which is arguably a superior signal to detect congestion onset even at low queue
lengths.

■ Takeaway. Current-based CC is superior in terms of fast reaction but lacks
equilibrium state properties while voltage-based CC eventually reaches a unique
equilibrium but overreacts in its response for almost any initial state resulting in
long trajectories from initial state to equilibrium state.

Chapter 2.2. Power-Based Congestion Control 35

2.1.4 Lessons Learned and Design Goals
From our analysis we derive two key observations. First, both voltage and current-
based CC have individual benefits. Particularly, voltage-based CC is desirable for
the stringent equilibrium properties we require and current-based CC is desirable
for fast reaction. Second, both voltage and current-based CC have drawbacks. On
one hand, voltage-based CC is oblivious to congestion onset at low queue lengths
and on the other hand current-based CC is oblivious to the absolute value of queue
lengths. Moreover, voltage-based CC overreacts when the queue drains essentially
losing throughput immediately after.

Based on these observations, our goal is to design a control law that sys-
tematically combines both voltage and current for every window update action.
Specifically our aim is to design a congestion control algorithm with (i) equilibrium
properties from Eq. 2.1 exhibited by voltage-based CC and (ii) fast response to
perturbation exhibited by current-based CC. The challenges are to avoid inheriting
the drawbacks of both types of CC, stability and fairness. However in order to
design such a control law we face the following challenges:

■ Finding an accurate relationship between window, voltage and current.
▷ Property 1

■ Ensuring stability, convergence and fairness.
▷ Theorem 1, 2, 3

2.2 Power-Based Congestion Control
Reflecting on our observations in §2.1, we seek to design a congestion control
algorithm that systematically reacts to both the absolute value of the bottleneck
queue length and its rate of change. Our aim is to address today’s datacenter
performance requirements in terms of high throughput, low latency, and fast
reaction to bursts and bandwidth fluctuations.

2.2.1 The Notion of Power
To address the challenges faced by prior datacenter congestion control algorithms
and to optimize along both dimensions, we introduce the notion of power associated
with the network pipe. Following the bottleneck link model from literature [129,192],
from Eq. 2.4 we observe that the window size is indeed related to the product
of network voltage and network current which we call power (Table 2.1). This
corresponds to the product of (i) total sending rate λ (current) and (ii) the sum
of BDP plus the accumulated bytes q at the bottleneck link (voltage), formally
expressed in Eq. 2.14.

Γ(t)⏞ ⏟⏟ ⏞
power

= (q(t) + b · τ)⏞ ⏟⏟ ⏞
voltage

·λ(t− tf)⏞ ⏟⏟ ⏞
current

(2.14)

Notice that the unit of power is bit2

second
. We will show the useful properties of power

specifically under congestion. Using Eq. 2.4, we can rewrite Eq. 2.14 in terms of
queue length gradient q̇ and the transmission rate µ as,

Γ(t) = (q(t) + b · τ) · (q̇(t) + µ(t)) (2.15)

36 Chapter 2. Congestion Control

We now derive a useful property of power using Eq. 2.15 and Eq. 2.4 showing an
accurate relationship of power and window.

Property 1 (Relationship of Power and Congestion Window). Power is the
bandwidth-window product

Γ(t) = b · w(t− tf)

Note that the property is over the aggregate window size i.e., the sum of window
sizes of all flows sharing the common bottleneck. We emphasize that our notion
of power is intended for the networking context and cannot be applied to other
domains of science. In the following, we outline the benefits of considering the
notion of power and how Property 1 can be useful in the context of congestion
control.

2.2.2 Benefits of Power-Based CC
A power-based control law can exploit Property 1 to precisely update per flow
window sizes. Accurately controlling aggregate window size is a key challenge
for an end-host congestion control algorithm. A power-based CC overcomes this
challenge by gaining precise knowledge about the aggregate window size from
measured power. First, using power enables the window update action to account
for the bottleneck queue lengths as well as the queue build-up rate. As a result,
a power-based CC can rapidly detect congestion onset even at very low queue
lengths. At the same time, a power-based CC also reacts to the absolute value of
queue lengths, effectively dampening perturbations. Second, calculating power at
the end-host requires no extra measurement and feedback mechanisms compared
to INT based schemes such as HPCC [173].

2.2.3 The PowerTCP Algorithm
Driven by our observations, we carefully designed our control law based on power,
capturing a systematic reaction to voltage (related to bottleneck queue length), as
well as to current (related to variations in the bottleneck queue length).
Control law: PowerTCP is a window-based congestion control algorithm and
updates its window size upon receipt of an acknowledgment. For a flow i, every
window update is based on (i) current window size wi(t), (ii) additive increase
β, (iii) window size at the time of transmission of the acknowledged segment
wi(t− θ(t)), and (iv) power measured from the feedback information. We refer the
reader to Table 2.2 for the general notations being used. Formally, PowerTCP’s
control law can be expressed as

wi(t)← γ ·
(︄

wi(t− θ(t)) · e

f(t) + β

)︄
+ (1− γ) · wi(t) (2.16)

e = b2 · τ ; f(t) = Γ(t− θ(t) + tf)

where γ ∈ (0, 1] and β are parameters to the control law. The base round trip
time τ must be configured at compile time. If baseRTT is not precisely known,
an alternative is to keep track of minimum observed RTT. We first describe

Chapter 2.2. Power-Based Congestion Control 37

how power Γ is computed and then present the pseudocode of PowerTCP in
Algorithm 1.
Feedback: PowerTCP’s control law is based on power. Note that power
(Eq. 2.14) is only related to variables at the bottleneck link. In order to measure
power, we leverage in-band network telemetry. Specifically, the workings of INT
and the header fields required are the same as in HPCC (Figure. 4 in [173]). When
a TCP sender sends out a packet into the network, it additionally inserts an
INT header into the packet. Each switch along the path then pushes metadata
containing the egress queue length (qlen), timestamp (ts), so far transmitted bytes
(txBytes), and bandwidth (b). All values correspond to the time when the packet
is scheduled for transmission. At the receiver, the received packet
is read and the INT information is copied to the acknowledgment ACK packet

. The sender then receives an ACK with an INT header and metadata
inserted by all the switches along the path from sender to receiver and back to
sender . Here, the INT header and meta-data pushed by switches
along the path serve as feedback and as an input to the CC algorithm.
Accounting for the old window sizes: PowerTCP’s control law (Eq. 2.16)
uses the past window size in addition to the current window size to compute the
new window size. PowerTCP accounts for old window size by remembering
current window size once per RTT.
Algorithm: Putting it all together, we now present the workflow of PowerTCP
in Algorithm 1. Upon the receipt of a new acknowledgment (line 2), PowerTCP:
(i) retrieves the old cwnd (line 3), (ii) computes the normalized power (line 19)
i.e., f(t)

e
in Eq. 2.16, (iii) updates cwnd (line 5), (iv) sets the pacing rate (line 6),

and (v) remembers the INT header metadata and updates the old cwnd once per
RTT based on the ack sequence number (line 7).

Specifically, power is calculated in the function call to normPower. First,
the gradient of queue lengths is obtained from the difference in queue lengths
and difference in timestamps corresponding to an egress port (line 12). Then the
transmission rate of the egress port is calculated from the difference in txBytes
and timestamps (line 13). Current is calculated by adding the queue gradient and
transmission rate (line 14). Then, the sum of BDP and the queue length gives
voltage (line 16). Finally, power is calculated by multiplying current and voltage
(line 17). We calculate the base power (line 18) and obtain the normalized power
(line 19). The normalized power is calculated for each egress port along the path
and the maximum value is smoothed and used as an input to the control law.

Finally, the congestion window is updated in the function call to updateWin-
dow (line 26) where γ is the exponential moving average parameter and β is the
additive increase parameter, both being parameters to the control law (Eq. 2.16)
Parameters: PowerTCP has only two parameters, that is the EWMA param-
eter γ and the additive increase parameter β. γ dictates the balance in reaction
time and sensitivity to noise. We recommend γ = 0.9 based on our parameter
sweep over wide range of scenarios including traffic patterns that induce rapid
fluctuations in the bottleneck queue lengths. Reflecting the intuition for additive
increase in prior work [173], we set β = HostBw×τ

N
where N is the expected number

of flows sharing host NIC, HostBw is the NIC bandwidth at the host and τ is the
base-RTT. This is to avoid queuing at the local interface or, in other words, to
avoid making the host NIC a bottleneck, assuming a maximum of N flows share

38 Chapter 2. Congestion Control

Algorithm 1: PowerTCP
1 /* ack contains an INT header with sequence of per-hop egress

port meta-data accessed as ack.H[i] */
Input : ack and prevInt
Output : cwnd, rate

2 procedure newAck(ack):
3 cwndold = getCwnd(ack.seq)
4 normPower = normPower(ack)
5 updateWindow(normPower, cwndold)
6 rate = cwnd

τ

7 prevInt = ack.H; updateOld(cwnd, ack.seq)
8 function normPower(ack):
9 Γnorm = 0

10 for each egress port i on the path do
11 dt = ack.H[i].ts− prevInt[i].ts
12 q̇ = ack.H[i].qlen−prevInt[i].qlen

dt
▷ dq

dt

13 µ = ack.H[i].txBytes−prevInt[i].txBytes
dt

▷ txRate
14 λ = q̇ + µ ▷ λ : Current
15 BDP = ack.H[i].b× τ
16 ν = ack.H[i].qlen + BDP ▷ ν : Voltage
17 Γ′ = λ× ν ▷ Γ′ : Power
18 e = (ack.H[i].b)2 × τ

19 Γ′
norm = Γ′

e
▷ Γ′

norm :Normalized power
20 if Γ′

> Γnorm then
21 Γnorm = Γ′ ; ∆t = dt
22 end if
23 end for
24 Γsmooth = Γsmooth·(τ−∆t)+Γnorm·∆t

τ
▷ Smoothing

25 return Γsmooth

26 function updateWindow(power, ack):
27 cwnd = γ × (cwndold

normP ower
+ β) + (1− γ)× cwnd

28 ▷ γ : EWMA parameter
29 ▷ β: Additive Increase
30 return cwnd

the host NIC bandwidth. Finally, all flows transmit at line rate in the first RTT
and use cwndinit = HostBw× τ . By transmitting at line rate, a new flow is able to
discover the bottleneck link state and reduce its cwnd accordingly without getting
throttled due to the presence of existing flows.

2.2.4 Properties of PowerTCP

PowerTCP comes with strong theoretical guarantees. We show that Pow-
erTCP’s control law achieves asymptotic stability with a unique equilibrium point
that satisfies our desired equilibrium state properties (Eq. 2.1). PowerTCP also
guarantees rapid convergence to equilibrium and achieves proportional fairness.

Chapter 2.2. Power-Based Congestion Control 39

Our analysis is based on a a single bottleneck link model widely used in the
literature [129,192,277,288]. Specifically, we assume that all senders use the same
protocol, transmit long flows sharing a common bottleneck link with bandwidth b,
and have a base round trip time τ (excluding queuing delays). We denote at time
t queue length as q(t), aggregate window size as w(t), window size of a sender i as
wi(t), forward propagation delay between sender and bottleneck queue as tf , the
round-trip time as θ(t) and a base round-trip time as τ . Here w(t) = ∑︁

i wi(t).
We additionally use the traditional model of queue length dynamics which is
independent of the control law [129,192]

q̇(t) = w(t− tf)
θ(t) − b (2.17)

where θ(t) is given by,

θ(t) = q(t)
b

+ τ (2.18)

Power at time t denoted by Γ(t) as defined in §2.2.1 is expressed as,

Γ(t) = (q(t) + b · τ)⏞ ⏟⏟ ⏞
voltage

· (q̇(t) + µ(t))⏞ ⏟⏟ ⏞
current

(2.19)

PowerTCP’s control law at a source i is given by,

wi(t + δt) = γ ·
(︄

wi(t− θ(t)) · e
f(t) + β

)︄
+ (1− γ) · wi(t) (2.20)

where e and f(t) are given by,
e = b2 · τ

f(t) = Γ(t− θ(t) + tf)
and β is the additive increase term and γ ∈ (0, 1] serves as the weight given for
new updates using EWMA. Both β and γ are parameters to the control law.

Using the properties of power (Property 1), the aggregate window size at time
t− θ(t) can be expressed in terms of power as,

w(t− θ(t)) = Γ(t− θ(t) + tf)
b

= f(t)
b

(2.21)

Suppose an ack arrives at time t acknowledging a segment, time t − θ(t)
corresponds to the time when the acknowledged segment was transmitted.

Theorem 1 (Stability). PowerTCP’s control law is Lyapunov-stable as well as
asymptotically stable with a unique equilibrium point.

Proof. First, we rewrite Eq. 2.20 as follows to obtain the aggregate window w,

∑︂
i

wi(t + δt) =
∑︂

i

γ ·
(︄

wi(t− θ(t)) · e
f(t) + β

)︄
+
∑︂

i

(1− γ) · wi(t)

let β̂ = ∑︁
i β

w(t + δt) = γ ·
(︄

w(t− θ(t)) · e
f(t) + β̂

)︄
+ (1− γ) · w(t)

40 Chapter 2. Congestion Control

by rearranging the terms in the above equation we obtain,

w(t + δt)− w(t) = γ ·
(︄
−w(t) + w(t− θ(t)) · e

f(t) + β̂

)︄
dividing by δt on both sides in the above equation and using Euler’s first-order
approximation, we derive the window dynamics for PowerTCP as follows,

ẇ(t) = γr ·
(︄
−w(t) + w(t− θ(t)) · e

f(t) + β̂

)︄
(2.22)

where γr = γ
δt

. Using Eq. 2.21 and substituting e = b2 · τ , Eq. 2.22 reduces to,

ẇ(t) = γr ·
(︂
−w(t) + b · τ + β̂

)︂
(2.23)

In the system defined by Eq. 2.17 and Eq. 2.22, when the window and the
queue length stabilize i.e., ẇ(t) = 0 and q̇(t) = 0, it is easy to observe that there
exists a unique equilibrium point (we, qe) = (b · τ + β̂, β̂). We now apply a change
of variable from t to t− tf in Eq. 2.23 and linearize Eq. 2.23 and Eq. 2.17 around
(we, qe),

δẇ(t− tf) = −γr · δw(t− tf) (2.24)

δq̇(t) = −δq(t)
τ

+ δw(t− tf)
τ

(2.25)

We now convert the above differential equations to matrix form,[︄
δq̇(t)
δẇ(t)

]︄
=
[︄
− 1

τ
1
τ

0 −γr

]︄
×
[︄

δq(t)
δw(t)

]︄

It is then easy to observe that the eigenvalues of the system are − 1
τ

and
−γr. Since τ (base RTT) and γr = γ

δt
are both positive, we see that both the

eigenvalues are negative. This proves that the system is both lyapunav stable and
asymptotically stable.

Theorem 2 (Convergence). After a perturbation, PowerTCP’s control law
exponentially converges to equilibrium with a time constant δt

γ
where δt is the

window update interval.

Proof. A perturbation at time t = 0 causes the window to shift from we = c · τ + β̂
to say winit. We solve the differential equation in Eq. 2.23 and obtain the following
equation,

w(t) = we + (winit − we) · e−γr·t⏞ ⏟⏟ ⏞
exponential decay

(2.26)

From Eq. 2.26 we can see that, for any error e = we−winit caused by a perturbation,
e exponentially decays with a time constant 1

γr
= δt

γ
. Hence for e to decay 99.3%,

it takes 5·δ
γ

time.

Chapter 2.2. Power-Based Congestion Control 41

Theorem 3 (Fairness). PowerTCP is βi weighted proportionally fair, where βi

is the additive increase used by a flow i.

Proof. Recall that PowerTCP’s control law for each flow i is defined as,

wi(t + δt) = γ ·
(︄

wi(t− θ(t)) · e
f(t) + βi

)︄
+ (1− γ) · wi(t)

From the proof of Theorem 1, we know that the equilibrium point for aggregate
window size and queue length is (we, qe) = (b · τ + β̂, β̂). Using this equilibrium we
can also obtain the equilibrium value for f(t) as,

fe = (β̂ + b · τ) · b
We can then show that wi has an equilibrium point.

(wi)e = β̂ + b · τ
β̂

· βi

We use the argument that window sizes and rates are synonymous especially
that PowerTCP uses pacing with rate ri = wi

τ
. We can then easily observe that

the rate allocation is approximately max-min fair if βi are small enough but βi

proportionally fair in general.

Theorem 1 and Theorem 2 state the key properties of PowerTCP. First, the
convergence with time constant of δt

γ
shows the fast reaction to perturbations.

Second, the system being asymptotically stable at low queue lengths satisfies our
stringent equilibrium property discussed in §2.1. Indeed, power and Property 1
play a key role in the proof of Theorem 1 and Theorem 2 revealing its importance
in congestion control. In Figure 2.3c, we see the trajectories of PowerTCP
from different initial states to a unique equilibrium without violating throughput
and latency requirements, showing the accurate control enabled by power-based
congestion control.

2.2.5 θ-PowerTCP: Standalone Version
PowerTCP’s control law requires in-network queue length information which can
be obtained by using techniques such as INT. In order to widen its applicability,
PowerTCP can still be deployed in datacenters with legacy, non-programmable
switches through accurate RTT measurement capabilities at the end-host. In this
case, we rearrange term e

f
in Eq. 2.16 as follows,

e

f
= b2 · τ

Γ = b2 · τ
(q̇ + b) · (q + b · τ) = τ

(q̇
b

+ 1) · (q
b

+ τ)

finally, using the fact that q
b

+ τ = θ (RTT) and q̇
b

= θ̇ (RTT-gradient), we reduce
e
f

to,
e

f
= τ

(θ̇ + 1) · (θ)
(2.27)

where θ̇ is the RTT-gradient and θ is RTT. Using Eq. 2.27 in Eq. 2.16 allows for
deployment even when INT is not supported by switches in the datacenter. Algo-
rithm 2 presents the pseudocode of θ-PowerTCP. This algorithm demonstrates

42 Chapter 2. Congestion Control

Algorithm 2: θ-PowerTCP (w/o switch support)
1 /* tc is the timestamp upon ack arrival */

Input : ack
Output : cwnd, rate

2 procedure newAck(ack):
3 cwndold = getCwnd(ack.seq)
4 normPower = normPower(ack)
5 updateWindow(normPower, cwndold)
6 rate = cwnd

τ

7 prevRTT = RTT
8 tprev

c = tc

9 updateOld(cwnd, ack.seq)
10 function normPower(ack):
11 dt = tc − tprev

c

12 θ̇ = RT T−prevRT T
dt

▷ dRT T
dt

13 Γnorm = (θ̇+1)×RT T
τ

▷ Γnorm :Normalized power
14 Γsmooth = Γsmooth·(τ−∆t)+Γnorm·∆t

τ

15 return Γsmooth

16 function updateWindow(power, ack):
17 if ack.seq < lastUpdated then ▷ per RTT
18 return cwnd
19 end if
20 cwnd = γ × (cwndold

normP ower
+ β) + (1− γ)× cwnd

21 ▷ γ : EWMA parameter
22 ▷ β: Additive Increase
23 lastUpdated = snd_nxt
24 return cwnd

how PowerTCP’s control law can be mimicked by using a delay signal without
the need for switch support. However, as we will show later in our evaluation,
there are drawbacks in using RTT instead of queue lengths. First, notice how
queue lengths are changed to RTT, where we assume bottleneck txRate (µ) as
bandwidth (b). The implication is that, when using txRate which is essentially
obtained from INT, the control law knows the exact transmission rate and rapidly
fills the available bandwidth. But, when using RTT, the control law assumes the
bottleneck is at maximum transmission rate and does not react by multiplicative
increase and rather relies on slow additive increase to fill the available bandwidth.
Secondly, in multi-bottleneck scenarios, the control law precisely reacts to the most
bottlenecked link when using INT but reacts to the sum of queuing delays when
using RTT. Nevertheless, under congestion, both PowerTCP and θ-PowerTCP
have the same properties in a single-bottleneck scenario.

2.2.6 Deploying PowerTCP
Modern programmable switches are able to export user-defined header fields
and device metrics [90, 156]. These metrics can be embedded into data packets, a
mechanism commonly referred to as in-band network telemetry (INT). PowerTCP

Chapter 2.3. Evaluation 43

leverages INT to obtain fine-grained, per-packet feedback about queue occupancies,
traffic counters, and link configurations within the network. For deployment
with legacy networking equipment, we have proposed θ-PowerTCP which only
requires accurate timestamps to measure the RTT.

We imagine PowerTCP and θ-PowerTCP to be deployed on low-latency
kernel-bypass stacks such as SNAP [47] or using NIC offload. Yet, in this work,
instead of implementing our algorithms for these platforms, we show how Pow-
erTCP and θ-PowerTCP can readily be deployed by merely changing the
control logic of existing congestion control algorithms. In particular, we compare
our work to HPCC [173] which is based on INT feedback and SWIFT [164] which
is based on delay feedback.

PowerTCP requires the same switch support and header format as HPCC,
as well as packet pacing support from the NIC. Additionally, it does not maintain
additional state compared to HPCC but requires one extra parameter γ, the
moving average parameter for window updates. Similar to SWIFT and TIMELY,
θ-PowerTCP requires accurate packet timestamps from the NIC but it does not
require any switch support. The simpler logic of θ-PowerTCP (compared to
PowerTCP) only reacts once per RTT and reduces the number of congestion
control function calls.

The core contribution of this work is the design of a novel control law and we
do not explore implementation challenges further at this point since PowerTCP
does not add additional complexity compared to existing algorithms. Still, to
confirm the practical feasibility of our approach, we implemented PowerTCP
as a Linux kernel congestion control module. We also implemented the INT
component as a proof of concept for the Intel Tofino switch ASIC [90]. The switch
implementation is written in P4 and uses a direct counter associated with the egress
port to maintain the so far transmitted bytes and appends this metric together
with the current queue occupancy upon dequeue from the traffic manager to each
segment. We leverage a custom TCP option type to encode this data and append
64 bit per-hop headers to a 32 bit base header. The implementation uses less
than one out of 12 stages of the Tofino’s ingress pipeline (where the headers are
prepared and appended) and less than one out of 12 stages in the egress pipeline
(where the measurements are taken and inserted). The processing logic runs at
line rate of 3.2 Tbit per second.

Later, we have also tested our algorithm [127] on a real network setup using
Tofino switches (with TCP-INT [141]) and Intel NICs.

2.3 Evaluation
We evaluate the performance of PowerTCP and θ-PowerTCP and compare
against existing CC algorithms. Our evaluation aims at answering four main
questions.
(Q1) How well does PowerTCP react to congestion?
We find that PowerTCP outperforms the state-of-the-art congestion control
algorithms, reducing tail buffer occupancy and consequently tail latency under
congestion by 30% when compared to HPCC and at least by 60% compared to
TIMELY and DCQCN.
(Q2) Does PowerTCP introduce a tradeoff between throughput and latency?

44 Chapter 2. Congestion Control

(a) PowerTCP (b) θ-PowerTCP (c) TIMELY (d) HPCC (e) HOMA

Figure 2.4: State-of-the-art congestion control algorithms vs PowerTCP in
response to an incast. For each algorithm, we show the corresponding reaction to
10 : 1 incast in the top row and to 255 : 1 incast in the bottom row.

Our evaluation shows that PowerTCP does not trade throughput for latency
and that PowerTCP rapidly converges to near-zero queue lengths without losing
throughput.
(Q3) How much can we benefit under realistic workloads?
We show that PowerTCP improves 99th-percentile flow completion times for
short flows (< 10KB) by 33% compared to HPCC, by 99% compared to HOMA
and by 74% compared to TIMELY and DCQCN even at moderate network loads.
At the same time, we find that PowerTCP does not penalize long flows (> 1MB).
In fact, we find that θ-PowerTCP performs equally well for short flows compared
to PowerTCP but performs similarly to TIMELY for medium and long flows.
(Q4) How does PowerTCP perform under high load and bursty traffic patterns?
Our evaluation shows that the benefits of PowerTCP are further enhanced under
high loads and that PowerTCP remains stable even under bursty traffic.

2.3.1 Setup
Our evaluation is based on network simulator NS3 [209].
Topology: We consider a datacenter network based on a FatTree topology [31]
with 2 core switches and 256 servers organized into four pods. Each pod consists of
two ToR switches and two aggregation switches. The capacity of all the switch-to-
switch links are 100Gbps and server-to-switch links are all 25Gbps leading to 4 : 1
oversubscription similar to prior work [232]. The links connecting to core switches
have a propagation delay of 5µs and all the remaining links have a propagation
delay of 1µs. We set up a shared memory architecture on all the switches and
enable the Dynamic Thresholds algorithm [86] for buffer management across all
the ports, commonly enabled in datacenter switches [15, 75]. Finally we set the
buffer sizes in our topology proportional to the bandwidth-buffer ratio of Intel
Tofino switches [90].
Traffic mix: We generate traffic using the web search [35] flow size distribution
to evaluate our algorithm using realistic workloads. We evaluate an average load
(on the ToR uplinks) in the range of 20%− 95%. We also use a synthetic workload
similar to prior work [33] to generate incast traffic. Specifically, the synthetic
workload represents a distributed file system where each server requests a file
from a set of servers chosen uniformly at random from a different rack. All the

Chapter 2.3. Evaluation 45

servers which receive the request respond at the same time by transmitting the
requested part of the file. As a result, each file request creates an incast scenario.
We evaluate across different request rates and request sizes.
Comparisons and metrics: We evaluate PowerTCP with and without switch
support and compare to HPCC [173], DCQCN [287], and TIMELY [193] represent-
ing sender-based control law approaches similar to PowerTCP and HOMA [199]
representing receiver-driver transport. We report flow completion times and switch
buffer occupancy metrics.
Configuration: We set γ = 0.9 for PowerTCP and θ-PowerTCP. Both
HPCC and PowerTCP are configured with base-RTT (τ) set to the maximum
RTT in our topology and HostBw is set to the server NIC bandwidth. The
product of base-RTT and HostBw is configured as RTTBytes for HOMA and the
over-commitment level is set to 1 where HOMA performed best across different
overcommitment levels in our setup. We set the parameters for DCQCN following
the suggestion in [173] which is based on experience and TIMELY parameters are
set according to [193].

2.3.2 Results

PowerTCP reacts rapidly yet accurately to congestion: We evaluate
PowerTCP’s reaction to congestion in two scenarios: (i) 10 : 1 small-scale incast
and (ii) 255 : 1 large-scale incast. Figure 2.4 shows the aggregate throughput and
the buffer occupancy at the bottleneck link for PowerTCP, TIMELY, HPCC
and HOMA. First, at time t = 0, we launch ten flows simultaneously towards
the receiver of a long flow leading to a 10:1 incast. We show in Figure 2.4a
and Figure 2.4b that PowerTCP quickly mitigates the incast and reaches near
zero queue lengths without losing throughput. In Figure 2.4d we see that HPCC
indeed reacts quickly to get back to near-zero queue lengths. On one hand,
however, HPCC does not react enough during the congestion onset and reaches
higher buffer occupancy ≈ 2x compared to PowerTCP and on the other hand
loses throughput after mitigating the incast as opposed to PowerTCP’s stable
throughput. TIMELY as shown in Figure 2.4c does not control the queue-lengths
either and loses throughput after reacting to the incast. While HOMA sustains
throughput, we observe from Figure 2.4e that HOMA does not accurately control
bottleneck queue-lengths. Second, at time t = 0, in addition to the 10 : 1 incast,
the 256th server sends a query request (§2.3.1) to all the other 255 servers which
then respond at the same time, creating a 255:1 incast. From Figure 2.4a and
Figure 2.4b (bottom row), we observe similar benefits from both PowerTCP
and θ-PowerTCP even at large-scale incast: both react quickly and converge to
near-zero queue-lengths without losing throughput. In contrast, from Figure 2.4c
and Figure 2.4d we see that TIMELY and HPCC lose throughput immediately after
reacting to the increased queue length. From Figure 2.4e we observe that HOMA
reaches approximately 500KB higher queue-length compared to PowerTCP and
cannot converge to near-zero queue-lengths quickly.
PowerTCP is stable and achieves fairness: PowerTCP not only reacts
rapidly to reduce queue lengths but also features excellent stability. Figure 2.5
shows how bandwidth is shared by multiple flows as they arrive and leave. We
see that PowerTCP stabilizes to a fair share of bandwidth quickly, both when

46 Chapter 2. Congestion Control

(a) PowerTCP (ms scale) (b) HOMA (ms scale)

(c) θ-PowerTCP (d) TIMELY

Figure 2.5: Fairness and stability

(a) 20% load (b) 60% load

Figure 2.6: 99.9 percentile flow completion times with websearch
workload (a) even at low network load, PowerTCP outperforms
existing algorithms and (b) as the load increases the benefits of
PowerTCP are enhanced. However, only short flows benefit
from θ-PowerTCP.

Chapter 2.3. Evaluation 47

flows arrive and leave, confirming PowerTCP’s fast reaction to congestion as
well as the available bandwidth.

Figure 2.4a showing convergence and Figure 2.5a showing fairness and stability
confirm the theoretical guarantees of PowerTCP. Hereafter, all our results are
based on the setup described above, §2.3.1, using realistic workloads.

PowerTCP significantly improves short flows FCTs: In Figure 2.6 we show
the 99.9-percentile flow completion times using PowerTCP and state-of-the-art
datacenter congestion control algorithms. At 20% network load (Figure 2.6a),
PowerTCP and θ-PowerTCP improve 99.9-percentile flow completion times
for short flows (< 10KB) by 9% compared to HPCC and by 80% compared to
TIMELY, DCQCN and HOMA. Even at moderate load of 60% (Figure 2.6b), short
flows significantly benefit from PowerTCP as well as θ-PowerTCP. Specifically,
PowerTCP improves 99.9 percentile flow completion times for short flows by
33% compared to HPCC, by 99% compared to HOMA and by 74% compared to
TIMELY and DCQCN. θ-PowerTCP provides even greater benefits to short
flows showing an improvement of 36% compared to HPCC and 82% compared to
TIMELY and DCQCN. Indeed, web search workload being buffer-intensive, our
results confirm the observations made in §2.1. TIMELY being a current-based
CC, does not explicitly control queuing latency, while HPCC, a voltage-based
CC, does not react as fast as PowerTCP to mitigate congestion resulting in
higher flow completion times. Surprisingly, HOMA performs the worst, showing
an order-of-magnitude higher FCTs for short flows at high loads as shown in
Figure 2.6b.

We also evaluate across various loads in the range 20%− 95% and show the
99.9-percentile flow completion times for short flows in Figure 2.7a. In particular,
we see that the benefits of PowerTCP and θ-PowerTCP are further enhanced
as the network load increases. PowerTCP (and θ-PowerTCP) improve the
flow completion times of short flows by 36% (and 55%) compared to HPCC. Short
flows particularly benefit from PowerTCP due its accurate control of buffer
occupancies close to zero. In Figure 2.7g we show the CDF of buffer occupancies
at 80% load. PowerTCP consistently maintains lower buffer occupancy and cuts
the tail buffer occupancy by 50% compared to HPCC.

Medium sized flows also benefit from PowerTCP: We find that PowerTCP
not only improves short flow performance but also improves the 99.9-percentile
flow completion times for medium sized flows (100KB− 1M). In Figure 2.6 we see
that PowerTCP consistently achieves better flow completion times for medium
sized flows. Specifically, at 20% network load (Figure 2.6a), PowerTCP improves
99.9-percentile flow completion times for medium flows by 33% compared to HPCC,
by 76% compared to HOMA and by 62% (and 50%) compared to TIMELY (and
DCQCN). In Figure 2.6b, we observe similar benefits even at 60% load.

We notice from Figure 2.6a and Figure 2.6b that the performance of θ-
PowerTCP deteriorates sharply for medium sized flows. θ-PowerTCP uses
RTT for window update calculations. While RTT can be a good congestion signal,
it does not signal under-utilization as opposed to INT that explicitly notifies the
exact utilization. As a result, medium flows with θ-PowerTCP experience 60%
worse performance on average compared to PowerTCP and HPCC. We also
observe similar performance for TIMELY that uses RTT as a congestion signal.
Although delay is simple and effective for short flows performance even at the

48 Chapter 2. Congestion Control

(a) Short flows FCT
with websearch work-
load

(b) Long flows FCT
with websearch work-
load

(c) Short flows FCTs
with websearch + in-
casts

(d) Long flows FCT
with websearch + in-
casts

(e) Short flows FCTs
with websearch + in-
casts

(f) Long flows FCT
with websearch + in-
casts

(g) Buffer occupancy
with websearch work-
load at 80% load

(h) Buffer occupancy
with websearch + in-
casts

Figure 2.7: A detailed comparison of PowerTCP, θ-PowerTCP and the state-of-
the-art showing the benefits of PowerTCP and the trade-offs of θ-PowerTCP.
Particularly PowerTCP outperforms the state-of-the-art across a range of network
loads even under bursty traffic. However, θ-PowerTCP performs well for short
flows but long flows cannot benefit from θ-PowerTCP.

tail, our results show that delay as a congestion signal is not ideal if not worse for
medium sized flows.
PowerTCP does not penalize long flows: Fast reaction to available bandwidth
makes PowerTCP ideal for best performance across all flow sizes. We observe
from Figure 2.6 that PowerTCP achieves flow completion times comparable to
existing algorithms, indicating that PowerTCP does not trade throughput for
low latency. Further, in Figure 2.7b we show the 99.9-percentile flow completion
times for long flows across various loads. At low load, PowerTCP performs
similar to HPCC and performs 9% better compared to HPCC at 90% network
loads. However, we see that θ-PowerTCP is consistently 35% worse on average
across various loads compared to PowerTCP and HPCC.
PowerTCP outperforms under bursty traffic: We generate incast-like traffic
described in §2.3.1 in addition to the web search workload at 80% load. In
Figure 2.7c and Figure 2.7d we show the 99.9-percentile flow completion times for
short and long flows across different request rates for a request size of 2MB. Note
that by varying request rates, we are essentially varying the frequency of incasts.
We observe that even under bursty traffic, PowerTCP improves 99.9-percentile
flow completion times on average for short flows by 24% and for long flows by
10% compared to HPCC. Further PowerTCP outperforms at high request rates
showing 33% improvement over HPCC for short flows. On the other hand, θ-
PowerTCP improves flows completion times for short flows but performs worse
across all request rates compared to HPCC.

We further vary the request size at a request rate of four per second. Note that
by varying the request size, we also vary the duration of congestion. In Figure 2.7e
and Figure 2.7f, we show the 99.9-percentile flow completion times for short and
long flows. Specifically, in Figure 2.7e we observe that flow completion times with

Chapter 2.4. Case Study: Reconfigurable DCNs 49

PowerTCP gradually increase with request size. PowerTCP, compared to
HPCC, improves flow completion times of short flows by 20% at 1MB request size
and improves by 7% at 8MB request size. At the same time, PowerTCP does
not sacrifice long flows performance under bursty traffic. PowerTCP improves
flow completion times for long flows by 5% on average compared to HPCC. θ-
PowerTCP’s performance similar to previous experiments is on average 30%
worse for long flows but 9% better for short flows compared to HPCC. We show
the CDF of buffer occupancies under bursty traffic with 2MB request size and
16 per second request rate. Both PowerTCP and θ-PowerTCP reduce the 99
percentile buffer by 31% compared to HPCC.

We note that HOMA’s performance in our evaluation is not in line with the
results presented in [199]. Recent work [131] reports similar performance issues
with HOMA. We suspect two possible reasons: (i) HOMA’s accuracy in controlling
congestion is specifically limited in our network setup with an oversubscribed
Fat-Tree topology where congestion at the ToR uplinks is a possibility which
cannot be controlled by a receiver-driven approach such as HOMA. (ii) As pointed
out by [131], HOMA’s original evaluation considered practically infinite buffers at
the switches whereas switches in our setup are limited in buffer and use Dynamic
Thresholds to share buffer. Further, even at 20% load, asymmetric RTTs in
a Fat-Tree topology (consequently RTTBytes) across ToR pairs contributes to
HOMA’s inaccuracy in controlling congestion. Further, our evaluation of Homa is
based on its NS3 simulator that the authors later confirmed to be incomplete and
may not capture the intended performance of HOMA. It remains to be seen how
the full version of HOMA performs.

2.4 Case Study: Reconfigurable DCNs

Given PowerTCP’s rapid reaction to congestion and available bandwidth, we
believe that PowerTCP is well suited for emerging reconfigurable datacenter
networks (RDCN) [205]. We now examine PowerTCP’s applicability in this
context through a case study. Congestion control in RDCNs is especially challenging
as the available bandwidth rapidly fluctuates due to changing circuits. In this
section, we evaluate the performance of PowerTCP and compare against the
state-of-the-art reTCP [201] and HPCC using packet-level simulations in NS3. We
implement both PowerTCP and HPCC in the transport layer and limit their
window updates to once per RTT for a fair comparison with reTCP. PowerTCP
and HPCC flows initialize the TCP header with the unused option number 36.
Switches are configured to append INT metadata to TCP options. It should be
noted that TCP options are limited to 40 bytes. As a result, our implementation
can only support at most four hops round-trip path length.

We evaluate in a topology with 25 ToR switches with 10 servers each and a
single optical circuit switch connected to all the ToR switches. ToR switches are
also connected to a separate packet switched network with 25Gbps links. The
optical switch internally connects each input port to an output port and cycles
across 24 matchings in a permutation schedule where the switch stays in a specific
matching for 225µs (one day) and takes 20µs to reconfigure to the next matching
(one night). In this setting, each pair of ToR switches has direct connectivity
through the circuit switch once over a length of 24 matchings (one week). We

50 Chapter 2. Congestion Control

(a) PowerTCP reacts rapidly to the available bandwidth achieving
good circuit utilization.

(b) PowerTCP signifi-
cantly reduces the tail la-
tency

Figure 2.8: The benefits of PowerTCP in reconfigurable datacenter networks
showing its ability to achieve good circuit utilization while significantly reducing
the tail latency compared to reTCP.
use single-hop routing in the circuit network and a maximum base RTT is 24µs.
Note that circuit-on time (i.e., one day) is approximately 10 RTTs. The links
between servers and ToR switches are 25Gbps and circuit links are 100Gbps. We
configure the ToR switches to forward packets exclusively on the circuit network
when available. Switches are further equipped with per-destination virtual output
queues (VOQs). Our setup is in line with prior work [201]. We set reTCP’s
prebuffering to 1800µs based on the suggestions in [201] and set to 600µs based
on our parameter sweep for the minimum required prebuffering in our topology.
We compare against both versions.

In Figure 2.8a, we show the time series of throughput and VOQ length for a
pair of ToR switches. Specifically, the gray-shaded area in Figure 2.8a highlights
the availability of high bandwidth through the circuit-switched network. On one
hand, reTCP instantly fills the available bandwidth but incurs high latency due to
prebuffering before the circuit is available. On the other hand, HPCC maintains low
queue lengths but does not fill the available bandwidth. In contrast, PowerTCP
fills the available bandwidth within one RTT and maintains near-zero queue
lengths and thereby achieves both high throughput and low latency. We show the
tail queuing latency incurred by reTCP, HPCC and PowerTCP in Figure 2.8b.
We observe that PowerTCP improves the tail queuing latency at least by 5×
compared to reTCP. Our case study reveals that fine-grained congestion control
algorithms such as PowerTCP can alleviate the circuit utilization problem in
RDCNs without trading latency for throughput.

Chapter 2.5. Related Work 51

2.5 Related Work

Dealing with congestion has been an active research topic for decades with a wide
spectrum of approaches, including buffer management [46,86,87], scheduling [37,
130,216,217] and resource allocation [26]. In the following, we will focus on the
most closely related works on end-host congestion control.

Approaches such as [35,259,287] (e.g., DCTCP, D2TCP) rely on ECN as the
congestion signal and react proportionally. Such algorithms require the bottleneck
queue to grow up to a certain threshold, which results in queuing delays. ECN-
based schemes remain oblivious to congestion onset and intensity. Protocols such
as TIMELY [193], SWIFT [164], CDG [125], DX [166] rely on RTT measurements
for window update calculations. TIMELY and CDG partly react to congestion
based on delay gradients, remaining oblivious to absolute queue lengths. TIMELY,
for instance, uses a threshold to fall back to proportional reaction to delay instead
of delay gradient. SWIFT, a successor of TIMELY, only reacts proportionally to
delay. As a result, SWIFT cannot detect congestion onset and intensity unless the
distance from target delay significantly increases. In contrast, θ-PowerTCP also
being a delay-based congestion control algorithm updates the window sizes using
the notion of power. As a result, θ-PowerTCP accurately detects congestion
onset even at near-zero queue lengths.

XCP [151], D3 [269], RCP [95] rely on explicit network feedback based on
rate calculations within the network. However, the rate calculations are based on
heuristics and require parameter tuning to adjust for different goals such as fairness
and utilization. HPCC [173] introduces a novel use of in-band network telemetry
and significantly improves the fidelity of feedback. Our work builds on the same
INT capabilities to accurately measure the bottleneck link state. However, as
we show analytically and empirically, HPCC’s control law then adjusts rate and
window size solely based on observed queue lengths and lacks control accuracy
compared to PowerTCP. Our proposal PowerTCP uses the same feedback
signal but uses the notion of power to update window sizes leading to significantly
more fine-grained and accurate reactions. NCF [99] introduces explicit NACK
feedback from the network switches, leveraging p4 switches. Bolt [50] and SFC [165]
use explicit network feedback to control congestion. However, these approaches
require changes to the network infrastructure. In contrast, PowerTCP uses INT
capabilities that are already available in modern datacenter networks.

Receiver-driven transport protocols such as NDP [124], HOMA [199], and
Aeolus [131] have received much attention lately. Such approaches are conceptually
different from classic transmission control at the sender. Importantly, receiver-
driven transport approaches make assumptions on the uniformity in datacenter
topologies and oversubscription [124]. PowerTCP is a sender-based classic CC
approach that uses our novel notion of power and achieves fine-grained control
over queuing delays without sacrificing throughput.

Orthogonal to network congestion control, recent works have also identified
congestion problems within the host interconnect [25,27,260]. Similar to In-band
Network Telemetry, host interconnects expose several performance counters that
can be used to derive congestion signals. In future, we plan to explore control-
theoretic approaches for host congestion control, leveraging the insights from
PowerTCP’s design philosophy.

52 Chapter 2. Congestion Control

2.6 Summary
We presented PowerTCP, a novel fine-grained congestion control algorithm.
By reacting to both the current state of the network as well as its trend (i.e.,
power), PowerTCP improves throughput, reduces latency, and keeps queues
within the network short. We proved that PowerTCP has a set of desirable
properties, such as fast convergence and stability allowing it to significantly
improve flow completion times compared to the state-of-the-art. Its fast reaction
makes PowerTCP attractive for many dynamic network environments including
emerging reconfigurable datacenters which served us as a case study in this work.
In our future work, we plan to explore more such use cases.

3
Load Balancing
The rapid increase in the computational needs of emerging deep learning models
(e.g., GPT-4 [6]) necessitates that the training process be distributed across a large-
scale GPU cluster (e.g., thousands of GPUs) in a datacenter. To the surprise of
datacenter operators and researchers, communication has turned out to be a major
bottleneck in distributed training [180]. To speed up the training process, significant
research efforts have recently been made, including parallelism strategies [143,206,
207,244], topology engineering [266,285], and collective optimizers [10,180,237].
Unsurprisingly, congestion control and load-balancing are the main root causes
of communication bottlenecks, two of the most widely studied problems in the
literature, especially in the context of datacenters.

In the wake of this emerging problem, both industry and academia have
almost unanimously agreed that multipath transport is necessary to improve
the performance of large-scale distributed training workloads [13,71]. Multipath
transport protocols are motivated by their ability to exploit path diversity and
effectively balance the load across all network paths [63, 124, 199, 210, 213, 270].
While, in theory, multipath transport protocols can achieve similar objectives to
an optimal multi-commodity flow problem, several practical challenges remain.
For instance, packet ordering (and the required reorder buffers), loss recovery, and
telemetry (for traffic analysis) complicate NIC design and operational costs. This
begs the question:

Is multipath transport necessary for improving large-scale distributed training per-
formance, and how close can singlepath transport get to the optimal performance?

To our surprise, our findings indicate a likely no i.e., a singlepath transport
can perform nearly as well as multipath transport. While multipath transport
protocols are ideally superior to singlepath variants, certain properties of training
workloads allow us to demonstrate that multipath transport is not necessary to
improve performance.

Our assertion is based on four main properties of distributed training workloads
(collective communication). Figure 3.1 illustrates our perspective. First, from
a NIC perspective, flows originating from a GPU corresponding to a collective
operation (e.g., allReduce) arrive nearly simultaneously at the NIC. Additionally,
a single GPU does not participate in multiple collectives at the same time. Second,
within each step of a single collective (e.g., ring-allReduce), all the flows are of
the same size. Third, in contrast to traditional datacenter workloads, individual
flow completion time is less critical; rather, the completion time of a collective
is more crucial and directly impacts the training duration. Fourth, sending
packets of the same flow over a set of k equal-cost paths is equivalent, in terms

53

54 Chapter 3. Load Balancing

Flow-4

Flow-6

Flow-5

Flow-1

Flow-3

Flow-2

Flow-2

Flow-1

Flow-6

Flow-5

Flow-4

Flow-3

Flow-3

Flow-5

Flow-4

Flow-6

Flow-2

Flow-1

Flow-1

Flow-4

Flow-1

Flow-4

Flow-1

Flow-4

Flow-5

Flow-2

Flow-5

Flow-2

Flow-5

Flow-2

Flow-3

Flow-6

Flow-3

Flow-6

Flow-3

Flow-6

Equivalent
Congestion

Multipath Singlepath

Packet Spraying
Path Assignment
(Source Routing)

Paths Paths

Figure 3.1: In contrast to traditional datacenter workloads, distributed training work-
loads exhibit certain properties in terms of flow sizes, the number of concurrent flows,
and arrival times that allow singlepath transport to achieve nearly the same performance
as an optimal multipath transport. The problem essentially boils down to assigning
paths to each flow in order to minimize congestion.

of congestion, to sending packets of each flow over a single path when there are
multiples of k flows and each flow is of the same size. Although the number
of flows within a collective varies depending on the collective algorithm, the
communication library provides several knobs to maintain a sufficient number of
flows at all times without impacting the bandwidth cost of a collective algorithm.
For instance, NCCL allows a user to configure NCCL_IB_QPS_PER_CONNECTION and
NCCL_IB_SPLIT_DATA_ON_QPS which split the data transmitted between a GPU
pair into multiple queue pairs uniformly [8], effectively increasing the number of
flows if needed without any involvement from the NIC. Given these properties,
uniformly spreading load across multiple equal-cost paths in the network (similar
to multipath transport) essentially boils down to uniformly assigning paths to each
flow in a collective when they arrive at the NIC.

To strengthen our observation, we analytically prove that a singlepath transport
(from NIC’s perspective) with uniform path assignment is equivalent to an optimal
multipath transport with packet spraying in terms of congestion under collective
communication workloads. Our proof relies on the feasibility to split a flow (at
application layer) and we show that the required splitting is minimal.

We develop a novel singlepath transport, Ethereal, that greedily assigns
paths to each flow arriving at the NIC such that the load is uniformly spread across
each path in the network. Our preliminary evaluations on leaf-spine topology, under
data-parallel distributed training workloads, show that Ethereal can achieve
nearly the same completion times for a collective compared to a multipath transport
with packet spraying. This challenges the prevailing belief that packet spraying
is necessary for improving the performance of distributed training workloads and
offers an alternative to complex NIC designs with reorder buffers and loss recovery
mechanisms.

Finally, we outline future research directions to enhance the practicality of
singlepath transport protocols like Ethereal for state-of-the-art GPU clusters,
particularly under various parallelism strategies and in scenarios involving link
failures.

Chapter 3.1. Motivation 55

In the remainder of this chapter, our distinction1 between singlepath and
multipath is solely from the network interface card (NIC) flow state and congestion
control point-of-view.

3.1 Motivation

We dissect the transport protocol problem of distributed training workloads using
a running example. We simulate a leaf-spine topology consisting of 256 nodes,
arranged into 8 leaves and 8 spines, with 100 Gbps links. We run an allReduce
collective, the most common communication pattern used for gradient synchro-
nization across multiple GPUs during the backward pass phase of training. For
simplicity, we use an all-to-all algorithm to implement allReduce, i.e., every node
communicates with every other node. We set the transfer size between each pair
of GPUs to 16 KB, much lower than the bandwidth-delay product, ensuring that
the congestion control algorithm does not significantly impact our observations
and claims.

3.1.1 Repetitive Incasts at the Edge
A leaf-spine topology theoretically supports (without congestion) any traffic pattern
within the capacity limits of each sender and receiver [204]. Given the uniform
communication pattern of an allReduce, it is typical to expect smooth transmis-
sion between each pair of GPUs without experiencing any congestion. However,
the allReduce collective induces repetitive incast at the receivers. Figure 3.2a
shows multiple incasts at a particular receiver in our simulation, under equal-cost
multipath routing (ECMP) and packet spraying (Spray). ECMP chooses one
path among the available equal-cost paths based on a 5-tuple hash, leading to
congestion due to hash collisions. Packet spraying randomly chooses a path in
the network core for every packet, uniformly spreading the load across all paths.
Surprisingly, both ECMP and packet spraying fail to mitigate these repetitive
incasts, as seen in Figure 3.2a. Further, since we set all flow sizes to less than
the bandwidth-delay product, any congestion control algorithm would incur these
repetitive incasts. We conclude that the incast problem in collective communication
is fundamentally unrelated to load-balancing and congestion control. Interestingly,
this is a synchronization problem across flows within a collective. Although flows
arrive nearly at the same time from a NIC’s perspective, there is a specific order
in which they arrive due to the sequential nature of how the flows are launched
by the underlying communication library. For instance, NCCL launches all-to-all
transmissions starting from the same rank (say rank 0) at each GPU. As a result,
an incast initially appears at rank 0, then at rank 1, and so on, repetitively. To
mitigate these repetitive incasts from a NIC’s perspective, simple randomization
techniques are essential to desynchronize the transmissions.

■ Takeaway. Repetitive incasts during collective communication do not funda-
mentally stem from inefficiencies in load-balancing but rather from the synchro-
nization of flow arrivals.

1We chose to view this as the complexity of the transport implementation and congestion
control at the NIC.

56 Chapter 3. Load Balancing

ECMP Spray

0 500
Time (us)

0

50

100

150

200
Qu

eu
e

le
ng

th
 (K

B)

(a) leaf→ server

0 500
Time (us)

0

50

100

150

200

Qu
eu

e
le

ng
th

 (K
B)

(b) leaf→ spine

0.3 0.4 0.5
Completion time (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

Optimal

(c) CCT
Figure 3.2: Flow synchronization and non-uniform load-balancing critically impact the
completion times of collective communication workloads.

3.1.2 Non-uniform Load in the Core
It is well-known that ECMP routing causes congestion in the core due to hash
collisions. Our example in Figure 3.2b shows this effect, with ECMP accumulating
more than 200KB of queue length even for the small transfer size used in our
setup. Although there are a large number of flows in an all-to-all transmission
(65280 flows in our setup), ECMP does not achieve uniform load balancing. Even
doubling the number of flows (increasing the entropy) in our setup resulted in
similar congestion levels at the core links. As such, we note that controlling the
entropy is a non-trivial task and load-balancing techniques relying on entropy are
prone to similar problems. In contrast, packet spraying effectively balances the
load across all core links, keeping the queue lengths close to zero. The near-optimal
load-balancing property of packet spraying, essentially a multipath transport,
makes it a more attractive choice for distributed training workloads. However, this
approach requires implementing reorder buffers and sophisticated loss recovery
mechanisms in hardware, complicating NIC design. We seek to understand whether
a particular choice of paths for each flow (unlike ECMP) can balance the load
on each path uniformly, similar to packet spraying. Intuitively, if there are 6
flows of equal size and 3 paths to choose from, assigning 2 flows to each path can
achieve uniform load across the 3 paths, similar to packet spraying, as illustrated in
Figure 3.1. The question remains whether such a path assignment can be achieved
without requiring a centralized controller, which would introduce additional delays
and complexity to the design.

■ Takeaway. Packet spraying achieves near-optimal load-balancing in the core
but complicates NIC design. The question remains: can any alternative to ECMP
achieve similar load balancing without a centralized controller?

3.1.3 Poor Completion Time
The primary concern in distributed training workloads is the completion time of
collective communications. Figure 3.2c shows the CDF of flow completion times
achieved by ECMP and packet spraying in our example. Our focus is on the tail
completion time that indicates the collective completion time (CCT). Neither of
these approaches achieve satisfactory completion times. First, the poor completion
time with ECMP is attributed to its inefficient load-balancing. Second, even with
near-optimal load balancing, packet spraying is no better than ECMP, primarily

Chapter 3.2. Singlepath vs Multipath 57

due to flow synchronization (§3.1.1).

■ Takeaway. Improving collective completion time requires better congestion
management techniques both in the network core as well as at the edge i.e., across
the entire network.

3.2 Singlepath vs Multipath

In this section, we seek to understand whether a singlepath (per-flow) load-balancing
algorithm can achieve nearly the same objective as a multipath (packet spraying)
load-balancing algorithm. Specifically, we are interested in simple, distributed
algorithms that operate on each end-host’s NIC without relying on a centralized
controller. In the following, we formally establish an equivalence between singlepath
and multipath load-balancing under certain traffic patterns.

Theorem 4 (Equivalence). Given a leaf-spine topology, with ℓ leaves, s spines and
k server nodes, a set of demands M = {fi × ni,j | fi, ni,j ∈ N, i ∈ [1, k], j ∈ [1, ℓ]},
where fi is the flow size and ni,j is the number of flows that a server node i
has towards any set of destination nodes within leaf j, then a greedy distributed
algorithm (at each node) that splits the least number of flows and assigns each
flow to the least congested (local perspective) uplink (leaf↔spine), is equivalent to
packet spraying in terms of the objective to minimize the maximum congestion.

We make three key observations about the communication patterns of dis-
tributed training that put our result in Theorem 4 into context for transport
protocol design. We present the formal proof at the end of this section.
A single flow can be split to multiple flows: While multipath transport
protocols split the flow only logically, from a transport point of view, in the
context of distributed training, the communication library (traffic source) allows
certain user configurations such that each flow can be split into multiple flows
with corresponding queue pairs (separate connections) at the NIC. For instance,
environment variables in NCCL, such as NCCL_IB_QPS_PER_CONNECTION, enable
splitting the data uniformly into multiple queue pairs. As a result, the number of
flows can be controlled in a much more fine-grained manner. We use this property
later in the proof of Theorem 4 to show that splitting (if needed) only a few number
of flows from each source is sufficient to achieve the same properties of an optimal
multipath load-balancing algorithm in terms of the maximum congestion.
GPU flows are equal in size within each collective step: Each GPU in a
cluster can perform computation and communication (collectives) simultaneously
but it does not participate in multiple collective operations simultaneously in order
to maintain consistent updates to the model. Further, flows originating from a
GPU corresponding to each collective step are of equal size eg., due to chunking,
and padding used by NCCL. As result, each ith GPU may any number of flows each
of size fi that fits within the definition of the demands considered in Theorem 4.
Fairness across flows is not a requirement: Given that our primary concern is
the completion time of a collective, fairness across flows is not necessary. Scheduling
the flows in any particular order while maintaining uniform load across the network
core and high link utilization is critical to achieve fast collective completion times.

58 Chapter 3. Load Balancing

Given the workload properties, our result in Theorem 4 indicates that a sin-
glepath transport is sufficient for large-scale distributed training. We now present
a formal proof.

Proof of Theorem 4. We begin with node i = 1 and account for the total amount of
demand assigned to each uplink and downlink2. For simplicity, we assume that all
demands exit the leaves (use uplinks), focusing on the congestion on both the uplinks
and downlinks. There are n1,j flows, each of size f1, towards each destination leaf
j. Our greedy algorithm (depicted in Algorithm 3), say ALG, operates in steps for
each destination leaf j. By fixing the destination leaf j, choosing an uplink from
the source’s perspective also implies selecting the corresponding downlink (via the
chosen leaf→spine uplink). Consequently, the demand assigned to each uplink
from source i equals the demand assigned to the corresponding downlink. ALG
first assigns ⌊n1,j

s
⌋ flows to each uplink. At this point, there are r = n1,j mod s

flows left to be assigned. Let g = gcd(r, s)3. ALG splits each of the r flows into
s
g

flows, each of size f1·g
s

, and assigns r
g

(an integer) flows of size f1·g
s

to each
uplink. In total, ALG assigns f1 · ⌊n1,j

s
⌋ + f1·g

s
· r

g
= f1 · (⌊n1,j

s
⌋ + r

s
) = f1 · ni,j

s
of

demand to each uplink. An optimal multipath load-balancing algorithm (OPT)
splits the total demand evenly across all uplinks, assigning f1 · ni,j

s
of demand to

each uplink. This demonstrates that ALG and OPT assign equal demand to each
uplink (and consequently to each downlink) from each source i, and the proof
follows. Additionally, at each source, ALG only splits r = n1,j mod s flows, and
these are split into s

g
flows. The extra flows created by ALG at each source are

limited to r·(s−g)
g

. To prove that the splitting is minimal, assume a better splitting
is feasible, with each of the r remaining flows split into γ < s

g
flows. Thus, the

size of each remainder flow is f1
γ

. We need to assign r · γ flows to s uplinks such
that the assignment results in f1·r

s
demand on each uplink to be optimal in terms

of congestion. This requires γ ≥ 1 to be an integer (for splitting) and r·γ
s

to be an
integer (for assignment). The smallest value of γ that satisfies these conditions is
s
g
, contradicting our initial assumption.

We emphasize that the same result cannot be derived for hash-based ECMP
since it does not explicitly converge based on the number of flows, but rather on the
entropy of the input to the hash function, which is a non-trivial task to control in
practice. Furthermore, such properties cannot be derived for singlepath transport
in general. The problem of finding the minimum congestion unsplittable flow is
known to be NP-hard [85]. The best-known result for CLOS topologies establishes
a tight bound of 4-approximation for a greedy algorithm [85]. However, the specific
properties of collective communication workloads allow us to establish the above
results. We note that although the splitting is minimal, splitting still implies
additional state space at the NIC. However, the required number of splittings
depends on the total number of flows ni,j towards a destination leaf j and the
number of uplinks s. For instance, an allReduce collective implemented using all-
to-all algorithm in a non-oversubscribed topology would not require any splitting
in order to achieve optimal load-balancing using our algorithm.

2We refer to leaf→spine links as uplinks and spine→leaf links as downlinks.
3gcd(r, s) is the greatest common divisor of r and s.

Chapter 3.3. Ethereal Transport for AI 59

Algorithm 3: Ethereal
Input : Batch of flows F (ni,j ≥ 0 towards each leaf)

Number of uplinks s
1 function selectPath(F): ▷ Potentially by GPU

2

▷ Uniform load-balancing
for each leaf do

assign ⌊ni,j

s ⌋ flows to each uplink
r = remaining flows
g = gcd(r, s)
split each remaining flow to s

g flows
for each uplink do

assign r
g remaining flows

end for
end for

3 function flowArrival(F):

4

▷ Mitigates repetitive incasts
for each flow ∈ F do

Schedule after small random interval:
f → nextAvail = now
Insert f to a random position in the list of queue pairs

end for
5 function Ack():
6 DcTcp() ▷ Any CCA could be used
7 /* ––– */
8 /* Rare scenarios */
9 function NAck():

10 Select new path ▷ Reroute
11 GoBackN() ▷ Loss recovery
12 function flowTimeout(f):

13

▷ Handles link failures
Select new path
GoBackN()

14 function receive(): ▷ At the receiver

15

▷ Handles slow links (NICs) in the network
if f(ECN) > threshold then

sendNack() ▷ Triggers rerouting
Ignore out-of-order packets for the next RTT

else
sendAck()

end if

3.3 Ethereal Transport for AI

Reflecting on our observations in §3.1 and §3.2, we design a singlepath4 transport,
Ethereal, suitable for distributed training workloads in leaf-spine topologies.
Ethereal has three main components (i) path assignment (load-balancing) (ii)
randomization (iii) loss recovery and handling failures. Importantly, Ethereal

4We note that the notion of singlepath and multipath in our context is from a NIC’s state
and congestion control point-of-view.

60 Chapter 3. Load Balancing

uses a singlepath transport control logic. Implementing Ethereal only requires
a few changes to the NIC hardware. We describe each of the components of
Ethereal conceptually and leave the concrete implementation details to future
work. Algorithm 3 outlines Ethereal’s logic.
Path assignment: Ethereal achieves uniform load-balancing using a novel
technique to assign flows to paths in the network, summarized by the pathSelect
function in Algorithm 3. Ethereal’s load-balancing is greedy in nature i.e., it
assigns a batch of flows towards each leaf to the set of uplinks such that the
overall congestion on each uplink as well as each downlink is equivalent to packet
spraying. Upon path assignment, every packet transmitted by the NIC carries a
path ID and switches in the network perform routing based on the pathID of each
packet, requiring minimal changes to both NIC as well as the switches. Although
currently we assume that the NIC performs path selection, we envision that the
corresponding source GPU and collective communication library can potentially
assist in this calculation, further reducing the need for significant changes to NIC
hardware design.
Randomization: Ethereal randomizes the start time of each flow and the
position of a flow in the active list of queue pairs. This simple technique addresses
the major problem of flow synchronization in GPU clusters, discussed in §3.1.1.
Congestion control: We currently use DCTCP as the congestion control al-
gorithm for Ethereal. In principle, any ECN-based algorithm could be used
provided the following properties are satisfied: (i) quickly ramps up throughput
without causing congestion (ii) reacts to congestion scenarios and rapidly converges
to equilibrium (stable queue lengths) without losing throughput. Developing a
fine-grained congestion control algorithm for Ethereal is part of our future work.
Loss recovery: In view of compatibility with existing RoCE implementations,
Ethereal assumes that the network supports PFC and relies on NACK with
GoBackN for packet drops in the network. Further, Ethereal uses a timeout
per-flow that upon expiry triggers GoBackN and recovery.
Handling Failures: Ethereal relies on two mechanisms to quickly detect
failures (or slow links) and reroute flows: (i) The receiver immediately sends NACK
and ignores any out-of-order packets for the next RTT, triggering a GoBackN and
recovery at the sender upon receiving a NACK. The sender then selects a new
‘‘good’’ path. (ii) If a timeout expires, a new ‘‘good’’ path is chosen. We leave
further details of loss recovery and failures for future work.

3.4 Preliminary Results
We evaluate Ethereal using packet-level simulations using ns-3 [209]. Our
preliminary evaluations focus on data parallelism workloads i.e., all the GPUs in
the network participate in collective communication. Our goal is to empirically
understand how close to packet spraying can Ethereal perform and to validate
our equivalence claim in §3.2.

We consider a leaf-spine topology consisting of 256 servers, 16 leaves and
16 spines, connected using 100Gbps links with a propagation delay of 500ns.
We run All-to-All and Ring communication patterns representative of allReduce
collective in GPU clusters. Specifically, in All-to-All, every server communicates
with every other server (255 flows each) and in Ring each server communicates

Chapter 3.4. Preliminary Results 61

ECMP Spray Ethereal

0 500
Time (us)

0

50

100

150

200

Qu
eu

e
le

ng
th

 (K
B)

(a) leaf→ server

0 500
Time (us)

0

50

100

150

200

Qu
eu

e
le

ng
th

 (K
B)

(b) leaf→ spine

0.3 0.4 0.5
Completion time (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

Optimal

(c) CCT

Figure 3.3: Ethereal’s randomization technique effectively mitigates the repeated
incasts problem (see Figure 3.2) and improves the completion times.

with only one other server (cross-rack) using 4 channels. We vary the transfer
(flow) size and report the CDF of completion times as well as the shared buffer
occupancy of switches. Our main metric is on the collective completion time i.e.,
tail completion time. We compare Ethereal with Equal Cost Multipath (ECMP),
packet spraying and REPS [71]. We use DCTCP [35] with PFC enabled5 as the
congestion control algorithm for all our baselines including Ethereal. Figure 3.3
and Figure 3.4 show our results.
Desynchronization improves the completion times: Figure 3.3 shows the
results for the same setup used for our discussed in §3.1 (Figure 3.2). From
Figure 3.3a, we see that randomization effectively mitigates repetitive incasts and
synchronization problems. We apply the randomization technique of Ethereal
to all our baselines in the following.
Ethereal significantly improves the completion times: Figure 3.4a, 3.4b and
Figure 3.4e, 3.4f show the completion times for All-to-All and Ring (one iteration)
respectively. We observe that Ethereal not only outperforms ECMP (singlepath),
but also outperforms packet spraying and REPS for large transfers (1MB). When the
transfers are short (16KB), while ECMP significantly underperforms, Ethereal
performs similar to packet spraying and REPS. In the case of All-to-All (A2A),
Ethereal does not incur any flow splitting since s

g
= 1. However, in the case of 4-

channel Ring, Ethereal splits each flow into s
g

= 4 flows (16 in total at each NIC)
and uniformly balances the load across the network. As shown by Figure 3.4e, 3.4f,
this minimal splitting allows Ethereal to significantly outperform, even with a
singlepath transport protocol.
Ethereal reduces the buffer requirements: Given that datacenter switch
buffer sizes are shallow, it is desirable that the transport protocol and load-balancing
have low buffer requirements. Figure 3.4c, 3.4d and Figure 3.4g, 3.4h show the
buffer utilization for All-to-All and Ring. Ethereal requires less buffers compared
to alternative approaches, highlighting the effectiveness of Ethereal’s greedy
algorithm for path assignment.
Ethereal outperforms even with low entropy: Unlike ECMP and REPS,
Ethereal does not rely on entropy for load-balancing. Our 4-Ring communication
pattern launches only 4 flows at each sender. Note that our topology consists
of 16 uplinks and downlinks. As a result, achieving uniform load balancing is a

5We use reorder buffers for multipath protocols and do not trigger NACK for out-of-order
packets.

62 Chapter 3. Load Balancing

0.3 0.4 0.5
Completion time (ms)

0.0

0.5

1.0

CD
F Ecmp

Spray
REPS
Ethereal

(a) A2A Transfer size = 16KB

10 20
Completion time (ms)

0.0

0.5

1.0

CD
F

Ecmp
Spray
REPS
Ethereal

(b) A2A Transfer size = 1MB

0 200 400 600
Shared buffer occupancy (KB)

0.0

0.5

1.0

CD
F Ecmp

Spray
REPS
Ethereal

(c) A2A Transfer size = 16KB

0 1000 2000 3000
Shared buffer occupancy (KB)

0.0

0.5

1.0

CD
F Ecmp

Spray
REPS
Ethereal

(d) A2A Transfer size = 1MB

0.005 0.006 0.007 0.008
Completion time (ms)

0.0

0.5

1.0

CD
F Ecmp

Spray
REPS
Ethereal

(e) 4-Ring Transfer size = 16KB

0.1 0.2 0.3
Completion time (ms)

0.0

0.5

1.0

CD
F Ecmp

Spray
REPS
Ethereal

(f) 4-Ring Transfer size = 1MB

0 100 200 300
Shared buffer occupancy (KB)

0.00

0.25

0.50

0.75

CD
F Ecmp

Spray
REPS
Ethereal

(g) 4-Ring Transfer size = 16KB

0 500 1000 1500
Shared buffer occupancy (KB)

0.0

0.5

1.0

CD
F Ecmp

Spray
REPS
Ethereal

(h) 4-Ring Transfer size = 1MB

Figure 3.4: Completion times and buffer requirements under All-to-All (A2A) and Ring
communication patterns.

Chapter 3.5. Epilogue 63

much more difficult task due to the high likelihood of collisions. Although REPS
performs packets spraying in the first RTT, it uses a cached entropy from then on,
while switching (exploring) paths based on ECN. Figure 3.4e and Figure 3.4f show
how REPS performs much worse compared to packet spraying and Ethereal
for Ring communication patterns, highlighting the drawbacks of entropy-based
approaches. In contrast, Ethereal uses minimal splitting and assigns paths based
on the least congested path.

3.5 Epilogue
This work challenges the prevailing belief that packet spraying is necessary to
improve the performance of large-scale distributed training workloads. We present
Ethereal, an alternative approach that relies solely on the existing singlepath
transport protocol from a NIC’s perspective. We analytically demonstrate that
optimal load balancing can be achieved by splitting a tiny fraction of the flows
upon arrival. Many interesting open questions remain: (i) reducing the state
space needed by the NIC to serve a large number of flows, e.g., maintaining a
small window of active flows, (ii) quickly adapting to failures, and (iii) extending
Ethereal to multi-tiered folded CLOS topologies. Our results warrant further
research on transport protocols like Ethereal. We urge the community to rethink
the design space, viewing this work as a prologue.

64 Chapter 3. Load Balancing

Part II
Datacenter Switch Buffer Sharing

65

4
Buffer Sharing with Lossy Traffic
Network devices are equipped with a buffer to avoid drops during transient
congestion and to absorb bursts. To reduce cost and maximize utilization, the
on-chip buffer is shared across its queues. This sharing naturally leads to various
problems. Concretely, the excessive growth of a queue might harm the performance
of another queue, which might be starved, deprived of throughput, etc. Worse
yet, such harmful interference might occur across queues that are seemingly
independent e.g., queues that are mapped to different ports or queues that are
formed by independent applications.

Network devices typically employ a hierarchical packet admission control
to orchestrate the use of the shared space. First, a Buffer Management (BM)
algorithm [46,86,161] dynamically splits the buffer space across queues. Second, an
Active Queue Management (AQM) algorithm [102,139,215] manages the buffer slice
that BM allocates to each individual queue by selectively admitting the incoming
packets. Historically, BM and AQM evolved independently with orthogonal goals.
We visualize this in Figure 4.1. BM aims at achieving isolation across queues
by managing the spatial allocation of the buffer at the device level. Intuitively,
BM’s goal is to avoid long-lived queue starvation, effectively enforcing fairness
in the steady state. For instance, Dynamic Thresholds [86] aims at weighted
fairness across multiple queues in a device. In contrast, AQM’s goal is to maintain
stable queuing delays by managing the temporal allocation of the buffer at the
queue level. Intuitively, AQM prevents bufferbloat by avoiding packets stay in
the buffer for ‘‘too long’’ [102,139,215]. For instance, ECN-based AQM such as
RED [102] control the queue lengths via ECN marking; delay-based AQM such as
Codel [139,215] control the queueing delays at a fixed reference value.

While this decoupling has been reasonable and successful in the past as it
allowed BM and AQM schemes to evolve further, two recent datacenter trends
make the need for coordination between them pressing. First, buffer size is not
keeping up with the increase in switch capacity [59,112]. In effect, BM no longer
has enough buffer available to provide isolation to each queue. Second, as traffic
becomes more bursty and incast scenarios more prevalent [53,230,282], the transient
state of the buffer needs to be controlled at the device-level [59]. To keep up with
these trends, a buffer-sharing scheme needs to provide isolation, bounded drain
time and high burst tolerance.

In this work, we show that today’s BM and AQM schemes are fundamentally
unable to independently satisfy these requirements. Driven by this insight, we
propose ABM, an Active Buffer Management algorithm that incorporates the
insights from both BM and AQM to achieve high burst absorption without sacri-
ficing throughput. Concretely, ABM leverages both total buffer occupancy at the
device level and the individual queue drain time. Essentially, ABM is a function

67

68 Chapter 4. Buffer Sharing with Lossy Traffic

R
ea

ct
io

n
to

 to
ta

l b
uf

fe
r o

cc
up

an
cy

(S
pa

tia
l C

ha
ra

ct
er

is
tic

s)
Burst

 absorption
ABM

High Burst Absorption
Per-Priority Isolation
High Throughput

Cut Payload
Trimming-based

Codel, PIE
Delay-based

RED, ARED
ECN-based

Stable drain time

B
et

te
r i

so
la

tio
n

BM

AQM

Complete Partitioning
Low Burst Absorption
Low Throughput

Dynamic Thresholds

Complete Sharing

α

α

Controlling queueing delay
(Temporal Characteristics)

This work

Figure 4.1: BM and AQM are orthogonal in their goals, and the hierarchical
scheme fundamentally limits the burst absorption capabilities of the buffer.

of both spatial (used by BM) and temporal (used by AQM) characteristics of the
buffer, effectively providing the best of both worlds as shown in Figure 4.1. We
analytically show that unlike state-of-the-art, ABM achieves strong isolation prop-
erties and maintains stable buffer drain time. This allows ABM to provide high
and predictable burst absorption while achieving high throughput. We consider
ABM practical, as it operates using statistics that are already used by BM or
AQM algorithms, thus ABM is well within the capabilities of today’s devices.

Our results from large-scale simulations show that ABM improves the flow
completion times for short flows by up to 94% compared to existing BM and
AQM schemes. Moreover, ABM is not only compatible with advanced congestion
control algorithms (e.g., TIMELY, DCTCP and PowerTCP) but improves their
performance in terms of tail FCTs by up to 76% under bursty workloads. Finally,
we show that unlike traditional buffer management schemes, ABM works well on
various buffer sizes, including shallow buffers (e.g., Tomahawk [1, 3]).

We view our work as the beginning towards a new class of ABM algorithms
which react to both total buffer occupancy and the queuing delay.

In summary, our contributions in this chapter are:
■ We reveal the fundamental limitations of BM and AQM schemes that prevent

optimally absorbing bursts (§ 4.1.2).

■ We analytically show the critical limitations of the state-of-the-art buffer
management scheme (§ 4.1.3).

■ We design Active Buffer Management (ABM), an algorithm that achieves
high burst absorption and maintains high throughput by leveraging both
total buffer occupancy and queue drain time (§ 4.2).

■ An extensive evaluation that demonstrates the benefits of ABM in the
datacenter context (§ 4.4).

■ As a contribution to the research community, to ensure reproducibility and
facilitate future work, we made all of our artifacts publicly available at
https://github.com/inet-tub/ns3-datacenter.

https://github.com/inet-tub/ns3-datacenter

Chapter 4.1. Motivation 69

Figure 4.2: The queue at port
i5 is starved (deprived of buffer)
due to other queues that are us-
ing the buffer.

Figure 4.3: While one of
the queues at port i1 has the
same length as the queue at
port i2, it has 3x queuing de-
lay.

Figure 4.4: As the number
of congested queues increases
(Equation 4.6), DT allocates
a unboundedly large amount
of buffer (top) and cannot ad-
dress isolation (bottom).

4.1 Motivation
In this section, we make a case for cooperation between Buffer Management (BM)
and Active Queue Management (AQM) to reap the best out of the precious but
limited on-chip buffer space. Hereafter, we say buffer-sharing scheme to refer to
any scheme within the two dimensions of BM and AQM as shown in Figure 4.1.
After describing our model, we explain the desirable properties of a buffer-sharing
scheme (§ 4.1.1). We then discuss the limitations of existing approaches (§ 4.1.2).
Finally, we analytically reveal the pitfalls of the state-of-the-art BM scheme,
namely Dynamic Thresholds (§ 4.1.3).
Model: We consider an output-queued shared-memory packet switching chip. Two
schemes affect the allocation of the shared buffer. First, a BM scheme dynamically
decides the maximum length of each queue. Second, an AQM scheme decides
whether an incoming packet will be enqueued, marked, trimmed, or dropped. We
consider that packets are grouped into a small set of priorities P. Each priority
exclusively uses a separate queue at each port.

4.1.1 Desirable Properties
To maximize the benefits of the shared buffer, a buffer-sharing scheme needs
to satisfy three key properties: (i) isolation; (ii) bounded drain time; and (iii)
predictable burst tolerance. Next, we describe these properties and motivate them
through intuitive examples.

4.1.1.1 Isolation
As the buffer is shared across multiple queues, the excessive use of buffer by a

small set of queues in aggregate might interfere with the ability of other queues in
the switch to use the shared buffer. Such interference can be particularly harmful
if the competing queues belong to different traffic priorities. As an intuition,
consider the case illustrated in Figure 4.2. A queue serving a traffic priority that is
particularly critical to the operator (e.g., loss-sensitive traffic) starves because the
buffer is occupied by queues formed on other ports and even by best-effort traffic.
To avoid such harmful interference across queues, different traffic priorities must
be isolated. Concretely, we require that each priority must be allowed to occupy a

70 Chapter 4. Buffer Sharing with Lossy Traffic

configurable minimum amount of buffer at any given time, independently of the
buffer state.

Formally, let Tp(t) denote the total allocated buffer to a priority p ∈ P in the
set of all priorities P at any time t. Then Tp(t) must always be greater than Bmin

p ,
a configurable static value. However, since the total buffer space, B is limited, it
is necessary that the total allocation is within B. Thus, each priority must also be
upper bound in its allocation (Bmax

p) to prevent monopolizing the buffer.

Isolation (Minimum Guarantee): Tp(t) ≥ Bmin
p (4.1)

Isolation (Preventing Monopoly): Tp(t) ≤ Bmax
p (4.2)

4.1.1.2 Bounded drain time
Queueing delays are the root cause of high flow completion times for short flows in

a datacenter [35,178,199]. Hence, various schemes including ECN-based AQM aim
at reducing the queue lengths. Indeed, queuing delay also affects the buffer’s drain
time, namely, how fast the occupied buffer can be made available for incoming
traffic (e.g., a burst or an incast). Importantly, though, queueing delay is not
equivalent to a queue’s length. In fact, two queues with the same queue length
might experience different queueing delays. This is possible as a variable number
of queues can share the bandwidth of a single port. Consider the example shown
in Figure 4.3: a queue in port i1 experiences 3x queueing delay compared to the
queue of equal length in port i2. This is the case as the former queue can use 1

3
of the port’s bandwidth while the latter can use the full bandwidth of the port.
Even within the same port, queues of equal length might experience different
queueing delay depending on the underlying scheduling algorithm (e.g., weighted
round-robin).

To avoid the harmful consequences of high queuing delays, a buffer-sharing
scheme needs to bound the per-queue drain time. Concretely, a buffer-sharing
scheme needs to bound the occupied buffer q(t) of a queue with service rate µ(t)
by a configurable static value Γ. In fact, the following condition summarizes the
bufferbloat problem [107,139,215]: the desired property is to avoid packets staying
‘‘too long’’ in the buffer.

Bounded drain time: q(t)
µ(t) ≤ Γ (4.3)

4.1.1.3 Predictable burst tolerance
Incast and bursty traffic are key challenges in a datacenter. Dropping packets

of a burst results in costly timeouts and is thus undesirable. We define burst
tolerance as the maximum burst of packets that the buffer-sharing scheme can
store in the buffer until they can be transmitted via the corresponding port.

Intuitively, a buffer-sharing scheme can absorb an incoming burst either if there
is burst-size amount of empty buffer available upon arrival (relates to isolation) or
if the occupied buffer can drain fast enough to accommodate the burst (relates to
drain time). While these conditions are sufficient to absorb a burst, they could
have adverse effects. On the one hand, maintaining burst-size amount of empty
buffer at all times deprives queues of the precious buffer, resulting in potential
loss of throughput. On the other hand, allocating all newly released buffer (from

Chapter 4.1. Motivation 71

(a) DT’s burst tol-
erance reduces with
the number of con-
gested ports due to
its unbounded buffer
allocation.

(b) DT’s burst
tolerance reduces
with the number of
congested per-port
queues due to its
obliviousness to
drain rate.

(c) ABM offers pre-
dictable burst tol-
erance by bounded
allocation regardless
of the number of con-
gested ports.

(d) ABM offers pre-
dictable burst tol-
erance by dynami-
cally adapting allo-
cations to the buffer
drain time (number
of queues per port).

Figure 4.5: DT’s burst tolerance is unpredictable as it depends on unpredictable
factors. On the contrary, ABM’s burst tolerance remains high even at times of
high load.

draining queues) to an incoming burst will starve the draining queues (drop each
of their incoming packets). In conclusion, to provide predictable burst tolerance
while avoiding buffer waste, a buffer-sharing scheme needs a combination of both
isolation and bounded drain time.

4.1.2 Limitations of Existing Approaches
Next, we show that the existing approaches in BM and AQM cannot satisfy the
desirable properties of a buffer-sharing scheme discussed in § 4.1.1. We focus
on BM and AQM as these ‘‘actively’’ control the worst-case (maximum) queue
lengths.

We first generalize the steady-state workings of both BM and AQM using a
fluid-flow model. We are in steady state when the load conditions and buffer
occupancy remain unchanged. We define the threshold of a queue as the value
of queue length after which incoming packets are not admitted in the buffer.
Thus, the steady-state of both BM and AQM can be generalized as shown in
Equation 4.4, where T i

p is the steady-state length of a queue at port i and of
priority p. In the following, Ψ is a function that any BM scheme uses to calculate
the per-queue thresholds based on buffer-wide metrics i.e., the instantaneous total
buffer occupancy Q, while Φ is a function that any AQM scheme uses to calculate
the per-queue threshold based on per-queue metrics e.g., length q and queue drain
rate µi

p. The effective threshold per queue T i
p is the minimum between the two

thresholds,

T i
p = min

⎛⎜⎜⎝Ψi
p(Q)⏞ ⏟⏟ ⏞
BM

, Φ(q, µi
p)⏞ ⏟⏟ ⏞

AQM

⎞⎟⎟⎠ (4.4)

Limitations of Active Queue Management (AQM): AQM schemes control
the queue lengths/delay at a fixed reference value. For instance, RED [102] queues
used in DCTCP [35] would set Φ = K, where K is the marking threshold (a
constant). Delay-based AQM such as PIE [215] queues would set Φ = K · µi

p

b

where µi
p is the drain rate of the queue and b is the port bandwidth; K

b
is the delay

72 Chapter 4. Buffer Sharing with Lossy Traffic

reference value. In principle, delay-based AQM schemes which set Φ = K · µi
p

b

can maintain constant queue drain time. As discussed earlier in § 4.1.1, bounded
drain time helps in absorbing bursts, since the occupied buffer can rapidly react
to accommodate the incoming burst. However, the total shared buffer occupancy
with AQM controlled queues is n · Φ where n is the total number of queues using
the buffer. AQM has no visibility over other queues using the buffer and thus
cannot bound the overall buffer occupancy. As a result, AQM cannot satisfy the
isolation property we describe in § 4.1.1.

■ Takeaway. While AQM can, in principle, guarantee bounded drain time to
help with burst tolerance, AQM cannot fundamentally satisfy the isolation property
due to its inability to control the shared buffer.
Limitations of Buffer Management (BM): Buffer Management schemes assign
thresholds to every queue on a device. Thus, a BM scheme can, in principle, achieve
isolation across queues. For instance, complete partitioning sets Ψi

p(Q) = B
N

where
N is the total number of queues in the buffer. This naturally isolates each queue,
but at the cost of extremely low buffer utilization. More dynamic schemes, such as
Dynamic Thresholds (DT) [86] improve buffer utilization but sacrifice isolation. We
analytically show this and other limitations of DT in § 4.1.3. Further, BM schemes
are oblivious to the drain time, since they only react to total buffer occupancy
i.e., BM schemes cannot ensure that packets leave the buffer ‘‘fast enough’’. As a
result, BM schemes cannot satisfy the drain time and burst-tolerance property.

■ Takeaway. BM schemes can, in principle, achieve isolation but are funda-
mentally limited in burst tolerance as a result of being oblivious to buffer drain
time.

4.1.3 Drawbacks of the State-of-the-Art Buffer Manage-
ment Scheme

In this section, we shed light on the important drawbacks of the state-of-the-
art buffer management algorithm used in today’s datacenter switches, namely
Dynamic Thresholds (DT) [86]. DT is the most common buffer management
today [46, 126, 191, 211, 252]. We first explain how DT calculates its thresholds.
Next, we describe why it is fundamentally unable to achieve the desirable properties
described in § 4.1.1.
DT’s workings: DT dynamically adapts the instantaneous maximum length of
each queue of priority p, namely its threshold according to the remaining buffer
and a configurable parameter αp often configured per priority.1 Formally, let B
be the total shared buffer and Q(t) be the total buffer occupancy at time t. DT
calculates the threshold T i

p(t) for a queue of priority p at port i as follows:

T i
p(t) = αp · (B −Q(t))⏞ ⏟⏟ ⏞

Total Remaining

(4.5)

The α parameter of a queue affects its maximum length relative to the other queues.
An operator is likely to set higher (resp. lower) α values for high-priority (resp.
low-priority) traffic. Different vendors and operators reportedly use different α

1While α can be configured per queue, it is often configured per priority.

Chapter 4.1. Motivation 73

values. For instance, Yahoo uses α = 8 [126] while Cisco uses α = 14 [252] and
Arista α = 1.

In the following, we analytically show that Dynamic Thresholds (DT) suffers
from low and unpredictable burst tolerance. The key reasons for this limitation
are: (i) the unbounded buffer allocation; and (ii) the obliviousness to the buffer
drain time.
Unbounded buffer allocation: To explain why DT is fundamentally unable
to bound its allocation, we walk through the workings of DT in steady-state. We
refer to steady-state as the time during which the load conditions, the total buffer
occupancy, and the thresholds remain stable (unchanged) i.e., Ṫ

i

p(t) = 0; Q̇(t) =
0. The threshold calculated by DT for a queue of priority p at port i in steady-state
is given by,

T i
p(t) = αp ·B

1 +
∑︂
p∈P

np · αp

(4.6)

where P is the set of priorities using the buffer and np is the number of congested
queues of priority p. As we see in Equation 4.6, DT’s threshold for a queue of
priority p is dependent on the configurable αp value and the number of congested
queues of each priority using the buffer. As the number of congested queues np

increases, the threshold decreases arbitrarily close to zero. In effect, DT cannot
offer any minimum available buffer to any priority, i.e., cannot offer any isolation.

Figure 4.4, illustrates this effect. First, the remaining buffer tends to zero as
the number of congested queues increases. Second, the threshold for a queue of
certain priority (e.g., loss-sensitive AF) drops as the number of congested queues
of another priority (e.g., best-effort BE) increases. Observe that this occurs even
though the αp value is higher for the loss-sensitive priority.
Unpredictable burst tolerance: Intuitively, DT’s threshold calculation results
in unpredictable burst tolerance for two reasons. First, DT’s unbounded buffer
allocation (which we described before) cannot predict the amount of buffer available
for an incoming burst. Second, DT is oblivious to drain time, thus unaware of the
rate at which the buffer can be made available for an incoming burst.

To formally verify this intuition, we analyze the state of the buffer throughout
the arrival of a packet burst that arrives in a queue at port i, priority p and
with a drain rate of µi

p. We describe the burst as incoming traffic with an arrival
rate r. Before the burst arrives, given the number of congested ports, we denote
the aggregate drain rate as µ. Upon the arrival of a burst at time t = 0, the
buffer enters a transient-state: the total buffer occupancy, remaining buffer and
consequently the thresholds change until they stabilize to a steady-state.

For time t = 0+, the queue (hosting the burst) starts to grow, and its threshold
changes. The change in the queue’s threshold depends on the change in the total
remaining buffer (see Equation 4.5). To study the rate of change of the threshold,
we take its derivative with respect to time and obtain the following:

Ṫ
i

p(t) = −αp · Q̇(t) (4.7)

We integrate on both sides of Equation 4.7 in the interval t = 0 to a time τ when
the queue hosting the burst reaches its threshold i.e., T i

p(t) = Qi
p(t). We substitute

the initial conditions for t = 0 from the steady-state occupancy (Equation 4.6) and
solve for the time τ . In essence, the queue experiences zero loss until τ and the

74 Chapter 4. Buffer Sharing with Lossy Traffic

corresponding queue length at τ i.e., (r − µi
p) · τ indicates the burst tolerance of

the buffer given the initial steady-state occupancy. Depending on the arrival rate
r of the burst, we split into two cases.

First, if the arrival rate r is such that the threshold of each queue at t = 0
drops at a rate less than the corresponding queue’s drain rate, then all the queues
are able to drain according to the changes in the thresholds. In this case, the burst
occupies the steady-state allocation corresponding to its queue (Equation 4.6).
Notice that DT’s burst tolerance even when the arrival rate r is low, critically
depends on the number of congested queues of each priority due to its unbounded
buffer allocation. Figure 4.5a illustrates the poor burst tolerance of DT across
different burst arrival rates and initial steady-state conditions.

Second, if the arrival rate r is such that the threshold of each queue at t = 0
drops at a rate greater than the corresponding queue’s drain rate, then the queues
cannot keep up with the changes in the threshold and the burst experiences drops
at time τ before reaching its steady-state allocation. In this case, we obtain the
burst tolerance of DT (r − µi

p) · τ as follows:

Burst Tolerance⏟ ⏞⏞ ⏟
(r − µi

p) · τ = αp ·B⎛⎝1 +
∑︂
p∈P

np · αp

⎞⎠ · (︃1 + αp ·
(r−µi

p)−µ

r−µi
p

)︃ (4.8)

Observe that DT’s burst tolerance critically depends not only on the number
of congested queues np of each priority but also on the difference between the
burst arrival rate r and the aggregate buffer drain rate µ. Even worse, DT’s
obliviousness to drain rate allows queues to increase in lengths irrespective of their
drain time --- effectively increasing np even with low aggregate drain rate µ. As a
result, DT significantly suffers from low burst tolerance. Figure 4.5b illustrates
the consequences of the obliviousness of drain time in buffer allocation to burst
tolerance.

We have so far proved our intuition, namely that the burst tolerance depends on
two factors (i) the total buffer occupancy at t = 0 in the steady-state (Equation 4.6)
and (ii) the drain rate of the buffer in the transient-state (Equation 4.7).

4.2 Active Buffer Management

Driven by our observations in § 4.1.3, we design a buffer-sharing scheme that
systematically combines the insights of both BM and AQM while avoiding the
pitfalls of existing schemes. Our goal is to satisfy the properties we identified in
§ 4.1.1:

■ Provide isolation ▷ Theorem 5, 6

■ Maintain bounded drain time ▷ Theorem 7

■ Achieve predictable burst tolerance ▷ Equation 4.11

Chapter 4.2. Active Buffer Management 75

4.2.1 The ABM Algorithm
ABM assigns thresholds to each queue considering both spatial, buffer-wide and
temporal, per-queue statistics. Formally, ABM assigns a threshold T i

p(t) to a
queue of priority p at port i according to Equation 4.9 i.e., using a configurable
value αp, the port’s bandwidth b and three dynamically changing factors: (i) the
number of congested queues of priority p (np) that contributes to isolation property;
(ii) the drain rate of the queue (µi

p) that contributes to maintain bounded drain
time property; and the remaining buffer space (B −Q(t)).

T i
p(t) =

Buffer Management⏟ ⏞⏞ ⏟
αp ·

1
np

· (B −Q(t)) ·

AQM⏟⏞⏞⏟
µi

p

b
(4.9)

αp is the only parameter the operator needs to configure in ABM. Similarly to
DT, a higher αp value in ABM results in a higher allocation on average. Unlike
DT though, the αp defines the minimum and maximum buffer available to each
priority, as we show in § 4.2.2

np denotes the number of congested queues of priority p. ABM considers a
queue congested if the queue length is close to the corresponding threshold. In our
evaluation, we consider a queue as congested if its length is greater than or equal
to 0.9 of its threshold.
µi

p

b
denotes the normalized drain rate, where µi

p is the drain rate of the queue and
b is the bandwidth per port.2 In effect, µi

p

b
is the portion of the port’s bandwidth

that is available to the particular queue. In our analysis, we assume that the drain
rate µi

p is a continuous value that changes according to the offered load and the
scheduling policy. For instance, each of four queues that are mapped to the same
port will have µi

p

b
= 0.25 if the scheduling is Round Robin. To ensure practicality,

in our evaluations, we measure µi
p periodically and use the measurement for the

threshold calculation. We also perform a sensitivity analysis on the periodic update
intervals.

(B −Q(t)) denotes the unused and unreserved buffer space. Importantly, this
factor is identical to what DT uses.

4.2.2 ABM’s Properties
We now show how ABM satisfies the desirable properties, namely isolation,
bounded drain time, and predictable burst absorption. We also provide formal
arguments for these properties in the next section (§4.3).
ABM offers isolation across priorities. Concretely, ABM (i) bounds the total
buffer occupied by each priority; and (ii) offers minimum buffer guarantees to each
priority. In effect, no priority can monopolize the buffer and starve others. ABM
achieves this by considering the number of congested queues per priority when
calculating the per-queue thresholds. As an intuition, the per-queue threshold of a
given priority decreases as more queues of that priority are congested.

2If the switch ports are not symmetric in bandwidth, b is the bandwidth of the port with the
highest bandwidth.

76 Chapter 4. Buffer Sharing with Lossy Traffic

Concretely, Theorem 5 addresses the isolation property of minimum guarantee,
while Theorem 6 addresses the isolation property of preventing monopoly. We
formally define and discuss the need for those properties in § 4.1.1.

Theorem 5 (Isolation - Minimum guarantee). The total amount of buffer available
for any priority p is lower bounded by Bmin

p given by,

Bmin
p ≥

⎛⎜⎜⎜⎝ B · αp

1 +
∑︂
p∈P

αp

⎞⎟⎟⎟⎠ · µ̂p

b

where µ̂p is the average dequeue rate of the congested queues of priority p.

Theorem 6 (Isolation - Preventing monopoly). The total amount of buffer avail-
able for any priority p is upper bounded by Bmax

p given by,

Bmax
p ≤ B · αp

1 + αp

Notably, both bounds depend only on the αp parameter which the operator
configures, and not on the instantaneous state of the buffer as in DT.
ABM bounds drain time by allocating buffer space proportionately to the drain
rate of each queue. In effect, ABM bounds queuing delay and total buffer drain
time irrespective of the number of congested queues in a port, or the scheduling
policy. We formally express the drain time properties of ABM in Theorem 7.

Theorem 7 (Bounded drain time). The thresholds assigned by ABM upper
bounds the drain time Γ for any queue of priority p given by,

Γ ≤ B · αp

(1 + αp) · b
Notably, this bound is only dependent on the αp which the operator configures,

and b which is the switch port bandwidth which is static at run-time.
Intuition for proof of Theorem 5, 6, 7: We first define Ω (formally defined
in Definition 1) as Ωi

p = αp · 1
np
· µi

p

b
. Notice that ABM’s allocation scheme

(Equation 4.9) is essentially T i
p(t) = Ωi

p · (B −Q(t)). We can then view Ω as an
adaptive α parameter according to DT’s allocation (Equation 4.5)3. We derive an
important property that the sum of Ωi

p values of all congested queues of a certain
priority p is upper bounded by αp (Lemma 1). The buffer allocation for a priority
p in steady state turns out to be

∑︁
i

Ωi
p·B

1+
∑︁

i

∑︁
p∈P Ωi

p
where P is the set of priorities

using buffer. Based on the property of Ω, we then derive lower and upper bounds
(Theorem 5, 6) for the buffer allocated to a certain priority. Similarly, using the
upper bound for buffer allocation and dividing by the drain rate µp

i , we bound the
drain time in Theorem 7.

ABM’s allocation scheme in Equation 4.9 has its roots in the properties of Ω
that offer isolation and bounded drain time properties. For full proofs, we refer
the interested reader to our complete analysis in §4.3.
ABM offers predictable burst tolerance thanks to the previous properties.
Intuitively, ABM’s bounded allocation makes it ready to absorb small bursts and

3Setting Ωi
p = αp reduces to DT’s allocation scheme.

Chapter 4.2. Active Buffer Management 77

the stable drain time property further enhances ABM’s burst tolerance as the
occupied buffer can readily react to incoming bursts. To formalize ABM’s burst
tolerance, we analyze the state of the buffer throughout the arrival of a packet
burst that arrives on a queue at port i, priority p and with a drain rate of µi

p.
Similar to our analysis of DT in § 4.1.3, we describe the burst as incoming traffic
with an arrival rate r. Upon the arrival of a burst at time t = 0, the buffer enters
a transient state.

First, if the arrival rate r is such that the threshold of each queue at t = 0
reduces at a rate less than the corresponding queue’s drain rate, then the aggregate
buffer drains according to the changes in the thresholds and the burst occupies its
steady-state allocation as follows:

Burst Tolerance⏟ ⏞⏞ ⏟
(r − µi

p) · τ =
αp ·

1
np

·B ·
µi

p

b

1 +∑︁
p∈P αp

(4.10)

Notice that ABM’s burst tolerance is independent of the number of the congested
queues of other priorities. Rather, the burst tolerance only reduces due the number
of congested queues of the same priority.

Second, if the arrival rate r is such that the threshold of each queue at t = 0
reduces at a rate greater than the corresponding queue’s drain rate, then the
aggregate buffer cannot drain according to the changes in the thresholds. In this
case, we obtain ABM’s burst tolerance given by Equation 4.11, where µ is the
aggregate drain rate of the buffer at time t = 0.

Burst Tolerance⏟ ⏞⏞ ⏟
(r − µi

p) · τ =
αp · 1

np
·B · µi

p

b⎛⎝1 +
∑︂
p∈P

αp

⎞⎠ · (︃1 + αp · 1
np
· µi

p

b
· (r−µi

p)−µ

r−µi
p

)︃ (4.11)

Finally, notice from Equation 4.11 that ABM’s burst tolerance on a queue
of a certain priority remains independent of the number of congested queues of
other priorities. Further, unlike DT, ABM accounts for the buffer drain time and
achieves a high burst tolerance even with low aggregate drain rate. In essence,
ABM’s burst tolerance is a function of the burst arrival rate r. Observe from
Equation 4.11 that the burst tolerance of a certain priority still depends on the
number of congested queues of the same priority. The buffer occupancy of a
priority self-inflicts its own burst tolerance. In § 4.2.3, we further optimize ABM’s
thresholds to prevent this effect.

Figure 4.5 illustrates ABM’s burst tolerance properties under various buffer
states. Observe that ABM’s burst tolerance for a priority remains high and only
depends on rate at which the burst arrives regardless of the number of ports
that are congested (Figure 4.5c) and of the number of congested queues per port
(Figure 4.5d). Recall that DT’s burst tolerance depends on both these factors and
is thus unpredictable as we observe in Figure 4.5a, 4.5b.

4.2.3 Optimizing for Datacenter Workloads
As mentioned above, although ABM alleviates the dependency on other priorities
in its burst tolerance of a given priority, the buffer occupancy of each priority

78 Chapter 4. Buffer Sharing with Lossy Traffic

self-inflicts its own burst tolerance. To prevent this effect, we further optimize
ABM’s thresholds to maximize its burst tolerance.

To this end, ABM prioritizes all unscheduled packets by using a higher αp

value in allocating buffer for two reasons. First, bursty traffic in a datacenter
originates mainly from unscheduled (first RTT) packets of a flow, since congestion
control cannot fundamentally act within the first RTT. Second, short flows that
finish within the first RTT are of utmost importance in a datacenter. Even a
single packet loss could lead to costly timeouts and long flow completion times.

Specifically, even the unscheduled packets are destined to a specific queue at
each port based on their default traffic priority. However, ABM uses a higher
αp value in its thresholds while admitting such packets to the buffer. We assume
that unscheduled packets arrive with a tag attached by the end-hosts. Observe
that such a tag can also be dynamically obtained if the switch is programmable.
In essence, by prioritizing unscheduled packets, ABM prevents the self-inflicting
effect as seen in Equation 4.11 i.e., a higher αp for unscheduled packets diminishes
the effect of self-inflicting np factor. Note that unscheduled packets relate to the
transient state of the buffer, and prioritizing such packets does not affect the
steady-state properties of ABM. As a result, ABM maximizes the burst tolerance
properties and remains independent of the number of congested ports, as well as
the number of congested queues at each port.

4.2.4 ABM’s Practical Considerations
ABM is attractive in practice for three reasons.
ABM uses statistics that are available to today’s switches. ABM cannot be
easily implemented today, as the MMU is not programmable even on programmable
devices [242]. Still, it is important to note that ABM only uses statistics that are
used either by BM or by AQM schemes, thus is not fundamentally impossible. αp

and (B −Q(t)) are used by DT [86] which is implemented on most datacenter
switches [126,191,211,252]. np , i.e., the number of congested queues of priority p
only requires visibility over queue lengths, which is provided to both AQM and
BM schemes to decide whether a packet can to be admitted. µi

p

b
depends on the

port’s bandwidth, the scheduling algorithm, and the number of congested queues
mapped to the same port. The two former do not change. Thus, if the number of
congested queues mapped to the same port is static, then µi

p

b
also becomes static.

If the number of congested queues (i.e., exceeding a threshold) mapped to the
same port changes over time, then we only need this number to calculate the rate.
For example, if scheduling is round-robin and there are two congested queues in
a port, then the normalized drain rate is µi

p

b
= 0.5. Further, several congestion

control algorithms implemented in real datacenters already use in-band telemetry
and insert µi

p in packet headers (e.g., HPCC [173]). Finally, ABM’s threshold also
requires a floating point operation similar to DT which calculates αp · (B −Q(t)).
ABM teaches essential lessons on how to configure α values. Although
ABM and DT have major differences in their properties, their thresholds are
in fact similar (cf. Equations 4.6, vs 4.9). Thus, ABM’s insights can help an
operator configure DT. Concretely, the operator could divide αp values to the
number of queues mapped to the same port or to the number of congested ports
they expect to have. Finally, an operator can use our mathematical analysis (also

Chapter 4.3. Analysis 79

illustrated in Fig. 4.5) to find an approximation of the burst tolerance of their
DT configuration leveraging their insights about the usual state of the buffer (i.e.,
number of congested queues per port and the number of congested ports).
One can approximate ABM on top of DT. As ABM’s threshold (Equation 4.9)
is so similar to DT’s formula (Equation 4.5) an operator could approximate ABM
using DT. To that end, the operator would need to implement a control-plane
function that periodically pulls queue statistics and reconfigures αp per queue
according to ABM ’s thresholds. Observe that most vendors today expose queue
statistics that are required to calculate µi

p

b
and np i.e., queue lengths [2, 7, 9, 14].

How close this approximation would be to ABM depends on two factors (i) how
frequently a device can be reconfigured; and (ii) how dynamic the traffic patterns
are. In § 4.4.4, we evaluate the effect of such an approximation by varying the
time intervals in which αp values are updated. We find that the approximation
performs similarly to ABM for small update intervals, but performs similarly to
DT at high update intervals.

4.3 Analysis
In this section, we formally model and analyze a shared memory switch architecture
with ABM’s allocation scheme. The aim of our analysis is to show ABM’s formal
guarantees and its properties. We refer the reader to §4.1 for the terminology and
definitions regarding ports, queues and priorities. Our analysis indeed generalizes
both ABM and DT. Substituting static αp values for ωi

p (Definition 1) gives the
analysis of DT.

4.3.1 Model
For generality, we model a switch with an arbitrary but fixed number of ports
and queues per port. In particular, each port has only one queue per priority as
defined in (§4.1). The switch in our model has a shared memory architecture with
B buffer space. We denote the instantaneous occupied buffer at time t as Q(t).
Our analysis is based on a fluid model where packet (bits) arrivals and departures
are assumed to be fluid and deterministic.

We denote by αp, the parameter used by ABM for each priority in allocating
the buffer. Each priority is associated with a separate queue at each port. We
denote port indices by i and priority p. P is the set of priorities using the buffer.
The number of congested queues of a priority p at time t is denoted by np(t).

4.3.2 Formalizing ABM’s Allocation
As described in §4.2, the threshold of a queue at port i and belonging to a priority
p is calculated based on the alpha parameter αp, the number of congested queues
np(t), the normalized drain rate of the queue indicated by γi

p(t) and the remaining
buffer B −Q(t). Formally,

T i
p(t) = αp · βp(t) · γi

p(t) · (B −Q(t)) (4.12)
where, βp(t) = 1

np(t) is the inverse of the total number of congested queues of
priority p at time t.

80 Chapter 4. Buffer Sharing with Lossy Traffic

Definition 1 (Omega - Adaptive α Parameter). For a queue belonging to a priority
p, the product αp · βp(t) · γi

p(t) in ABM’s buffer allocation scheme (Eq. 4.12) is
defined as Omega denoted by ωi

p(t) and is viewed as an adaptive alpha parameter.

ωi
p(t) = αp · βp(t) · γi

p(t) (4.13)

Based on the above definition of ω, in the following we derive an upper bound
on the sum of ω values for all the classes of a priority p. Later in our analysis,
we will see how the sum of ω values plays a key role in ABM’s buffer allocation
scheme. We will later use this upper bound to derive several properties and formal
guarantees provided by ABM.

Lemma 1 (Property of Omega). The instantaneous sum of ωi
p(t) over all the

queues belonging to a priority p ∈ P across all the ports is upper bounded by αp.
∑︂

i

ωi
p(t) ≤ αp (4.14)

Proof. Using Definition 1 and observing that βp(t) is the number of congested
queues of a priority p is the same across all the queues of the same priority, we
express the sum of ωi

p(t) as follows:
∑︂

i

ωi
p(t) =

∑︂
i

αp · βp(t) · γi
p(t) = αp · βp(t) ·

∑︂
i

γi
p(t)

Since γi
p(t) is the normalized drain rate, γi

p(t) is upper bounded by 1. Finally, we
substitute βp(t) = 1

np(t) . We reduce the sum to an inequality as follows, where the
last inequality holds since ∑︁i γi

p(t) ≤ np(t) i.e., the sum of the normalized drain
rates is upper bounded by the number of congested queues.

αc · βp(t) ·
∑︂

i

γi
c(t) ≤ αp ·

1
np(t) · np(t) ≤ αp

4.3.3 Steady-State Analysis
We now analyze the steady-state behavior of ABM’s buffer allocation scheme.
Specifically, we say steady-state when the load-conditions remain stable and a
steady buffer occupancy is achieved. Under steady-state, the queue lengths remain
stable at less than or equal to their corresponding thresholds. To stress on the
worst-case scenarios, we assume that any occupied queue is at the respective
threshold. In our steady-state analysis, for simplicity of presentation, we drop the
time variable in all the equations.

Under steady-state, we are interested in determining the overall buffer allocation
and occupancy denoted by Q, the remaining buffer space B − Q and ABM’s
threshold calculation per queue T i

c .

Lemma 2 (Steady-state allocation). Under steady-state, given a set of congested
queues, the overall buffer occupancy Q is given by Eq. 4.15, the remaining buffer
B −Q is given by Eq. 4.16 and the threshold per congested queue calculated by
ABM is given by Eq. 4.17.

Chapter 4.3. Analysis 81

Q =
B
∑︁

i

∑︁
p ωi

p

1 +∑︁
i

∑︁
p ωi

p

(4.15)

B −Q = B

1 +∑︁
i

∑︁
p ωi

p

(4.16)

T i
p =

B · ωi
p

1 +∑︁
i

∑︁
p ωi

p

(4.17)

Proof. In the steady-state, from the assumption that the queue lengths are equal
to their thresholds, we derive the overall buffer occupancy by summation of queue
lengths of all the congested queues. Using Eq. 4.12 and Eq. 4.13 we express the
total buffer occupancy Q as follows and solve for Q leading to the last equality.

Q =
∑︂

i

∑︂
p

ωi
p · (B −Q) =

B
∑︁

i

∑︁
p ωi

p

1 +∑︁
i

∑︁
p ωi

p

The remaining buffer space (Eq. 4.16) is then straight-forward by substituting
Q. Finally, the threshold per queue T i

p (Eq. 4.17) is obtained by definition from
ABM’s allocation scheme i.e., T i

p = αp · βp(t) · γi
p(t) · (B −Q) = ωi

p · (B −Q).

In the following, we derive ABM’s formal guarantee on isolation i.e., ABM
offers minimum buffer space per priority based on the α parameters.

Theorem 5 (Isolation - Minimum guarantee). The total amount of buffer available
for any priority p is lower bounded by Bmin

p given by,

Bmin
p ≥

⎛⎜⎜⎜⎝ B · αp

1 +
∑︂
p∈P

αp

⎞⎟⎟⎟⎠ · µ̂p

b

where µ̂p is the average dequeue rate of the congested queues of priority p.

Proof. The threshold T i
p for each queue of priority p is given by Equation 4.17.

We sum across all ports and obtain the total allocated buffer as follows,

∑︂
i

T i
p =

B ·∑︁i ωi
p

1 +∑︁
i

∑︁
p∈P ωi

p

≥
B ·∑︁i ωi

p

1 +∑︁
p∈P αp

≥
(︄

B · αp

1 +∑︁
p∈P αp

)︄
·

µ̂p

b

where the last inequality holds since ∑︁i

∑︁
p ωi

p ≤
∑︁

p αp from Lemma 1 and ∑︁i ωi
p =

αp ·
∑︁

i
µi

p

b
≥ αp

µ̂p

b
.

Theorem 6 (Isolation - Preventing monopoly). The total amount of buffer avail-
able for any priority p is upper bounded by Bmax

p given by,

Bmax
p ≤ B · αp

1 + αp

Proof. The proof is similar to Theorem 5. To obtain the upper bound, we use
the property that ∑︁i

∑︁
p∈P ωi

p ≥ αp, a case when only the priority p is using the
buffer.

82 Chapter 4. Buffer Sharing with Lossy Traffic

Theorem 7 (Bounded drain time). The thresholds assigned by ABM upper
bounds the drain time Γ for any queue of priority p given by,

Γ ≤ B · αp

(1 + αp) · b

Proof. Using Equation 4.17 from Lemma 2 and noting that the drain time is
occupied buffer divided by its drain rate (γi

p · b), we obtain the drain time Γ as
follows for a queue at port i and of priority p,

Γ =
B · αp · 1

np
· γi

p

γi
p · b · (1 +∑︁

i

∑︁
p ωi

p) ≤
B · αp

b · (1 + αp)

The last inequality holds since ∑︁i

∑︁
p ωi

p ≥ αp and 1
np
· γi

p ≤ 1.

4.3.4 Transient-State Analysis
In this section we analyze ABM’s transient-state properties. We define transient-
state as a state when the buffer is initially in the steady-state and at time t = 0
load conditions change, creating a transient buffer state until the queue lengths
stabilize. In particular, we consider that at time t = 0, a set of initially empty
queues have incoming traffic. As a result, the thresholds and queue lengths undergo
a transient state. Due to the appearance of new queues, ωi

p of some of the existing
queues get affected due to the changes in βp (number of congested queues of a
priority p) and γi

p (normalized drain rate). In the following, we introduce and
describe certain notations specific to our transient-state analysis.

■ The arrival rate of traffic at each new queue is denoted by r and the arrival
process is fluid and deterministic. Note that we consider each port has a
bandwidth of unit 1 and r is in the same unit.

■ Ge denotes the set of queues whose ωi
p gets affected.4

■ Gne denotes the set of queues whose ωi
p does not get affected.

■ For simplicity we denote the queue at port i and of priority p with ordered
pairs as (i, p).

■ The set of ordered pairs of existing queues is denoted as Sold. Observe that
Sold = Gne ∪Ge.

■ The ordered pairs of new queues that trigger transient state are denoted as
Snew.

■ Dot over a variable denotes its rate of change i.e., derivative with respect to
time. For example ẋ denotes dx

dt
.

4Note that the ωi
p values of Ge only reduce. (It is not possible that ωi

p increases due the
appearance of a new queue)

Chapter 4.3. Analysis 83

4.3.4.1 Preliminaries
While the transient-state begins at t = 0, the initial buffer occupancy is based on

the prior steady-state (Lemma 2) as expressed in Eq. 4.18 and Eq. 4.19.

T i
p(0) =

ωi
p ·B

1 +
∑︂
Sold

ωi
p

(4.18)

Qi
p(0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ωi

p·B

1+
∑︂
Sold

ωi
p

, for ∀(i, p) ∈ Sold

0 , for ∀(i, p) ∈ Snew

(4.19)

At t = 0+, ωi
p of Ge change and remain same for the entire duration of transient

state. At the same time, the ωi
p of Gne remains unchanged. Hence, such changes

are assumed to occur at time t = 0 and the time variable is dropped for ωi
p in the

equations.
From Eq. 4.12, we express the rate of change of thresholds and queue lengths

as follows,

Ṫ
i

p(t) = −ωi
p ·

∑︂
Sold∪Snew

Q̇
i

p(t) (4.20)

Q̇
i

p(t) =
⎧⎨⎩max[−γi

p, min[Ṫ p(t), r − γi
p]] ∀(i, p) ∈ Sold

r − γi
p ∀(i, p) ∈ Snew

(4.21)

It can be proved by contradiction that dT i
p(t)
dt
≤ 0 < r − γi

p. Solving Eq. 4.20 and
Eq. 4.21 for t = 0+,

Ṫ
i

p(t) = −ωi
p ·

⎛⎝∑︂
Sold

max[−γi
p,

dTp(t)
dt (t=0+)

]
⎞⎠− ωi

c ·
∑︂

Snew

(r − γi
p) (4.22)

Recall that Sold = Ge ∪ Gne. All the queues belonging to Ge, will experience
a change in their ωi

p values at t = 0+ resulting in their queue-lengths greater
than threshold. As a result, the rate of change of their queue lengths is their
corresponding drain rates. Eq. 4.22 can then be expanded as,

Ṫ
i

p(t) = −ωi
p ·

⎛⎝∑︂
Ge

−γi
p +

∑︂
Gne

max[−γi
p, Ṫ

i

p(t)] +
∑︂

Snew

(r − γi
p)
⎞⎠ (4.23)

From Eq. 4.23, arrival rate of traffic in new queues i.e r can be expressed as,

r =

∑︂
Snew∪Ge

γi
p∑︂

Snew

1
−

Ṫ
i

p(t) + ωi
p ·

⎛⎝∑︂
Gne

max[−γi
p, Ṫ p(t)]

⎞⎠
ωi

p ·
∑︂

Snew

1
(4.24)

By applying summation over Gne in Eq. 4.23 (will be seen later how this will be
useful), r can be expressed as,

84 Chapter 4. Buffer Sharing with Lossy Traffic

r =

∑︂
Snew∪Ge

γi
p∑︂

Snew

1
−

∑︂
Gne

Ṫ
i

p(t) +
⎛⎝∑︂

Gne

max[−γi
p, Ṫ p(t)]

⎞⎠ ·∑︂
Gne

ωi
p

(
∑︂
Gne

ωi
p) · (

∑︂
Snew

1)
(4.25)

Now it can be observed that the value of r influences all ∀(i, p) ∈ Gne, Ṫ
i

p(t). In
other words, the value of r influences the total i.e ∑︁Gne

Ṫ
i

p(t) which is the aggregate
rate at which thresholds drop for the non-affected set of queues i.e Gne.

4.3.4.2 Case-1: Aggregate drain rate tracks the threshold changes
In this case, the arrival rate r is such that, the queues belonging to Gne are able

to reduce in length exactly tracking the changes in their thresholds. As a result,
their queue-lengths remain equal to the threshold throughout the transient state
i.e,

(︄
dT i

p(t)
dt

)︄
(t=0+)

≥ −γi
p (4.26)

leading to, ∑︂
∀(i,p)∈Gne

(︄
dT i

p(t)
dt

)︄
(t=0+)

≥
∑︂

∀(i,p)∈Gne

−γi
p (4.27)

Using Eq. 4.26 and Eq. 4.27 in Eq. 4.25, the condition on r can be expressed as,

r ≤

∑︂
Snew∪Ge

γi
p∑︂

Snew

1
+
⎛⎝∑︂

Gne

γi
p

⎞⎠ · 1 +
∑︂
Gne

ωi
p

(
∑︂
Gne

ωi
p) · (

∑︂
Snew

1)
(4.28)

For such an arrival rate of traffic at new queues, in the following theorem we
state the time up to which the new queues experience zero transient drops.

Theorem 8. For an arrival rate r within Case-1 (Eq. 4.28) at a set of new queues
Snew, given an initial state of the buffer at time t = 0, a new queue (i, p) ∈ Snew

experiences zero transient drops up to a time t1i
p given by Eq. 4.29

t1i
p =

ωi
p ·B · (1 +

∑︂
Gne

ωi
p)

X1 · Y1

X1 = (1 +
∑︂
Sold

ωi
p)

Y1 = ((r − γi
p) · (1 +

∑︂
Gne

ωi
p) + ωi

p · (
∑︂
Ge

−γi
p +

∑︂
Snew

(r − γi
p))) (4.29)

Chapter 4.3. Analysis 85

Proof. Substituting Eq.4.26 and Eq.4.27 in Eq. 4.23 and using the result in Eq. 4.21
gives,

Ṫ p(t) =
−ωi

p ·

⎛⎝∑︂
Ge

−γi
p +

∑︂
Snew

(r − γi
p)
⎞⎠

1 +
∑︂
Gne

ωi
p

(4.30)

Q̇
i

p(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ωi
p ·

⎛⎝∑︂
Ge

−γi
p +

∑︂
Snew

(r − γi
p)
⎞⎠

1+
∑︂
Gne

ωi
p

,∀(i, p) ∈ Gne

−γi
p ,∀(i, p) ∈ Ge

r − γi
p ,∀(i, p) ∈ Snew

(4.31)

These differential equations will be valid as long as Qi
p(t) = T i

p(t) for ∀(i, p) ∈ Gne,
Qi

p(t) ≥ T i
p(t) for ∀(i, p) ∈ Ge and Qi

p(t) < T i
p(t) for newly created queues i.e

∀(i, p) ∈ Snew. Solving these equations, using the initial conditions, Eq. 4.18 and
Eq. 4.19 leads to,

T i
p(t) =

ωi
p ·B

1 +
∑︂
Sold

ωi
p

−
ωi

p ·

⎛⎝∑︂
Ge

−γi
p +

∑︂
Snew

(r − γi
p)
⎞⎠ · t

1 +
∑︂
Gne

ωi
p

(4.32)

Qi
p(t) = ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωi
p·B

1+
∑︁

Sold
ωi

p
− ωi

p·t·(
∑︁

Ge
−γi

p+
∑︁

Snew
(r−γi

p))
1+
∑︁

Gne
ωi

p
∀(i, p) ∈ Gne

ωi
p ·B

1+
∑︂

∀(i,p)∈Sold

ωi
p

− γi
p · t ∀(i, p) ∈ Ge

(r − γi
p) · t ∀(i, p) ∈ Snew

(4.33)

As we can observe from Eq. 4.32 and Eq. 4.33, the new queues will grow in length
without dropping packets up to a time t1i

p when the threshold equals the queue
length. The transient state continues after t1i

p until all the queues achieve a steady
state occupancy. By equating Eq. 4.32 and Eq. 4.33 for the case of ∀(i, p) ∈ Snew,
we obtain t1i

p as in Eq. 4.29.

In order to offer guarantees, it is absolutely required that either γi
p is constant.

The reason being that there is a dependency between γi
p and the number of queues

of the same port using buffer, a dependency that is fundamentally impossible to
evade unless γi

p is constant. As a result of this assumption, Ge = ϕ and Sold = Gne

and Eq. 4.29 reduces to,

t1i
p =

αp · 1
np
· γi

p ·B
(r − γi

p) · (1 +
∑︂
Sold

ωi
p + ωi

p ·
∑︂

Snew

1)
(4.34)

86 Chapter 4. Buffer Sharing with Lossy Traffic

As an example, we can further simplify for a case with one high priority and one
low priority using the buffer where load variations occur for High Priority whose
α value is αH and the existing Low Priority in the queues have α value of αL. We
can then guarantee that for an arrival rate r that satisfies Case-1 will experience
zero drops i.e., no transient drops if its duration t satisfies the following condition:

t1i
p =

αH · 1
np
· γi

p ·B

(r − γi
p) ·

⎛⎝1 + αL + αH ·
1
np

· γi
p ·

∑︂
∀(i,p)∈Snew

1
⎞⎠ (4.35)

Observe that Eq. 4.35 is independent of the number of queues of Low Priority and
hence it can be said that High Priority isolation can be guaranteed.

4.3.4.3 Case-2: Aggregate drain rate is slower than the changes in
thresholds

In this case, the arrival rate r is such that, the queues belonging to Gne are
unable to reduce in length in accordance with the changes in their thresholds. As
a result, their queue-lengths remain greater than the threshold throughout the
transient state i.e,

(︄
dT i

p(t)
dt

)︄
(t=0+)

< −γi
p (4.36)

leading to, ∑︂
∀(i,p)∈Gne

(︄
dT i

p(t)
dt

)︄
(t=0+)

<
∑︂

∀(i,p)∈Gne

−γi
p (4.37)

Using Eq. 4.36 and Eq. 4.37 in Eq. 4.25, the condition on r can be expressed as,

r >

∑︂
Snew∪Ge

γi
p∑︂

Snew

1
+
⎛⎝∑︂

Gne

γi
p

⎞⎠ · 1 +
∑︂
Gne

ωi
p

(
∑︂
Gne

ωi
p) · (

∑︂
Snew

1)
(4.38)

Theorem 9. For an arrival rate r within Case-2 (Eq. 4.38) at a set of new queues
Snew, given an initial state of the buffer at time t = 0, a new queue (i, p) ∈ Snew

experiences zero transient drops up to a time t1i
p given by Eq. 4.39.

t1i
p =

ωi
p ·B

X2 · Y2

X2 = 1 +
∑︂

∀(i,p)∈Sold

ωi
p

Y2 = (r − γi
p) + ωi

p ·

⎛⎝ ∑︂
∀(i,p)∈Sold

−γi
p +

∑︂
∀(i,p)∈Snew

(r − γi
p)
⎞⎠ (4.39)

Chapter 4.4. Evaluation 87

We omit the proof of Theorem 9. The proof is similar to Theorem 8.
As an example, with one high priority (αH) queue experiencing burst and low
priority (αL) queues occupying buffer, from Lemma 1 on the property of ω and
observing that ∑︁∀(i,p)∈Sold

−γi
p is the Total drain rate of the congested ports of

Sold, we derive the following relation where n is the number of congested ports
belonging to Sold and BW is the bandwidth of each port assuming ports are of same
bandwidth (the assumption is not critical to our analysis, it can easily generalized).

t1i
p =

αH

(1+αL) ·
1

np
· γi

p ·B⎛⎝(r − γi
p) + αH

np

· γi
p ·

⎛⎝−n ·BW +
∑︂

Snew

(r − γi
p)
⎞⎠⎞⎠ (4.40)

where n is the number of congested ports belonging to Sold i.e.,

n ·BW =
∑︂

∀(i,p)∈Sold

−γi
p (4.41)

Notice that the presence of n in Eq. 4.40, is a dependency on the number of
congested ports of Low Priority. However, n only creates a positive effect on
t1i

p i.e., greater the n greater is t1i
p. On the other hand, Eq. 4.40 is independent

of negative dependencies as was in the traditional algorithm DT where a higher
number of congested queues lead to lower t1i

p leading to faster transient drops.

4.3.4.4 Burst Tolerance
Building on the analysis in the previous sections, in this section, we discuss how

the steady-state and transient-state behavior of ABM relates to burst tolerance.
We denote the burst tolerance for a queue of priority p at port i as Bursti

p and is
defined as follows:

Bursti
p = r · t1i

p (4.42)

where r is the arrival rate of traffic and t1i
p is the amount of time starting from

t = 0 until the queue experiences zero drops.
Based on our analysis of transient state in §4.3.4, we generate analytical graphs

as shown in Figure 4.5 (§4.1.3). For each arrival rate r, we first distinguish
whether r falls under case-1 (§4.3.4.2) or case-2 (§4.3.4.3). We then calculate the
corresponding time t1i

p until the burst experiences zero drops. We then multiply r
and t1i

p to obtain the burst tolerance.

4.4 Evaluation
We evaluate the performance of ABM and compare it with state-of-the-art ap-
proaches in the datacenter setting. Our evaluation aims at answering the following
key questions:

(Q1) How does ABM perform compared to other BMs in burst absorption and
isolation?
We find that ABM improves the 99th percentile FCT slowdown of the flows
contributing to bursts by up to 94% (12.6%) under high (low) load compared
to existing schemes. Moreover, we show that (unlike DT) ABM offers isolation

88 Chapter 4. Buffer Sharing with Lossy Traffic

across priorities as performance of a given priority is unaffected by the load of
other priorities.

(Q2) Does ABM sacrifice short flows or throughput?
ABM does not sacrifice throughput or short flows’ FCTs in exchange for burst
absorption. In fact, ABM reduces the 99th percentile FCT slowdown for short
flows by 28.3% on average even at 20% load with Cubic compared to existing BM
schemes, while achieving on-par throughput.

(Q3) Can ABM further improve FCTs of advanced congestion control schemes?
We show that ABM improves the tail FCT slowdown under bursty workloads
in DCTCP by 88%; in TIMELY by 33.3% and in PowerTCP by 2.13% even at
moderate burst sizes.

(Q4) How well does ABM perform in extremely shallow buffers?
We show that ABM maintains its performance and improves the 99th percentile
FCTs of bursty workloads by up to 92% compared to other BMs in extremely
shallow buffers.

(Q5) Can we reap any of ABM’s benefits by approximating its allocation with
DT?
We perform a sensitivity analysis on the importance of the update interval in
ABM’s benefits. We find that one could benefit from ABM by re-configuring
DT’s αp values at every ≈ 8 ms (100x RTT).

4.4.1 Setup
Our evaluation is based on network simulator NS3 [209].
Topology: We use a Leaf-Spine topology [33] with 8 spine switches and 256
servers organized into eight leaves. Each link has a capacity of 10Gbps (4:1
oversubscription) similar to prior work [21, 232]. Moreover, each link has 10µs
propagation delay. Both leaf and spine switches have 9.6KB buffer-per-port-per-
Gbps following the features of the Broadcom TridentII switch [12,59].
Workload: We generate traffic using two workloads (i) web-search; and (ii) incast
traffic. First, we generate traffic following the web-search flow size distribution [35]
which is based on real-world datacenter measurements across various loads in the
range 20%-80%. Second, we generate incast traffic using a synthetic workload
similar to prior work [21,33]. Specifically, our incast traffic simulates a distributed
file system query-response behavior in a datacenter. Each server in our topology
requests a file from a set of servers chosen uniformly at random from a different
rack. All servers that receive the request respond by transmitting the requested
part of the file. Each file request creates an incast. We evaluate across different
request sizes from 10% -75% of the buffer.
Comparisons and metrics: We compare ABM with four alternative BM
schemes: Dynamic Thresholds (DT) [86]; Flow Aware Buffer (FAB) [46], Com-
plete Sharing (CS) and Cisco Intelligent Buffer (IB) [252]. DT allocates buffer
proportionately to the remaining as we describe in § 4.1.3. FAB uses DT but
prioritizes short flows. CS allows every queue in the switch to grow as long as
there is remaining buffer in the shared space. IB uses Approximate Fair Dropping
in combination with DT representing the typical hierarchical scheme.

Chapter 4.4. Evaluation 89

DT FAB CS IB (AFD + Elephant trap) ABM

20 40 60 80
Load (%)

101

102

99
-p

ct
 F

CT
 sl

ow
do

wn

(a) Flows of incast traffic

20 40 60 80
Load (%)

101

102

99
-p

ct
 F

CT
 sl

ow
do

wn

(b) Short flows of web-search

20 40 60 80
Load (%)

0
20
40
60
80

100

99
-p

ct
 B

uf
fe

r (
%

)

(c) Buffer occupancy

20 40 60 80
Load (%)

0
20
40
60
80

100

Av
g.

 T
hr

ou
gh

pu
t (

%
)

(d) Throughput

Figure 4.6: Buffer Management under various loads. ABM achieves lower tail
FCT (a) for flows contributing to bursts (incast traffic) and (b) for short flows
(web-search) compared to other BM schemes across various loads. In doing so
ABM (c) uses less buffer; and (d) does not sacrifice throughput.

We compare the performance of various congestion control algorithms with
and without ABM. In particular, we evaluate ABM with Cubic [118] (loss-based),
DCTCP [35] (ECN-based), TIMELY [193] (RTT-gradient-based), PowerTCP and
θ-PowerTCP [21] (power-based). We report the switch total buffer occupancy,
throughput and Flow Completion Time (FCT) slowdown i.e., the actual FCT
divided by the ideal FCT with no other traffic in the network.
Parameter setting: We configure ABM, DT and FAB with α = 0.5 for all the
queues unless otherwise specified. We update np and µi

p for ABM once per RTT.
We configure IB according to [87]. ABM uses α = 64 for unscheduled packets
(§ 4.2.3) and uses headroom similar to IB. We set K = 65 packets for DCTCP
according to [35] and TIMELY parameters according to [193]. For PowerTCP
and θ-PowerTCP, we set baseRTT to the minimum RTT of the longest path;
NicBW is set to 10Gbps and the γ parameter is set according to [21]. We set
minRTO = 10ms.

4.4.2 ABM’s Performance
ABM significantly improves incast-traffic FCTs: In Figure 4.6a, we show
the 99th percentile FCT slowdown for the flows of incast workload with a fixed
request size of 30% of the buffer size, as a function of the load created by the
web-search workload. All flows use Cubic. We observe that at low load (20%)
ABM reduces the 99th percentile FCT slowdown by 12.6% on average compared
to DT, FAB, CS and IB. As the load increases, ABM outperforms alternatives in
FCT slowdown by 90.12% at 40% load; and by 94% at 80% load.

In Figure 4.7a, we show the 99th percentile FCT slowdown for the flows of
incast workload with fixed web-search load in 40% as a function of the request

90 Chapter 4. Buffer Sharing with Lossy Traffic

DT FAB CS IB (AFD + Elephant trap) ABM

20 40 60
Request Size (% of buffer size)

101

102
99

-p
ct

 F
CT

 sl
ow

do
wn

(a) Flows of incast traffic

20 40 60
Request Size (% of buffer size)

101

102

99
-p

ct
 F

CT
 sl

ow
do

wn

(b) Short flows of web-search

20 40 60
Request Size (% of buffer size)

0
20
40
60
80

100

99
-p

ct
 B

uf
fe

r (
%

)

(c) Buffer occupancy

20 40 60
Request Size (% of buffer size)

0
20
40
60
80

100

Av
g.

 T
hr

ou
gh

pu
t (

%
)

(d) Throughput

Figure 4.7: Buffer Management under various request sizes. ABM achieves lower
tail FCT (a) for flows contributing to bursts (incast traffic) and (b) for short
flows (web-search) compared to other BM schemes across various request sizes. (c)
ABM’s tail buffer occupancy increases with the request size, while (d) throughput
stays untouched.

size of incast traffic. Even for a request size as small as 12.5% of the buffer size,
ABM reduces the FCT slowdown by 39% on average compared to DT and IB; by
33% compared to FAB; and by 54% compared to CS. As the request size increases,
ABM’s benefits are more pronounced. At a request size of 50% of the buffer size,
ABM reduces the FCT slowdown of incast workload by at least 75.1% on average
compared to DT, FAB, CS and IB.

In essence, ABM’s bounded buffer allocation (Theorem 6) effectively limits
the used buffer by the web-search workload and provides enough headroom for the
incast workload. Further, ABM’s prioritization of unscheduled packets (incast
traffic) fully exploits the available headroom.
ABM effectively isolates traffic priorities: To evaluate ABM’s performance
isolation across different priorities compared to the default, namely DT, we consider
the following scenario. The network is shared across three priorities each using
a different transport protocol among Cubic, DCTCP, and θ-PowerTCP. Each
priority uses a distinct queue at each port. The most recent protocol, namely
θ-PowerTCP is used for the incast workload, while Cubic and DCTCP serve
web-search traffic. Figure 4.8 (a,b,c) shows the 99th percentile FCT slowdown of
short flows belonging to each priority as a function of the load carried by Cubic.

At a high level, Figure 4.8 shows the inability of separated queues and DT to
offer isolation. As the Cubic load increases, the default (i.e., DT) FCT slowdown
performance of DCTCP, and θ-PowerTCP significantly increases. In contrast,
ABM effectively protects θ-PowerTCP and DCTCP from the Cubic load and
reduces the tail FCT slowdown by up to 90.92%. Concretely, we observe that when
ABM manages the buffer the FCT slowdown of both Cubic and DCTCP stabilizes
around 20 (i.e., stops degrading with increasing Cubic load) and θ-PowerTCP

Chapter 4.4. Evaluation 91

Default With ABM Default With ABM

20 40 60
Cubic Load (%)

101

102

99
-p

ct
 F

CT
 sl

ow
do

wn

(a) Cubic flows

20 40 60
Cubic Load (%)

101

102

99
-p

ct
 F

CT
 sl

ow
do

wn

(b) DCTCP flows

20 40 60
Cubic Load (%)

101

102

99
-p

ct
 F

CT
 sl

ow
do

wn

(c) θ-PowerTCP flows

20 40 60
Cubic Load (%)

0
20
40
60
80

100

99
-p

ct
 b

uf
fe

r (
%

)
(d) Overall buffer occupancy

Figure 4.8: Cubic, DCTCP and θ-PowerTCP harm each other even though they
use different queues with default BM (i.e., DT). ABM isolates each congestion
control algorithm, effectively reducing their tail FCT.

stabilizes at 10 despite the increasing Cubic load.
In essence, as ABM bounds the buffer drain time (Theorem 7) and the buffer

occupancy of each traffic priority (Theorem 6), it reduces the impact of Cubic
traffic in other priorities of the shared buffer.
ABM improves short flows FCTs (even if they are not part of a burst):
ABM not only improves incast workload FCTs, but also improves FCTs of all
short flows. In Figure 4.6b, we show the 99th percentile FCT slowdown of short
flows belonging to the web-search traffic as a function of the load. We observe that
even at 20% load, ABM reduces the FCT slowdown by 30.7% compared to DT
and FAB; by 38.5% compared to CS; and by 28.9% compared to IB. At 80% load,
ABM reduces the FCT slowdown for short flows by 76% on average. Similarly,
Figure 4.7b we show the 99th percentile FCT slowdown of short flows belonging
to the web-search traffic as a function of request size of the incast workload and at
a fixed load of 40% from the web-search workload. We observe that ABM reduces
the FCT slowdown for short flows of web-search workload by 41.8% on average.
ABM does not sacrifice throughput to serve short flows or bursts: We
further evaluate the performance of ABM in terms of throughput. In Figure 4.6d,
we observe that ABM achieves on-par throughput compared to alternative ap-
proaches. Even under large request sizes of the incast workload in Figure 4.7d,
ABM does not sacrifice throughput for low FCTs of short flows.
ABM strategically increases buffer utilization to accommodate incast:
ABM effectively limits the buffer occupied by medium and long flows. Even with
a buffer-hungry transport algorithm such as Cubic, shown in Figure 4.6c, ABM
reduces the buffer usage across various loads by 54.2% on average compared to DT,
FAB and IB; and by 68.9% compared to CS while still achieving on-par throughput.
At the same time, ABM strategically uses more buffer to accommodate bursts.

92 Chapter 4. Buffer Sharing with Lossy Traffic

Default With ABM Default With ABM

10 25 50 75
Request Size (% of buffer size)

101

102
99

-p
ct

 F
CT

 sl
ow

do
wn

(a) Cubic flows

10 25 50 75
Request Size (% of buffer size)

101

102

99
-p

ct
 F

CT
 sl

ow
do

wn

(b) DCTCP flows

10 25 50 75
Request Size (% of buffer size)

101

102

99
-p

ct
 F

CT
 sl

ow
do

wn

(c) TIMELY flows

10 25 50 75
Request Size (% of buffer size)

101

102

99
-p

ct
 F

CT
 sl

ow
do

wn

(d) PowerTCP flows

Figure 4.9: While advanced congestion control already offers low tail FCT, ABM
allows for further improvements through better buffer allocations compared to the
default buffer management (i.e., DT).

Figure 4.7c shows that ABM uses more buffer as the request size (incast workload)
increases. Indeed, ABM uses 5.3% more buffer compared to DT, FAB and IB for
large request sizes.
ABM’s benefits increase as the number of queues-per-port increases
under stable load: To evaluate the impact of µi

p factor on ABM’s thresholds,
we generate (i) web-search workload at 40% load; and (ii) incast with request size
at 25% of the buffer size and vary the number of queues per port across which
the load is distributed. Figure 4.10a shows the tail FCT slowdown of Cubic and
DCTCP when combined with ABM and DT. We observe that as the number
of queues per port increases, ABM shows higher benefits even with stable load
conditions. Concretely, ABM and DT perform similarly to DCTCP until 4 queues
per port, where ABM only improves over DT by 10%. At 5 queues per port,
ABM reduces the 99th percentile FCT slowdown of Cubic and DCTCP by 88.9%
on average. Furthermore, at 8 queues per port, ABM reduces the FCT slowdown
of Cubic and DCTCP by 92.6%. Figure 4.10b shows how even DCTCP uses more
buffer as the number of queues per port increases, even when the load is fixed.
Figure 4.10 validates the importance of bounded drain time in § 4.1.1.
ABM can improve FCTs of advanced congestion control algorithms
under bursty workloads: Aiming at understanding the benefit of ABM in
conjunction with advanced congestion control, we evaluated it under the following
four scenarios. In each scenario one congestion control algorithm from Cubic,
DCTCP, TIMELY or PowerTCP runs at the hosts generating web-search at
40% load and incast traffic at varying request sizes. We then compare the tail
FCT slowdown achieved when ABM manages the buffer compared to when the
default buffer management algorithm does. In Figure 4.9, we observe that for
small-sized request at 12.5% of the buffer size, ABM reduces FCT slowdown by

Chapter 4.4. Evaluation 93

Cubic with DT

Cubic with ABM

DCTCP with DT

DCTCP with ABM

2 3 4 5 6 7 8
Number of queues per port

100

200

300

99
-p

ct
 F

CT
 sl

ow
do

wn

(a)

2 3 4 5 6 7 8
Number of queues per port

0

25

50

75

100

99
-p

ct
 b

uf
fe

r (
%

)

(b)

Figure 4.10: As the number of queues-per-port increases under stable load ABM’s
buffer occupancy remains low (b), similarly to its tail FCT (a).

39.1% compared to Cubic (with DT) and by 10.3% compared to DCTCP For
this request size ABM achieves no improvements compared to TIMELY and
PowerTCP. For medium-sized requests at 37.5% of the buffer size, ABM reduces
the FCT slowdown by 88% compared to Cubic and DCTCP; reduces TIMELY’s
FCT slowdown by 33.3%. For this request size ABM achieves no improvements
compared to PowerTCP. As the request size increases further, at 50% of the buffer
size, ABM also reduces the 99th percentile FCT slowdown of PowerTCP by 76%.

Although advanced congestion control can improve the tail buffer occupancy
and consequently the tail FCTs for short flows, we observe from Figure 4.9 that
ABM can improve FCTs of advanced congestion control algorithms under bursty
workloads.

4.4.3 ABM’s Performance in Shallow Buffers
Our evaluation setup so far considers a switch with 9.6KB buffer-per-port-per-Gbps
that corresponds to a Trident2 switch. We further evaluate the benefits of ABM
with smaller, yet realistic buffer sizes e.g., Tomahawk.

To that end, we vary the buffer-per-port-per-Gbps according to the specifica-
tions reported in [59]. We generate web-search workload at 40% load and incast
workload at a request size at 25% of the buffer size corresponding to Trident2. We
separately consider DCTCP and PowerTCP.

Figure 4.11, summarizes our results by showing the 99th percentile FCT
slowdown of the incast flows for DCTCP (a) and PowerTCP (b). We observe that
ABM’s performance is robust to changes in buffer size even for extremely shallow
buffers. Concretely, ABM achieves similar performance across various buffer sizes
both with DCTCP and PowerTCP.

On the contrary, both DT and IB cannot effectively manage the buffer when
its size is equal or smaller than 7KB per-port-per-Gbps. Indeed, at this buffer
size the FCT slowdown of DT and IB with DCTCP increases by ≈ 10x compared
to ABM with DCTCP as we observe in Figure 4.11a. PowerTCP hides DT’s
and IB’s inability until 6KB per-port-per-Gbps but not further. Concretely, in
Figure 4.11b, we observe that DT and IB cannot sustain low tail FCTs with
5.12KB per-port-per-Gbps (corresponding to Tomahawk). In summary, ABM
effectively manages the buffer under bursty workloads even with a shallow buffer of
3.44KB (corresponding to Tofino). For instance, ABM reduces the 99th percentile
FCT slowdown by 96% with DCTCP and by 92% with PowerTCP compared to
alternatives i.e., DT and IB.

94 Chapter 4. Buffer Sharing with Lossy Traffic

ABM DT IB (AFD + Elephant trap)

Trid
ent28KB 7KB 6KB

Tom
ahaw

k
Tof

ino

101

102
99

-p
ct

 F
CT

slo

wd
ow

n
(Buffer per port per Gbps)

(a) DCTCP

Trid
ent28KB 7KB 6KB

Tom
ahaw

k
Tof

ino

101

102

99
-p

ct
 F

CT

slo
wd

ow
n

(Buffer per port per Gbps)

(b) PowerTCP

Figure 4.11: ABM maintains low tail FCT under various realistic buffer sizes that
are smaller than Trident2 (which we use throughout § 4.4.2). On the contrary,
DT and IB cause 10x tail FCT slowdown for multiple realistic buffer sizes.

4.4.4 ABM’s Performance with Periodic & Infrequent α
Updates

In § 4.2.4, we introduced the possibility of approximating ABM on top of DT
via periodically reconfiguring α at the control plane. We now aim at evaluating
how sensitive ABM is to the update interval and what benefits such a practical
approximation of ABM can have.

We generate traffic using web-search workload at 40% load and incast traffic
with 75% request size. Flows are destined to one of the eight queues at each port
chosen uniformly at random. We vary the update interval after which DT’s α
values are reconfigured to approximate ABM’s allocation. We chose to have more
queues per port compared to the previous experiment and a relatively large request
size to make the scenario more challenging for ABM. Finally, in Figure 4.12a, we
plot the 99.9th5 percentile FCT slowdown for short flows and the median FCT
slowdown for long flows for (i) ABM with varying update intervals; and (ii) DT
(red bar).

At a high level, the 99.9th percentile FCT slowdown for short flows increases
with larger update intervals, as the reconfiguration rate cannot keep up with the
updates in np and µi

p used in ABM’s thresholds. Thus, at around 1Kx RTT
update interval, ABM’s approximation is equivalent to DT for short flows FCT.
Still, ABM’s approximation significantly improves DT’s performance for update
intervals smaller than 1Kx RTT (i.e., 80ms) showing ABM’s practical benefits.
For instance, even with 10x RTT (100x RTT) update interval, the tail FCT
slowdown of ABM decreases by 84.05% (44.78%) compared to DT. Importantly,
the tail FCT of long flows is not affected by the intervals. Thus, the achieved
throughput of ABM’s approximation is on par with that of DT.

4.5 Related Work
Optimally managing switch buffers has been an active area of research for more
than two decades with a wide range of approaches, including BMs [46,49,56,64,86,
97,161,231] and AQMs [102,139,215,267], scheduling [37,130,242] and end-host
congestion control [21, 35,173,193,199,202,259].

5We report 99.9th rather than 99th to stress ABM further.

Chapter 4.6. Summary 95

1 10 100 1K DT
Update interval (RTTs)

100

200

99
.9

-p
ct

 F
CT

 sl
ow

do
wn

(a) Short flows FCT

1 10 100 1K DT
Update interval (RTTs)

2
4
6
8

10

M
ed

ia
n

FC
T

slo
wd

ow
n

(b) Long flows FCT

Figure 4.12: DT can approximate ABM’s allocation if we reconfigure its α param-
eter every 100x RTT (i.e., every 8ms) according to ABM’s formula. Such a coarse
update interval will already improve DT’s tail FCT by 44.78% compared to DT
(red).

BM schemes such as FAB [46], Cisco’s IB [5], TDT [133] and EDT [239] rely
on DT [86] and attempt to give more of the remaining buffer to short flows. By
relying on DT, these schemes inherit its pitfalls (§ 4.1.3).

AQM schemes such as RED [102], ARED [103], Codel [139] and PIE [215]
control queue lengths or delays but under unrealistic assumptions. Indeed, AQM
schemes assume per-queue buffer isolation i.e., that the maximum length per queue
is static. Yet, in practice, this length dynamically changes, often depriving AQM
from the required buffer to operate normally.

End-host congestion control algorithms have the potential to reduce the
buffer requirements, but are orthogonal to our work. Control algorithms such
as DCTCP [35], DCQCN [287] use marking schemes as feedback to adjust the
sending rates. TIMELY [193] uses RTT-gradient approach to rapidly react to
congestion onset. Even more advances algorithms use a variety of feedback signals
e.g., HPCC [173] uses inflight bytes, Swift [164] uses delay and PowerTCP [21]
uses the power. Yet, end-host congestion control algorithms cannot act on the
first RTT packets, and are fundamentally unable to orchestrate the buffer-sharing
at all times.

4.6 Summary
In this chapter, we demonstrate the fundamental inability of Buffer Management
and Active Queue Management schemes to address the challenges that occur from
sharing the on-chip buffer across queues. Furthermore, we analytically show the
limitations of the state-of-the-art buffer sharing scheme. We present ABM, a novel
buffer-sharing scheme that offers isolation, bounded drain time, and high burst
tolerance. ABM is practical in that it only uses statistics that are available to the
MMU. We show that ABM outperforms all other buffer management schemes in
tail FCT while achieving on-par throughput. Importantly, ABM improves the
FCTs of advanced congestion control algorithms (i.e., TIMELY, DCTCP, and
PowerTCP) under bursty workloads.

96 Chapter 4. Buffer Sharing with Lossy Traffic

5
Buffer Sharing with Lossy & Loss-
less Traffic
Network devices contain a buffer that can temporarily store excessive packets
during congestion events. As the link speeds increase, maintaining a constant
buffer-bandwidth ratio would require buffer memory to evolve faster than Moore’s
law and is hence impractical [185]. As a result, we observe buffer-per-Gbps to
constantly shrink [59,146] making performance problems rooted in buffer sharing
more evident. Indeed, our expert survey, which included experts from six companies,
revealed that buffer sharing is causing performance problems in most large-scale
datacenters.

At a high level, the goal of a buffer-sharing scheme is to provide isolation between
traffic classes, while maximizing the benefit of the buffer e.g., by absorbing bursts
and achieving high throughput. Existing buffer management schemes (even recent
ones) [16,46,86,133] were designed considering exclusively loss-tolerant traffic (e.g.,
TCP variants). However, modern datacenters host traffic classes with different
loss tolerance. Concretely, along with traditional loss-tolerant transport protocols,
many clouds, e.g., Azure [58], Alibaba [105] and OCI [212], deploy RDMA over
Converged Ethernet which requires lossless transport. In order to guarantee zero
packet loss for RDMA, production datacenters enable Priority Flow Control (PFC)
at the switches [58].

The co-existence of TCP and RDMA traffic in the switch buffer makes sharing
the buffer particularly challenging. While, in principle, TCP and RDMA traffic
have the same performance objectives (e.g., high throughput, low latency), their
reaction to network events such as congestion is vastly different in terms of
speed and granularity. A PFC pause proactively throttles RDMA traffic at per-
hop granularity before the buffer fills up in order to prevent packet loss due to
congestion. On the contrary, a packet drop throttles TCP at per-flow granularity
once the buffer is filled up due to congestion. Moreover, the effect of PFC pause
(in RDMA) on the buffer is not immediately evident as all incoming packets after
the PFC has been triggered must be admitted in the buffer further increasing its
occupancy. On the contrary, the effect of a packet drop (in TCP) on the buffer
is immediately evident in the buffer as current packets do not further increase
the buffer occupancy which can decrease proportionately to the aggregate port
bandwidth. Since RDMA and TCP share the same switch buffer, congestion caused
by TCP can result in excessive PFC pauses for RDMA and similarly the buffer
occupied by RDMA (especially when it is paused) can result in excessive packet
drops for TCP; leading to throughput degradation and poor burst absorption.

A naive approach for isolating RDMA and TCP in the shared buffer is to
statically partition it e.g., dedicate 50% of the buffer to each class. However, such

97

98 Chapter 5. Buffer Sharing with Lossy & Lossless Traffic

Figure 5.1: Current buffer-sharing practices maintain two independent and at
times conflicting views of the buffer i.e., ingress and egress, which are subdivided
into various pools; posing a challenge to achieve isolation across RDMA and TCP
traffic. Reverie maintains a bird’s eye view of the buffer; effectively unifying
ingress and egress admission control without statically partitioning the buffer to
achieve isolation.

an approach will result in suboptimal burst absorption; and (in the worst case)
poor throughput when one of the two classes is not using its dedicated portion
of the buffer. On the one hand, production-grade buffer-sharing schemes do not
significantly depart from static partitioning among TCP and RDMA. The root
cause of this pitfall is the unnecessary complex buffer model together with the
use of pre-configured buffer pools i.e., pieces of buffer dedicated to certain queues
only. On the other hand, research-grade buffer-sharing schemes such as ABM [16]
can — at best — achieve steady-state isolation across traffic priorities only for
loss-tolerant traffic, but would fail to isolate lossless and lossy traffic, even if we
extend them to work in such settings, as we show in §5.1.3. Our goal in this works
is to formally navigate the trade-off between isolation and burst absorption in a
setting where lossless and lossy traffic co-exist. Two key insights allow us to do so.

Our first key insight –after thoroughly studying the current buffer-sharing
practices– is that although lossless and lossy traffic are, in practice, independently
managed, the available buffer for both depends on each other’s occupancy. Con-
cretely, today’s switches maintain two views of the buffer (i.e., ingress and egress);
each of these views is virtually further split into pools i.e., buffer pieces configured
to serve a subset of the queues. Figure 5.1 summarizes these views. The complexity
of the buffer design stems from its evolution over the years from serving lossy
traffic to serving both lossy and lossless. Unfortunately, as we show in this chapter,
this complex buffer design of today’s datacenter switches leads to unexpected
buffer issues e.g., lossy traffic gets more buffer allocation than lossless traffic when
they compete, against the high-level objective of the configuration. Our analysis
shows that buffer pools and the independent views of the buffer at the ingress and
egress are the root causes of such issues. To tackle this problem, we propose a
simple buffer-sharing scheme in which both RDMA and TCP are managed jointly
with a bird’s eye view of the buffer. Such an allocation scheme facilitates novel
admission control schemes that can efficiently isolate RDMA and TCP without
statically partitioning the buffer.

Our second key insight is that absorbing RDMA bursts is extremely challenging
because the decisions of a buffer-sharing scheme are on a per-packet basis but PFC

99

Figure 5.2: Prior works calculate thresholds and compare against instan-
taneous queue lengths, which leads to overreaction to bursts and a high loss
rate. Reverie takes a different approach and compares the thresholds against

low pass filtered queue lengths. This allows Reverie to smoothly react to
congestion while absorbing transient bursts.

pause (required for RDMA) is a per-hop signal affecting not just the incoming
packet but all the future arrivals from the previous hop. Moreover, sudden and
concurrent fluctuations in multiple queue lengths can rapidly change the buffer
occupancy. Worse yet, the incoming rate at today’s link speeds can very rapidly
fill in a buffer. Existing schemes [16, 46, 133] that were designed specifically for
loss-tolerant traffic apply large thresholds to those packets that are classified as
short flows or incast flows. Unfortunately, as we later show in this chapter, these
techniques cannot fundamentally achieve better burst absorption for lossless traffic
since PFC works at per-hop or per-queue granularity and not per-packet i.e., burst
absorption for RDMA requires prioritizing a queue experiencing burst (not just
specific packets). To address this problem, we show that instead of increasing
thresholds at per-packet granularity under bursty scenarios, it is sufficient to
dampen the queue statistic (e.g., by a low-pass filter) against which thresholds are
compared, when taking buffer decisions. Figure 5.2 illustrates our main idea. This
essentially prioritizes queues experiencing bursts and improves the burst absorption
capabilities of the buffer.

We present Reverie, a buffer-sharing scheme suitable for modern datacenters
hosting traffic with different loss tolerance. Reverie jointly optimizes the buffer
allocation for lossless and lossy traffic with a bird’s eye view over the buffer;
essentially unifying ingress and egress admission control as shown in Figure 5.1.
Further, Reverie significantly improves the burst absorption capabilities of the
buffer by comparing low-pass-filtered queue lengths against thresholds as illustrated
in Figure 5.2.

Our extensive evaluation of Reverie based on large-scale simulations in
NS3 [209] shows that Reverie effectively isolates RDMA and TCP, reduces
the overall number of PFC pauses by 60% on average and improves the flow
completion times for bursty workloads by up to 33% compared to the state-of-the-
art approaches.

100 Chapter 5. Buffer Sharing with Lossy & Lossless Traffic

In summary, our key contributions in this work are:

■ The first analysis of a production-grade buffer model (exemplified by the
open source SONiC [251]) that includes both ingress and egress admission
control. This analysis generates multiple insights including the conflicting
buffer views of ingress and egress that prevent effective isolation between
lossless and lossy traffic.

■ Reverie, the first buffer-sharing scheme that can isolate lossless and lossy
traffic while improving burst absorption for both.

■ As a contribution to the research community and to facilitate future work,
all our artifacts have been made publicly available at https://github.com/
inet-tub/ns3-datacenter.

5.1 Motivation
We first present unintuitive outcomes (issues) that arise under typical configurations
(§5.1.1). To explain the root cause of those issues (§5.1.3), we first describe in detail
a representative buffer-sharing architecture of an open-source and widely-used
switch OS, i.e., SONiC [251] (§5.1.2). Our buffer model has been endorsed by
major Ethernet switch ASIC vendors, including Broadcom, Cisco and NVIDIA.

5.1.1 Buffer Issues in Datacenters
In this section, we walk through three issues that operators of large-scale RDMA
deployments [58] can face while debugging buffer problems. We have verified
that these issues are (i) possible by showing them analytically (§5.1.3); and (ii)
realistic by direct communications with operators of large-scale RDMA deployments.
Consider an operator who wants lossless traffic to get as much buffer as it needs,
i.e., lossless is prioritized over lossy traffic under buffer contention. This is a typical
use case in datacenters with large RDMA deployments. Although the operator
closely follows the "best practices" (i.e., a set of heuristics) to configure the buffer,
which we explain in §5.1.2.2, they observe the following issues.

Issue 1. Lossy traffic gets more buffer allocation than lossless traffic when they
both compete for buffer space.

Issue 2. Lossless traffic yields to the increase in buffer occupancy of lossy traffic,
while the opposite is not true, i.e., the allocation for lossy traffic is not affected by
the buffer occupancy of lossless traffic.

Issue 3. The buffer is more efficient in absorbing bursts of lossy traffic than bursts
of lossless traffic.

5.1.2 Buffer Sharing Practices
To understand the root cause of the issues (§5.1.3), we need to understand the
buffer model used in today’s datacenters and the "best practices" for configuring
it. To the best of our knowledge, we are the first to present a detailed and

https://github.com/inet-tub/ns3-datacenter
https://github.com/inet-tub/ns3-datacenter

Chapter 5.1. Motivation 101

up-to-date description of a buffer model of a datacenter switch that serves both
lossless (e.g., RDMA) and lossy (e.g., TCP) traffic. We use SONiC [251], an
open-source network operating system that is the closest we can get to the modus
operandi for buffer management. SONiC runs on switch ASICs from multiple
vendors, e.g., Broadcom, NVIDIA, Cisco and Intel, and has been widely deployed
in Microsoft [58], Alibaba [262], LinkedIn [276] and Tencent. Importantly, our
buffer model aligns with that of NVIDIA Onyx [255]. Hence, we believe our buffer
model is representative of a broad range of scenarios and settings. We next describe
the terminology and the configurable parts according to the buffer model of SONiC.
We tabulate the important notations we use in Table 5.1.

Hereafter, we denote lossless by • and lossy by ◦. The switch uses a memory
management unit (MMU) to manage the packet buffer.
Ingress and Egress Counters (Queues): The MMU maintains two types of
counters1, ingress denoted by ← and egress denoted by → that serve admission
control purposes. We henceforth refer to these counters as queues. Let Q be the
set of all queues maintained by the MMU. Once a packet arrives at the switch, the
packet is mapped to an ingress queue (s, p) ∈ ←Q based on the source port s and the
packet’s priority p2; and an egress queue (d, p) ∈ →Q based on the destination port
d. Ingress (egress) admission control acts over ingress (egress) queues. Each packet
is admitted to the buffer if and only if the corresponding ingress and egress queues
pass the ingress and egress admission controls. An arriving and admitted packet
increases both the corresponding ingress and egress queues, while a departure
packet decreases the queues. A packet is only buffered once regardless of the
number of counters it is accounted by. Note that once a packet is admitted, it
cannot be pushed out by new packet arrivals. A queue carrying lossless (lossy)
traffic is known as a lossless (lossy) queue. Overall, the MMU maintains four sets
of queues i.e., ingress lossless ←•Q , ingress lossy ←◦Q , egress lossless •→Q and egress
lossy ◦→Q .
Buffer Size and Pools: The packet buffer has a total size of b. Current datacenter
practices define pools that can intuitively be viewed as the buffer available for
certain types of queues. In other words, the pool is a group of queues. The user can
configure the buffer allocation policy, including the allocation algorithm, per-queue
limit, and total size, for this group of queues. SONiC defines the following four
pools:

■ Ingress pool of size ←b shared by both ingress lossless and lossy queues, with
an occupancy of ←q (t) at time t.

■ PFC headroom pool of size bh used only by ingress lossless queues upon PFC
pause (described next).

■ Egress lossless pool of size •→b used by egress lossless queues, with an occupancy
of •→q (t) at time t.

■ Egress lossy pool of size ◦→b used by egress lossy queues, with an occupancy
of ◦→q (t) at time t.

1Not to be confused with ingress and egress pipelines. Throughout this chapter, ingress and
egress are merely counters (referred to as queues).

2Most of the switch ASICs support 8 priorities. Operators typically map a packet to a priority
based on its DSCP value.

102 Chapter 5. Buffer Sharing with Lossy & Lossless Traffic

Figure 5.3: Buffer bookkeeping: packets are stored once but accounted twice; once
in the ingress and once at the egress for admission control purposes.

Note that pool sizes and occupancy are also counters. A packet can be counted
in multiple pools while being buffered once (pools may overlap), thus the sum of
all pools may exceed the actual buffer occupancy.

Figure 5.3 illustrates an example of the buffer bookkeeping. Packets are
physically stored only once, but are accounted twice. For example, packet 5 is
accounted in the ingress queue (counter) q4 and in the egress queue (counter) qa.
In essence, all packets are accounted in the ingress pool, but packets of lossless
queues are also accounted in the egress lossless pool, while packets of lossy queues
are also accounted in the egress lossy pool.
Admission Control: Each queue i.e., counter (i, p) ∈ Q at an input or output
port denoted by i, corresponding to priority p is associated with a threshold Γp

i (t)
at time t. The admission control scheme compares the instantaneous length qi

p(t)
of a queue against its threshold to make buffering decisions. Thresholds can be
intuitively viewed as the maximum size of a queue. Once the queue hits the
threshold, the switch will drop the incoming packet or send PFC pause frames
to throttle the queue build-up. We emphasize that the switch cannot push out
existing packets in the buffer to make room for the incoming packet.

5.1.2.1 Journey of a Packet in the Switch MMU
We walk through the various counters that are incremented and decremented

during a packet’s journey in the MMU. Recall that a packet can travel through
the switch if and only if it satisfies both ingress and egress admission control.
Ingress Admission Control: The admission control in the ingress is different
for lossy and lossless queues since as TCP (lossy) tolerates packet loss whereas
RDMA (lossless) requires PFC and does not tolerate packet loss. The admission for
ingress lossy queues is straightforward. If the ingress lossy queue hits the threshold
(meaning if the length of the queue equals or exceeds the corresponding threshold
devised by the buffer-sharing logic), the packet is dropped. Otherwise, both the
ingress lossy queue and ingress pool counters are incremented upon admission and
decremented as the packet departs to its destination.

In contrast, the admission control for ingress lossless queues is more complex
and designed to achieve zero packet loss. If the ingress queue hits the threshold,
the switch moves the queue to ‘‘paused’’ state and keeps sending PFC pause
frames to the peer device. Then the arriving packet is admitted, but it increments
the PFC headroom pool occupancy rather than the ingress pool occupancy. In

Chapter 5.1. Motivation 103

Notation Description
← Ingress
→ Egress
• Lossless
◦ Lossy
∗ Shared
b Total buffer size
bh Headroom pool size
Q Set of all queues
←•
Q Set of ingress lossless queues

(i, p) Queue at input or output port i, priority p
qp

i (t) Length of queue (i, p) at time t
Γp

i (t) Threshold of queue (i, p) at time t
◦→q (t) Occupancy of egress lossy pool
αp

i Parameter for queue (i, p)
←•α α for ingress lossless queues (for simplicity)
◦→α α for egress lossy queues (for simplicity)
←•n # ingress lossless queues using buffer
◦→n # egress lossy queues using buffer

Table 5.1: Important notations used in this chapter.

other words, once an ingress lossless queue uses up its limit in the ingress pool,
it starts to consume (or be accounted in) the PFC headroom pool. As the buffer
drains, an ingress lossless queue under ‘‘paused’’ state first decrements its headroom
pool occupancy, and then its ingress pool occupancy. When the headroom buffer
occupancy is zero and the ingress pool occupancy is below the threshold, the switch
moves the ‘‘paused’’ ingress lossless queue back to ‘‘resumed’’ state and sends PFC
resume frames.
Egress Admission Control: Egress counters are straightforward. Egress queue
length and pool occupancy based on the class of packet (lossy or lossless) are
incremented upon admission and decremented as the buffer drains. The switch
drops packets if egress queues hit thresholds.

5.1.2.2 Buffer Management
The MMU of the switch uses a buffer management algorithm that assigns

thresholds to all ingress and egress queues. Dynamic Thresholds [86] (DT) is the
state-of-the-art buffer management algorithm widely adopted by ASIC vendors [211,
252].

In a nutshell, DT calculates dynamic thresholds for each queue (i, p) ∈ Q as
the product of a configurable parameter αi

p and the remaining buffer space in the
corresponding pool. We refer the reader to Table 5.1 for the list of notations we
use. In the following, we summarize DT’s buffer management for lossless and lossy
traffic, at ingress and egress queues.

Γi
p(t) = αi

p ×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

←
b −

←q (t) Ingress Lossless: (i, p) ∈ ←•Q
←
b −

←q (t) Ingress Lossy: (i, p) ∈ ←◦Q
•→
b − •→q (t) Egress Lossless: (i, p) ∈ •→Q
◦→
b − ◦→q (t) Egress Lossy: (i, p) ∈ ◦→Q

(5.1)

104 Chapter 5. Buffer Sharing with Lossy & Lossless Traffic

In addition to the above threshold checks, the switch also uses the physical
packet buffer limit as the last defense.

Having a better understanding of how the buffer works, we can go back to
the operator’s goal to prioritize lossless over lossy and explain how they would
in practice configure the buffer. To avoid lossless packet drops, they would want
to control lossless traffic only at the ingress with PFC thresholds. To make the
problem easier to debug and more intuitive, they would want to control lossy
traffic only at the egress with drop thresholds. To this end, they would use the
following buffer configuration heuristics. For simplicity, in this section, we set αi

p

to ←•α , ←◦α , •→α and ◦→α for all ingress lossless, ingress lossy, egress lossless and egress
lossy queues respectively.
Heuristic 1. To avoid packet drops for lossless traffic at ingress, the sum of the
ingress pool size ←b and headroom pool size bh should be equal to (or smaller than)
the total size of the switch buffer b i.e., ←b +bh ≤ b.

Heuristic 2. To bypass egress admission control for lossless traffic and to allow
fully utilizing the buffer space i.e., to avoid lossless packet drops at egress, we
should set egress lossless pool size •→b to total switch buffer size b and use an
infinitely large egress lossless threshold i.e., •→α ≫ 1.

Heuristic 3. To avoid packet drops for lossy traffic at ingress, we should set
ingress lossy threshold ←◦α to an infinitely large value, and ensure that egress lossy
pool size ◦→b is not larger than ingress pool size ←b i.e., ◦→b ≤

←
b .

5.1.3 Root Causes of the Buffer Issues
To systematically analyze the problems, we consider a fluid flow model with
deterministic packet arrivals and analyze the steady state3 of the buffer, similar to
prior works [16,86]. In this section, we formally model the buffer sharing scheme
of SONiC [251] and analyze its buffer allocation properties. Our analysis aims
to understand the steady-state behavior of the buffer. Specifically, we analyze
a shared buffer switch architecture whose buffer sharing scheme supports both
lossless traffic and lossy traffic. Our analysis is based on a fluid flow model with
deterministic packet arrival rates, extending [16,86].

We begin by analyzing the drop thresholds for lossy traffic. As we study the
steady-state of the buffer, we drop the time variables in our notation for ease of
presentation. Since every packet is accounted both in the ingress and egress, the
following relations hold at all times: (i) lossy traffic buffer occupancy ◦→q at egress
equals its occupancy ←◦q at ingress; (ii) lossless traffic buffer occupancy at egress
•→q equals its occupancy at the ingress pool ←•q plus headroom occupancy qh; (iii)
ingress pool occupancy ←q equals the sum of occupancy of lossless ←•q (without PFC
headroom) and lossy ←◦q traffic occupancy at ingress.

◦→q = ←◦q (5.2)
•→q = ←•q +qh (5.3)
←q = ←◦q +←•q (5.4)

3A steady state is achieved when the queue lengths stabilize i.e., packet arrival rate equals
departure rate.

Chapter 5.1. Motivation 105

Ingress pool: 18MB, Egress lossy: 14MB

◦→
b = 13MB ◦→

b = 12MB ◦→
b = 9MB

Figure 5.4: Isolation cannot be achieved with SONiC unless the ingress pool size
←
b = 18MB is at least twice as large as egress lossy pool size ◦→b i.e., statically
partitioning the buffer.

Based on the egress admission control for lossy traffic i.e., Dynamic Thresholds
(see Equation 5.1 in §5.1), if ◦→n egress lossy queues are in the steady state, then
the total buffer occupancy is ◦→q = ◦→n ·(◦→b − ◦→q). By rearranging the terms, we
obtain the egress lossy pool occupancy:

◦→q =
◦→n · ◦→α · ◦→b
1 + ◦→n · ◦→α

(5.5)

Similarly, based on the ingress admission control for lossless traffic, if ←•n loss-
less queues are in the steady state, then the total buffer occupancy is ←•q =
←•n ·←•α ·(←•b −←•q). Substituting in Equation 5.4 and using Equation 5.5 for ◦→q , we
obtain the following:

←q = ←
b ·
(︃ ←•n ·←•α

1 + ←•n ·←•α

)︃
+ ◦→

b ·
(︃ 1

1 + ←•n ·←•α
·

◦→n · ◦→α
1 + ◦→n · ◦→α

)︃

Finally, substituting ←q from above in ←•q = ←•n ·←•α ·(←b −
←q), we obtain ←•q , the

buffer occupied by lossless traffic at the ingress pool.

←•q = ←
b ·
(︃ ←•n ·←•α

1 + ←•n ·←•α

)︃
− ◦→b ·

(︃ ←•n ·←•α
1 + ←•n ·←•α

·
◦→n · ◦→α

1 + ◦→n · ◦→α

)︃
(5.6)

Overall, our steady-state analysis gives the amount of buffer occupied by
lossless traffic (Equation 5.6) and lossy traffic (Equation 5.5) based on the buffer
configuration and the state of the buffer i.e., the number of active queues of each
class. Following the admission control of Dynamic Thresholds from Equation 5.1,
we could compute the drop thresholds for egress lossy and PFC thresholds for
ingress lossless by using each pool occupancy from above.

First, based on Heuristic 1, lossless traffic is allowed to use the entire buffer
at the ingress i.e., ←b +bh ≤ b. Further, lossless traffic is allowed to use the entire
buffer at the egress i.e., •→b = b based on Heuristic 2. Still, we end up with Issue 1.

106 Chapter 5. Buffer Sharing with Lossy & Lossless Traffic

(a) PFC thresholds (for ingress lossless
queues) are affected by both the number
of ingress lossless and egress lossy queues.

(b) Drop thresholds (for egress lossy
queues) are affected only by lossy queues.

Figure 5.5: Contrary to the expectation that lossless and lossy traffic are admitted
independently in the buffer, lossless traffic is throttled due to the buffer occupancy
of lossy, whereas lossy is admitted independent of the presence of lossless i.e.,
seemingly prioritizing lossy over lossless.

Root cause of Issue 1: To shed light on this issue, we analytically derive the
aggregate buffer allocation ←•q to lossless queues and the aggregate buffer allocation
◦→q to lossy queues. Let ←•n and ◦→n denote the number of ingress lossless queues
and egress lossy queues using the buffer respectively. We have:

←•q = ←
b ·
(︃ ←•n ·←•α

1 + ←•n ·←•α

)︃
− ◦→b ·

(︃ ←•n ·←•α
1 + ←•n ·←•α

·
◦→n · ◦→α

1 + ◦→n · ◦→α

)︃
(5.7)

◦→q =
◦→n · ◦→α · ◦→b
1 + ◦→n · ◦→α

(5.8)

Figure 5.4 illustrates the ratio of buffer allocated to lossy and lossless. Notice
that for a sufficiently large number of lossless queues ←•n and lossy queues ◦→n ,
the buffer allocation to lossless queues tends to ←b − ◦→b (based on Equation 5.7)
and the allocation for lossy queues tends to ◦→b (based on Equation 5.8). Unless
←
b ≥ 2 × ◦→b , we end up with Issue 1, caused by the buffer pools. Specifically,
although lossless queues are allowed to fully utilize the buffer, the egress lossy pool
effectively overlaps with both ingress pool and egress lossless pools as shown in
Figure 5.1, leading to Issue 1.
■ Takeaway. The buffer is pre-fragmented in a way that makes enforcing high-
level objectives through low-level configuration impossible. Current buffer sharing
practices cannot prevent Issue 1 unless the ingress pool is at least twice as large as
the egress lossy pool i.e., the buffer is statically partitioned.

Second, according to Heuristic 2 and Heuristic 3, since lossless (lossy) bypasses
egress (ingress) admission control, we would expect that lossless and lossy traffic
are isolated in the buffer. While Issue 1 already suggests that lossy traffic may
effectively get more buffer allocation than lossless traffic, we find yet another issue
that lossy and lossless traffic interact in a surprisingly unfair manner: lossy traffic
is effectively prioritized over lossless traffic (Issue 2) although our expert heuristics
are intended otherwise.
Root cause of Issue 2: Notice that the buffer occupancy of lossy traffic at
the egress equals its occupancy at the ingress i.e., ◦→q = ←◦q , since every packet

Chapter 5.1. Motivation 107

Figure 5.6: Per-packet prioritization cannot increase burst absorption for lossless
traffic since PFC works at per-queue granularity.

is accounted both in the ingress and egress as shown in Figure 5.3. As a result,
the overall ingress pool occupancy is the sum of egress lossy occupancy and the
ingress lossless occupancy i.e., ←q = ◦→q +←•q . Using Equations 5.7 and 5.8, as well
as the above relation, we derive the steady-state thresholds for ingress lossless
(PFC thresholds) and egress lossy (drop thresholds) based on Equation 5.1.

Figure 5.5a shows how PFC thresholds for lossless queues vary depending on
the number of ingress lossless queues using the buffer and the number of egress lossy
queues. Interestingly, we find that the drop thresholds vary only according to the
number of egress lossy queues (affected by the own buffer occupancy), but remain
unchanged as the number of ingress lossless queues increases, see Figure 5.5b.
We observe that current buffer sharing practices allow buffering lossy packets
mostly independently of lossless traffic, but lossless traffic is suppressed due to
lossy traffic i.e., effectively prioritizing lossy over lossless. Our analysis reveals
two root causes of Issue 2: (i) the egress lossy pool occupancy ◦→q which is used
to calculate egress lossy drop thresholds (see Equation 5.1) does not account for
lossless traffic whereas (ii) the ingress pool occupancy ←q which is used to calculate
ingress lossless PFC thresholds (see Equation 5.1) accounts for both lossless and
lossy traffic.

■ Takeaway. Although lossless and lossy traffic are admitted seemingly indepen-
dently by ingress and egress, the admission control for lossless traffic depends on
both lossy and lossless occupancy, whereas the admission control for lossy traffic
depends only on its own occupancy.

It is natural to ask here whether these issues are due to the underlying buffer
management scheme DT [86], and hence whether recent proposals such as ABM [16]
should be able to avoid them. Although ABM can address isolation across various
traffic priorities, it only works for a buffer-sharing architecture that supports lossy
traffic but not lossless traffic. While, in theory, one could extend ABM to calculate
the thresholds accordingly (by replacing Equations 5.1 within the same buffer
architecture with the corresponding pools described in §5.1.2), both Issue 1 and
Issue 2 would still hold. Indeed, if ABM operates in the default buffer architecture,
it will (similar to DT) control lossless and lossy independently since lossless (lossy)
bypasses egress (ingress) admission control. As a result, ABM cannot jointly impose
fairness and isolate lossless and lossy traffic. Importantly, the technique used for
burst absorption in ABM and other recent proposals [46, 133], i.e., prioritizing
burst packets by using a high α parameter for thresholds, also results in Issue 3.

108 Chapter 5. Buffer Sharing with Lossy & Lossless Traffic

Root cause of Issue 3: Indeed, several recent works [16,46,133] rely on selectively
taking action on burst and non-burst packets i.e., if the queue length exceeds its
threshold, the buffer management scheme still accepts burst packets selectively by
increasing the thresholds using a higher α parameter value only for those packets
identified as burst. Figure 5.6 intuitively summarizes our key points. For example,
if a non-burst (e.g., long flow) packet interleaves burst packets, the non-burst
packet would be dropped since the queue length exceeds its threshold. However, a
key property of PFC is that once PFC is triggered due to a non-burst packet, it
affects all arriving traffic (including bursts) to the queue due to PAUSE frames.
Selectively accepting packets does not apply for PFC.

■ Takeaway. Optimally prioritizing bursts involves preferentially treating packets
belonging to the burst only; this is possible for lossy but not for lossless traffic
where congestion is signaled at a per-queue granularity.

5.2 Reverie

Based on the lessons learned from our analysis in §5.1, we design a buffer-sharing
scheme Reverie which prevents harmful interactions between lossless and lossy
traffic (isolation) while absorbing bursts of both. We first describe the two pillars
on which Reverie relies: (i) consolidated admission control; and (ii) a low pass
filter. Next, we explain how they fit together to form Reverie. Finally, we discuss
Reverie’s properties and its practicality.

5.2.1 Single Buffer Pool for Isolation
We argue that the first step towards achieving isolation is to have full visibility and
control over the state of the buffer. Yet, current buffer-sharing practices maintain
independent views and admissions at the ingress and egress, prohibiting global
visibility and control. To address this, Reverie uses a single shared buffer pool as
shown in Figure 5.1, in addition to a headroom pool dedicated to lossless queues.
Further, Reverie uses a single admission control that jointly optimizes the buffer
allocation for lossless and lossy queues. The single shared buffer pool and a single
admission control offer Reverie a bird’s eye view over the buffer.

Specifically, upon a packet arrival, Reverie first determines the packet’s class
(lossless or lossy). If the packet belongs to lossless • class, Reverie maps the
packet to an ingress lossless queue (s, p) ∈ ←•Q , where s is the source port that
received the packet and p is the packet priority. Similarly, if the packet belongs
to the lossy class, Reverie maps the packet to an egress lossy queue (d, p) ∈ ◦→Q ,
where d is the port to which the packet is destined and p is the packet priority.

As illustrated in Figure 5.7, Reverie maintains only two types of queues
(counters) i.e., ingress lossless and egress lossy, as opposed to the four types of
queues in SONiC (see Figure 5.3). Further, Reverie accounts for each packet
only once as opposed to twice (once at ingress and once at egress) in the current
buffer-sharing practices. In essence, all the lossless and lossy queues are mapped
to the same (single) shared buffer pool as shown in Figure 5.1.

Using a single shared buffer pool and a single admission control leaves Reverie
solely responsible for fairly allocating the buffer across all queues to ensure isolation.

Chapter 5.2. Reverie 109

Figure 5.7: Reverie’s buffer bookkeeping: packets are stored once and accounted
for once; lossless and lossy packets are accounted in the ingress and egress queues,
respectively. All the queues are managed by a single admission control scheme.

In §5.2.3, we show how Reverie’s allocation achieves isolation across lossless and
lossy.

5.2.2 Low-Pass Filter for Burst Absorption
A vast majority of prior works, including DT [86], FAB [46], ABM [16], TDT [133],
calculate a threshold and compare it against instantaneous queue lengths in order
to take buffer decisions. To improve burst absorption, prior works [16, 46, 133]
selectively prioritize certain packets (e.g., short flows) by assigning them a larger
threshold compared to the default threshold for other packets (e.g., long flows).
However, as we explained in §5.1.3, selective packet prioritization cannot improve
burst absorption for lossless traffic leading to Issue 3. It is essential to identify a
queue experiencing a burst and prioritize all incoming traffic to the queue under
bursty scenarios. A natural indicator for a queue that is experiencing a burst is its
queue gradient, i.e., the rate of change of queue length. Thus, one could increase
thresholds proportionally to the queue gradient. While intuitive, queue gradient
is hard to monitor/calculate in practice in hardware, especially at microsecond
granularity. To address this, we show an equivalence between an admission control
based on queue gradient and an admission control based on first-order low-pass
filtered queue lengths (Property 2). Leveraging this equivalence, Reverie uses an
exponential weighted moving average which is an easy-to-implement first-order
low-pass filter. In essence, Reverie compares average queue lengths against a
threshold, unlike prior works that use instantaneous queue lengths.

Property 2 (Relationship of low pass filter and gradient). Let Ψ be an admission
control scheme that compares first order low pass filtered queue length q̂(t− δt)
against a threshold Γ(t) i.e., q̂(t − δt) ≤ Γ(t), where t − δt denotes the previous
time instance. Let Φ be an admission control that compares instantaneous queue
length q(t) against Ψ’s threshold Γ(t) incremented proportionally based on the
average queue gradient dq̂(t)

dt
i.e., q(t) ≤ Γ(t) + K · dq̂(t)

dt
; where K is a constant

and dq̂
dt

is the gradient. Then, there exists a constant K such that Ψ and Φ are
equivalent.

Proof. We consider exponentially weighted moving average for the first order low
pass filter in this context. Let q(t) denote the instantaneous queue length and let
q̂(t) denote the average queue length. We denote the moving average parameter

110 Chapter 5. Buffer Sharing with Lossy & Lossless Traffic

by ν. The moving average of the instantaneous queue lengths is then as follows:

q̂(t) = ν · q(t) + (1− ν) · q̂(t− δt)

where δt denotes the previous time when the average was updated. By rearranging
the terms and dividing by δt,

q̂(t)− q̂(t− δt)
δt

= ν

δt
· (q(t)− q̂(t− δt))

Let K = δ
ν
. Using Euler’s approximation method, we obtain the following:

K · dq̂(t)
dt

= q(t)− q̂(t− δt) (5.9)

Using this relation, we now prove that Ψ and Φ admission control schemes are
equivalent. We begin with Ψ which compares average queue lengths against a
threshold Γ(t) at time t.

q̂(t− δt) ≤ Γ(t)
Using Equation 5.9, we convert the above inequality as follows:

q(t)−K · dq̂(t)
dt
≤ Γ(t)

By rearranging the terms, we obtain the the admission control scheme Φ. Hence
Ψ and Φ are equivalent.

q(t) ≤ Γ(t) + K · dq̂(t)
dt

5.2.3 The Workings of Reverie
In this subsection, we put all the pieces together, to describe Reverie’s buffer-
sharing architecture, admission control, and the underlying buffer management
scheme.
Buffer sharing architecture: Let b be the total buffer space. Reverie dedicates
a headroom pool of size bh for lossless traffic similar to the existing architecture.
The rest of the shared buffer space denoted by ∗b = b− bh is shared by both lossless
and lossy traffic dynamically. A lossless packet is mapped to a lossless queue
(s, p) ∈ ←•Q and a lossy packet is mapped to a lossy queue (d, p) ∈ ◦→Q based on the
source port s, destination port d and the packet priority p. In total, Reverie
maintains a set ∗Q of queues, where ∗Q = ←•

Q ∪
◦→
Q consists of only two types of

queues i.e., lossless and lossy instead of the four types maintained by SONiC.
Admission control: Reverie calculates a threshold Γi

p(t) for each queue (i, p) and
compares it against the moving averaged queue length q̂i

p(t) of the corresponding
queue at time t i.e.,

q̂i
p(t) ≤ Γi

p(t) (5.10)

where q̂i
p(t) is given by,

q̂i
p(t) =

Capture steady congestion⏟ ⏞⏞ ⏟
γ · q̂i

p(t− δt) +
Capture transient bursts⏟ ⏞⏞ ⏟

(1− γ) · qi
p(t) (5.11)

Chapter 5.2. Reverie 111

Here γ is a constant and a parameter for Reverie, qi
p(t) is the instantaneous queue

length, and t−δt denotes the previous time instance. γ can be intuitively viewed as
the degree of burst absorption. Since Reverie’s admission control (Equation 5.10)
compares the threshold of a queue against its average queue length (Equation 5.11),
a higher γ masks the impact of transient bursts on the average queue lengths
and, as a result, allows the admission control to absorb more transient bursts as
illustrated in Figure 5.2. However, setting γ arbitrarily close to 1 makes admission
control more oblivious to persistent or steady-state congestion. We leave it for
future work to study the optimal parameter setting.

Any arriving packet that satisfies Equation 5.10 is buffered in the shared pool.
If a lossy packet does not satisfy the above condition, the packet is simply dropped.
However, if a lossless packet does not satisfy the above condition, the queue enters
pause state (sends a PFC pause frame to its peer) and all the subsequent packets
to the queue are buffered in the dedicated headroom irrespective of Equation 5.10.
The queue sends out a PFC resume frame once the queue’s headroom drains out
completely and when Equation 5.10 is satisfied again.
Buffer management: The threshold Γi

p(t) for each queue (i, p) ∈ ∗
Q calculated by

Reverie at time t, depends on (i) a configurable parameter αp for each priority,
(ii) the number of congested queues np of priority p and the remaining shared
buffer space ∗b− ∗q(t) where ∗b is the size of shared buffer pool and ∗q(t) is the pool
occupancy at time t. The threshold Γi

p(t) is given by,

Γi
p(t) = αp ·

1
np

· (∗b− ∗q(t)) ∀(i, p) ∈ ∗
Q (5.12)

The thresholds used by Reverie are similar to ABM [16] but we drop the dequeue
rate factor due to the complexity of measuring it, especially when queues pause in
the case of lossless traffic. However, our design does not prevent using the dequeue
rate factor as well if it can be systematically measured.

5.2.4 The Properties of Reverie
Reverie inherits the steady-state isolation properties of ABM’s thresholds for
lossy as well as lossless traffic. Unlike ABM, though, which can only achieve
isolation across priorities within lossy traffic, Reverie can also achieve isolation
across lossless and lossy priorities. In the following, for simplicity, we consider
that all lossless and lossy queues are configured with the parameter value •α and ◦α
respectively.

In Theorem 10, we state the ratio in which buffer is allocated in the steady-state
across lossless and lossy traffic in aggregate when both traffic classes compete for
buffer. The ratio turns out to be the ratio of the configured α parameter. This
makes it very intuitive and flexible to configure the buffer required for each traffic
class, rather than the complicated pool sizes in the current practices.

Theorem 10 (Isolation). Under contention, Reverie allocates buffer across
lossless and lossy in the ratio of the corresponding α parameters i.e.,

•q
◦q

=
•α
◦α

112 Chapter 5. Buffer Sharing with Lossy & Lossless Traffic

where •q and ◦q denote the steady-state shared buffer occupancy of lossless and lossy
traffic respectively; •α and ◦α denote the parameter values for lossless and lossy
queues respectively.

Proof. Since under steady-state, average and instantaneous converge, we simply
use instantaneous values to prove our claim. Let •n and ◦n be the number of congested
queues of lossless and lossy. Reverie allocates a total of •q = •n · •α · 1•n · (

∗
b− ∗q) =

•α ·(∗b− ∗q) to •n lossless and a total of ◦q = ◦n · ◦α · 1◦n · (
∗
b− ∗q) = ◦α ·(∗b− ∗q) to ◦n lossy

queues. Since both lossy and lossless are mapped to the shared pool, we have that
•q + ◦q = ∗q. But substituting the previous relations, we obtain:

∗q = (•α + ◦α) · ∗b
1 + (•α + ◦α) (5.13)

•q =
•α · ∗b

1 + (•α + ◦α) (5.14)

◦q =
◦α · ∗b

1 + (•α + ◦α) (5.15)

From the above relations, it is easy to see that the ratio
•q
◦q =

•α
◦α .

Based on Theorem 10, it is sufficient that the α parameter for lossless is greater
than lossy in order to prevent issue 1. Further, since the thresholds are calculated
with a bird’s eye view of the buffer, the thresholds for both lossless and lossy depend
on the overall buffer occupancy (see Equation 5.12). Hence, given that the α
parameter for lossless is greater than lossy, Reverie assigns a larger threshold for
lossless compared to lossy i.e., prioritizing lossless over lossy. Essentially, Reverie
solves both issue 1 and issue 2 without statically partitioning the buffer.

When a single traffic class utilizes the buffer, Reverie allocates α
1+α

fraction
of the shared buffer, where α corresponds to the parameter value of the traffic
class using the buffer. Notice that Reverie allocates more buffer to a traffic class
when it is not competing with the other class e.g., Reverie allocates

•α · ∗b
1+•α amount

of buffer when only lossless traffic is using the buffer compared to
•α · ∗b

1+•α + ◦α amount
of buffer allocation for lossless when both traffic classes are competing for buffer
space. Intuitively, Reverie dynamically adapts the buffer allocation to lossless
and lossy according to their load as opposed to the static pool sizes in the current
practices. However, Reverie keeps some buffer idle.

Theorem 11 (Buffer waste). Reverie keeps idle a certain amount of buffer in
the steady-state denoted by bw given by,

∗
b

1 + •α + ◦α
≤ bw ≤

∗
b

1 + min(•α, ◦α)

where ∗b is the shared buffer pool size; •α and ◦α are the parameter values for lossless
and lossy queues correspondingly.

Proof. Our proof follows from the proof of Theorem 11. Specifically, for •n lossless
queues and ◦n lossy queues, Reverie allocates ∗q in aggregate given by Equation 5.13.
The remaining buffer ∗b− ∗q which is wasted in the steady state is then given by,

bw ≥
∗
b− ∗q =

∗
b

1 + (•α + ◦α)

Chapter 5.3. Evaluation 113

However, if a traffic class eg., lossless does not use the buffer, we can derive the
remaining shared pool buffer similar to above. Depending on the smallest α value
across all traffic classes, when such a class uses the buffer alone, then in this case
the buffer waste is given by,

bw ≤
∗
b− ∗q =

∗
b

1 + (min(•α, ◦α))

Although Reverie keeps a tiny buffer portion idle in the steady state, this helps
in absorbing transient bursts. Reverie effectively absorbs transient bursts even
for lossless traffic since it compares average queue lengths against the threshold.
Indeed, upon burst arrival, the average queue length hits the threshold slower
than the instantaneous queue length, essentially absorbing transient bursts even
for lossless queues. As a result, Reverie finally solves issue 3.

5.2.5 Implementation Feasibility
A prototype implementation of Reverie is beyond the scope of this chapter
and is part of our future work. Our discussions with NVIDIA already confirm
that an approximation of the shared buffer pool model of Reverie is feasible in
hardware. In fact, we are currently discussing with a major Ethernet switch vendor
on implementing Reverie using their latest ASIC with programmable admission
control features.

Reverie is within reach of today’s hardware because it does not significantly
depart from commodity ASICs’ buffer-sharing architecture and admission control
mechanisms. Reverie introduces two primary changes. First, Reverie uses
a simpler buffer-sharing architecture with a single shared pool (excluding PFC
headroom) and two types of queues. We have confirmed with NVIDIA that this
architecture is supported by existing NVIDIA Ethernet switch ASICs4. Second,
Reverie uses a first-order low pass filter to obtain the moving averaged queue
lengths. We believe this is practical as moving averages are used by common
AQM like RED [102]. As previous works (e.g., ABM [16], [239]) have noted,
various queue-length statistics are available and already used by the native buffer
management of the MMU (although switch vendors do not open up the API for
operators to do so on their own).

5.3 Evaluation
We evaluate the performance of Reverie and compare it against the state-of-
the-art approaches in the datacenter. Our evaluation aims to answer four main
questions:
(Q1) Can Reverie protect RDMA from TCP?
We find that Reverie shields the performance of RDMA from TCP under various
loads. At increased loads, Reverie reduces the number of PFC pauses by 60% on

4To implement this buffer-sharing architecture, we just need to map both egress lossy queues
and egress lossless queues to a single egress buffer pool, and use an infinitely large egress lossless
threshold.

114 Chapter 5. Buffer Sharing with Lossy & Lossless Traffic

(a) PFC Pauses (b) RDMA incast (c) TCP short flows

(d) RDMA buffer (e) TCP buffer

Figure 5.8: Buffer sharing under websearch TCP (Cubic) 80% load and across
various burst sizes of incast RDMA (DCQCN) workload. As the burst size increases,
the inability of DT and ABM to absorb RDMA bursts becomes more.

average compared to DT and by 71.2% compared to ABM, with DCQCN as the
transport protocol. When using advanced congestion control for RDMA, Reverie
reduces the number of PFC pauses by up to 100% compared to ABM.

(Q2) Can Reverie improve burst absorption of any class?
We show that Reverie significantly improves the burst absorption for RDMA and
for TCP. With background TCP traffic (websearch), Reverie improves the incast
performance of RDMA by up to 33.3% compared to DT and by 50.4% compared to
ABM. Under background RDMA traffic Reverie improves the incast performance
of TCP by up to 46.8% compared to DT and by up to 2.1% compared to ABM.

(Q3) Does Reverie penalize TCP?
Reverie does not penalize TCP. We find that Reverie also improves the 99-
percentile flow completion times (FCT) for short flows of TCP by 42.7% on average
across various loads compared to DT. On this front, Reverie is on par with ABM.

(Q4) How sensitive is Reverie to its parameters?
We find an interesting characteristic of the parameter γ in Reverie: increasing γ
arbitrarily close to 1 dramatically reduces the number of PFC pauses, and improves
the FCT for incast flows. However, beyond a certain value of γ, the infrequent
PFC pauses negatively affect FCT. Finding the optimal γ value for a given switch
remains an open question.

5.3.1 Setup
Our evaluation is based on network simulator NS3 [209].

Chapter 5.3. Evaluation 115

(a) PFC Pauses (b) RDMA incast (c) TCP short flows

(d) RDMA buffer (e) TCP buffer

Figure 5.9: Buffer sharing under incast RDMA (DCQCN) workload and across
various loads of websearch TCP (Cubic) workload. ABM achieves better perfor-
mance for TCP but heavily penalizes RDMA, while Reverie balances the two.

Topology: We consider a leaf-spine datacenter topology with 256 hosts organized
into 4 spines and 16 leaves with 25Gbps links; link delay to 2µs (thus 17.28µs base
RTT and 54KB bandwidth-delay product) and an oversubscription of 4, similarly
to previous work [16,21,232]. All switches have 5.12KB buffer-per-port-per-Gbps
similar to Broadcom Tomahawk [3]5. All server NICs and switches are PFC
enabled.

Traffic mix: We launch two types of workloads in our evaluation: (i) background
and (ii) incast workloads. First, we generate background traffic across 20%-80%
loads using websearch [35] flow size distribution, which is based on real-world
datacenter measurements. Second, similar to prior works [16,21,33], we generate
incast traffic using a synthetic workload that simulates the query-response behavior
of a distributed file system. Specifically, each server in our topology sends out
requests (queries) to all servers connected to a different leaf switch, chosen uniformly
at random. These servers respond by sending a fraction of the file. We generate
requests from each server based on a poisson process and we set the average request
rate to 2 per second. We vary the file size (referred to as burst size). We use
DCQCN [287] and PowerTCP [21] for RDMA congestion control; and Cubic [118]
for TCP.

Baselines & metrics: We compare Reverie with the SONiC [251] buffer model
which is the state-of-the-art buffer sharing architecture widely deployed in today’s
datacenters. SONiC uses Dynamic Thresholds (DT) [86] as the buffer management
scheme. The vast majority of the schemes in the literature are tailored for loss-

5While Tomahawk splits the buffer across 4 MMUs, for simplicity, we assume a single MMU
manages the entire buffer.

116 Chapter 5. Buffer Sharing with Lossy & Lossless Traffic

(a) PFC pauses (b) RDMA incast (c) TCP long flows

(d) RDMA buffer (e) TCP buffer

Figure 5.10: Buffer sharing under websearch TCP (Cubic) 80% load and incast
RDMA (DCQCN) workload across various egress lossy pool sizes (% of ingress
pool size) available for lossy TCP traffic. By changing the size of lossy pool, ABM
and DT can only decide which traffic class will be prioritized against the other.

tolerant traffic; thus it is unclear how those schemes can be evaluated in a fair
manner for lossless traffic. To address this, we extend ABM [16] to support
lossless traffic within the SONiC buffer model (after discussing with the authors)
by accounting for the drain rate as well as the number of saturated queues in the
ingress, and use it as a baseline. We report the following metrics: (i) number
of PFC pauses triggered, (ii) average FCT slowdown for incast traffic, (iii) 99-
percentile FCT slowdown for short flows of background traffic (iv) 99-percentile
buffer occupancy of RDMA and (v) 99-percentile buffer occupancy of TCP, as a
percentage of the total shared buffer.

Switch buffer configuration: We set the headroom pool size based on the NIC
bandwidth and link delay, according to [268]. The remaining buffer is configured
as ingress pool size. We set the egress lossless pool to the total switch buffer
size and the egress lossy pool to 80% of the ingress pool size. For Reverie,
the headroom pool configuration is the same as stated earlier and the remaining
buffer is configured as shared pool size. We set α = 1 for all the schemes and set
γ = 0.999 for Reverie. We configure DCQCN according to [173], which is based
on industry experience, and PowerTCP according to [21]. We set TCP minRTO
to 1ms.

5.3.2 Results
Reverie significantly reduces PFC pause rate: We generate TCP traffic using
websearch workload and RDMA traffic using the incast workload in Figure 5.9
and Figure 5.8. RDMA uses DCQCN for congestion control. Across various loads

Chapter 5.3. Evaluation 117

(a) PFC pauses (b) TCP incast (c) RDMA short

(d) RDMA buffer (e) TCP buffer

Figure 5.11: Buffer sharing under incast TCP (with Cubic) and across various
loads of websearch RDMA (with PowerTCP). ABM can only deal with low loads
of RDMA traffic as it cannot distinguish or priortize it.

of TCP and a burst size of 2MB for RDMA traffic, we observe from Figure 5.9a
that Reverie reduces the number of PFC pauses by 60% on average compared to
DT and by 71.2% on average compared to ABM. Specifically, even at 20% TCP
load, Reverie reduces the number of PFC pauses by 58.9% compared to DT
and by 87.9% compared to ABM. Further, across various burst sizes of RDMA
with 80% TCP load, Reverie reduces the number of PFC pauses by 61.8% on
average compared to DT and by 57.4% on average compared to ABM, as shown
in Figure 5.8a. In Figure 5.11 and Figure 5.12, we generate RDMA traffic using
websearch workload and TCP traffic using the incast workload. We use PowerTCP
as the congestion control for RDMA. From Figure 5.11a showing various RDMA
loads at 1.5MB TCP burst size, and Figure 5.12a showing various TCP bursts at
80% RDMA load, we observe that Reverie significantly reduces the PFC pauses
by 100% compared to ABM, while Reverie and DT perform similarly in this case.
This confirms our observations in §5.1 on SONiC that lossy severely interacts with
lossless traffic even though they are controlled independently by ingress and egress.
Reverie drastically reduces TCP’s interference with RDMA.

Reverie improves burst absorption for RDMA & TCP: Figure 5.9b, shows
that across various TCP loads, Reverie significantly reduces the average FCT
for incast flows by 18.5% on average compared to DT and by 18.2% on average
compared to ABM. At 80% TCP load, across various RDMA burst sizes, Figure 5.8b
shows that Reverie improves the average FCT for incast flows by 10% on average
compared to DT and by 17% compared to ABM. This shows that Reverie
improves the overall burst absorption for RDMA. Although Reverie’s thresholds
are similar to ABM’s, Reverie achieves better performance for lossless traffic due
to its LPF-based admission control which favors transient bursts.

118 Chapter 5. Buffer Sharing with Lossy & Lossless Traffic

(a) PFC pauses (b) TCP incast (c) RDMA short

(d) RDMA buffer (e) TCP buffer

Figure 5.12: Buffer sharing under websearch RDMA (with PowerTCP) at 80%
load varying burst sizes of incast TCP (with Cubic). As TCP traffic increases,
ABM further penalizes RDMA to protect TCP traffic.

Across various loads of RDMA and 1.5MB TCP burst size, in Figure 5.11b, we
see that Reverie significantly reduces the average FCT for incast flows by 33.7%
on average compared to DT and by 1.08% compared to ABM. From Figure 5.12b,
across various TCP burst sizes, we observe that Reverie reduces the average
FCT for incast flows of TCP by up to 30% for large bursts compared to DT while
Reverie performs similarly to ABM. Overall, Reverie’s LPF-based admission
control scheme improves burst absorption for RDMA as well as for TCP.

Reverie protects RDMA from TCP in the buffer: Given the better burst
absorption of Reverie and significantly fewer PFC pauses even in the presence
of TCP as seen in Figures 5.9-5.12, already shows that Reverie successfully
prevents TCP’s interactions with RDMA. Moreover, from Figure 5.9d, we see
that DT reduces its buffer allocation significantly for lossless traffic as the load of
TCP increases, while increasing buffer allocation for TCP (Figure 5.9e). However,
Reverie gives lossless traffic its fair share in the buffer even at high TCP loads.
Further, as the burst size of RDMA increases, from Figure 5.8d, we see that
Reverie opportunistically allocates increasingly buffer to RDMA whereas DT
and ABM fail to allocate more buffers to RDMA, thus significantly increasing
PFC pauses (Figure 5.8a). Reverie’s isolation properties allow RDMA to get
its fair share of buffer even at high TCP loads. Reducing TCP’s buffer share
(egress lossy pool size) for DT and ABM improves the number of PFC pauses
(Figure 5.10a) and flow completion times for RDMA incast flows, but TCP long
flows suffer (Figure 5.10c) due to the reduced overall buffer available for TCP
(Figure 5.10e). In contrast, Reverie dynamically utilizes the entire shared buffer
space in a fair manner and protects RDMA from TCP in the buffer as seen in
Figures 5.9, 5.8, 5.10.

Chapter 5.4. Related Work 119

Figure 5.13: As the parameter γ value approaches 1, Reverie becomes oblivious
to the changes in the buffer and drastically reduces the number of PFC pauses.
However, beyond a certain value, the lack of PFC pauses negatively impacts FCTs.

With advanced congestion control for RDMA (PowerTCP) under websearch
workload, across various RDMA loads and TCP incasts (Figures 5.11d, 5.12d),
Reverie and DT as well as ABM occupy a significantly small portion of buffer
and achieve similar FCTs for short flows of RDMA (Figures 5.11c, 5.12c). How-
ever, Reverie triggers much lower PFC pauses than ABM as we observe in
Figures 5.11a, 5.12a even with PowerTCP.
Reverie also protects TCP in the buffer: Under websearch workload for
TCP and RDMA incasts, from Figures 5.9c and 5.8c, we see that Reverie and
ABM achieve similar FCTs for short flows of TCP whereas DT severely penalizes
TCP. DT penalizes TCP short flows even though it allocates more buffer to TCP
compared to Reverie as seen in Figures 5.9c, 5.8e. This excessive buffering
results in increased queueing delays for DT. Further, under incast workload for
TCP and websearch workload for RDMA, while Reverie and ABM achieve
similar FCTs for incast TCP flows, DT suffers from poor FCTs for TCP incasts
(Figures 5.11b, 5.12b). Unlike DT, Reverie and ABM protect TCP in the buffer.
Impact of LPF filtering: As discussed in §5.2.3, the parameter γ balances the
capturing of steady-state (long-term) congestion against transient-state (short-term)
congestion is captured by the admission control scheme. To better understand the
impact of γ, we generate RDMA traffic using websearch workload at 80% load
along with incast workload at 2MB burst size. In Figure 5.13, we show the number
of PFC pauses and the average FCT for incast flows as a function of γ value.
We observe that PFC pauses dramatically reduce as γ increases. Average FCT
for incast flows decreases as γ increases until γ = 0.999. Yet, for γ = 0.999999
(close to 1), the average FCT increases by 9%. Naturally, a small γ value makes
the admission control scheme highly sensitive to instantaneous queue lengths,
which triggers PFC more frequently upon transient bursts. Similarly, a high γ
value makes the admission control scheme insensitive to queue length and PFC
is not triggered even when the queues steadily grow. In such cases, the excessive
buffer occupied by steady-state traffic leaves less buffer to absorb transient bursts.
Finding an optimal γ value is not required for reaping the benefits of Reverie, as
long as we avoid the extreme values that are easy to distinguish.

5.4 Related Work
Our work relates to (i) buffer management; and (ii) RDMA.

Multiple works focus on sharing the on-chip buffer across queues of the same
switch [16, 45, 46, 49, 56, 64, 86, 97, 161, 231] and on sharing bandwidth across
queues of the same port e.g., AQM and scheduling [37,102,103,139,215]. In fact,
there are also proposals to combine the two [5]. Further, augementing buffer

120 Chapter 5. Buffer Sharing with Lossy & Lossless Traffic

sharing algorithms with machine-learned predictions has been shown to improve
performance [24]. While useful, such works are designed exclusively for lossy traffic
(i.e., TCP variants) and often with loss-based congestion control in mind. As a
result, they are orthogonal to this work.

Many cloud providers have deployed RDMA over Ethernet to accelerate stor-
age [58, 105], HPC, and ML [212]. To the best of our knowledge, all of these
deployments [58,105,212] rely on PFC. Other research efforts related to RDMA
include congestion control [21, 173,287], efficient loss recovery [194], deadlock pre-
vention [132], high performance RDMA applications [92,146,147,170], testing [159],
security [227, 254, 273] and performance isolation [283]. Among them, the most
related topic is congestion control, but also in those works the buffer is only used
by RDMA traffic [173,287] (i.e., no TCP).

Coexistence of RDMA and TCP is an emerging new problem. Several recent
parallel works proposed alternative solutions e.g., dynamically sharing the headroom
buffer space under extremely shallow buffers [241]; using average occupancy time
of packets to allocate buffers for each queue [181]. Yet, unlike Reverie, these
works do not address the fundamental issues that arise due to the static buffer
pool configurations in today’s switches. We leave it for future work to evaluate
how the emerging alternative approaches fare against Reverie’s allocation.

5.5 Summary
This chapter addresses the tension in buffer sharing between lossy traffic (e.g.,
TCP variants) and lossless traffic (e.g., RDMA) on datacenter switches. To this
end, we first uncover, and explain analytically three particular unexpected buffer
behaviors (issues) that today’s buffer-sharing scheme can cause. Next, we find the
root cause of these inefficiencies, and design a new buffer sharing scheme, Reverie
that can provide both isolation and high burst absorption to lossy and lossless
traffic. In future work, we will try to closely work with a switch ASIC vendor to
incorporate Reverie into an ASIC’s programmable admission control features.

6
Augmenting Buffer Sharing with
ML Predictions
Datacenter switches come equipped with an on-chip packet buffer that is shared
across all the device ports in order to improve the overall throughput and to
reduce packet drops. Unfortunately, buffers have become increasingly expensive
and chip-manufacturers are unable to scale up buffer sizes proportional to capacity
increase [59]. As a result, the buffer available per port per unit capacity of
datacenter switches has been gradually reducing over time. Worse yet, datacenter
traffic is bursty even at microsecond timescales [108,282]. This makes it challenging
for a buffer sharing algorithm to maximize throughput. Recent measurement studies
in large scale datacenters point-out the need for improved buffer sharing algorithms
in order to reduce packet drops during congestion events [108]. To this end, buffer
sharing under shallow buffers is an emerging critical problem in datacenters [16,58].

The buffer sharing problem has been widely studied in the literature from
an online perspective [72] with the objective to maximize throughput [44, 111,
119, 155, 158]. Traditional online algorithms for buffer sharing can be classified
into two types: drop-tail e.g., Dynamic Thresholds (DT) [86], Harmonic [155],
ABM [16] and push-out e.g., Longest Queue Drop (LQD). The performance gap
of these algorithms compared to an offline optimal (clairvoyant) algorithm can be
expressed in terms of the competitive ratio [72]. For instance, we say that an online
algorithm is 2-competitive if it performs at most 2x worse compared to an offline
optimal algorithm. Figure 6.1 illustrates the performance spectrum of drop-tail
and push out buffer sharing algorithms. In terms of throughput-competitiveness, it
is well-known that push-out algorithms perform significantly better than drop-tail
algorithms. In fact, no deterministic drop-tail algorithm can perform better than
a certain throughput (a lower bound for competitive ratio), beyond which only
push-out algorithms exist (Figure 6.1). Table 6.1 presents the competitive ratios
of known algorithms. Interestingly, LQD pushes out packets when the buffer is
full, and it is ≈ 2-competitive whereas Complete Sharing drops packets when the
buffer is full, but it is N + 1-competitive.

Intuitively, the poor throughput-competitiveness of drop-tail buffers owes it
to the fundamental challenge that utilizing the buffer for some queues comes at
the cost of deprivation of buffer for others [16]. To this end, drop-tail algorithms
proactively drop packets i.e., packets are dropped even when the buffer has
remaining space [46, 86, 119,133, 155]. On one hand, maintaining remaining buffer
space is necessary to serve future packet arrivals. On the other hand, maintaining
remaining buffer space could lead to under-utilization, throughput loss and excessive
packet drops. In contrast, the superior throughput-competitiveness of push-out
algorithms owes it to their fundamental advantage to push out packets instead

121

122 Chapter 6. Augmenting Buffer Sharing with ML Predictions

 Optimal
Throughput

 Lower
Throughput

Harmonic
 Dynamic
Thresholds

without predictions

Push-out

 Perfect
Predictions

Drop-tail

Competitive Ratio1 N

LQD

 Arbitrarily
Large Error

Complete
 Sharing

Credence
Drop-tail Buffer Sharing with ML Predictions

with predictions

Figure 6.1: Augmenting drop-tail buffer sharing with ML predictions has the
potential to significantly improve throughput compared to the best possible drop-
tail algorithm (without predictions), and unlock the performance that was only
attainable by push-out so far.

Algorithm Competitive Ratio
Complete Sharing [119] N + 1

Dynamic Thresholds [86,119] O(N)
Harmonic [155] ln(N) + 2

LQD (push-out) [44,119] 1.707
LateQD (clairvoyant) [67] 1

Credence min(1.707 η, N)

Table 6.1: Credence’s performance smoothly depends on the prediction error
(η). Credence outperforms traditional drop-tail buffer sharing algorithms and
performs as good as push-out when the predictions are perfect (η = 1) but is also
never worse than Complete Sharing even when the predictions are bad (η →∞).
N denotes the number of ports.

of dropping them1. Hence, push-out algorithms can utilize the entire buffer as
needed and only push out packets when multiple ports contend for buffer space.
Although push-out algorithms offer far superior performance guarantees compared
to drop-tail, hardly any datacenter switch supports push-out operations for the on-
chip shared buffer. This begs the question: Are drop-tail buffer sharing algorithms
ready for the trend of shrinking buffer sizes?

Our key observation is that every push-out algorithm can be converted to
a drop-tail algorithm. However, such a conversion requires certain (limited)
visibility into the future packet arrivals. Specifically, pushing out a packet is
equivalent to dropping the packet when it arrives. Recent advancements in
dataplane programmability and traffic predictions play a pivotal role in providing
such visibility into the future packet arrivals [30, 76,140,167]: paving a way for
better drop-tail buffer sharing algorithms.

In this work, we take the first step in this direction. Figure 6.1 illustrates
our perspective. We propose Credence, a drop-tail buffer sharing algorithm
augmented with machine-learned predictions. Credence’s performance is tied to

1Push-out operation, similar to a drop operation, does not incur any transmission delays,
unlike extract-out [245].

Chapter 6.1. Motivation 123

the accuracy of these predictions. As the prediction error decreases, Credence
unlocks the performance of push-out algorithms and reaches the performance of
the best-known algorithm. Even when the prediction error grows arbitrarily large,
Credence offers at least the performance of the simplest drop-tail algorithm
Complete Sharing. Table 6.1 gives the competitive ratio of Credence as a function
of the prediction error η. Importantly, Credence’s performance smoothly varies
with the prediction error, generalizing the performance space between the known
push-out and drop-tail algorithms. Hence, Credence achieves the three goals
of prediction-augmented algorithms, in the literature referred to as consistency,
robustness and smoothness [198,223].

In addition to the theoretical guarantees for Credence’s performance, our
goal is also its practicality. Specifically, without predictions, Credence’s core
logic only uses additions, subtractions, and does not add additional complexity
compared to existing approaches. For predictions, we currently use random forests,
which have been recently shown to be feasible on programmable switches at line
rate [30, 76]. A full implementation of Credence in hardware unfortunately
requires switch vendor involvement since buffer sharing is merely a blackbox even
in programmable switches. With this work, we wish to gain attention from switch
vendors on the fundamental blocks required for such algorithms to be deployed
in the dataplane. We currently implement Credence in NS3 to evaluate its
performance using realistic datacenter workloads. We present a detailed discussion
on the practicality of Credence later in this chapter.

Our evaluations show that Credence performs 1.5x better in terms of through-
put and up to 95% better in terms of flow completion times, compared to alternative
approaches.

We believe Credence is a stepping stone towards further improving buffer
sharing algorithms. Especially, achieving better performance than Credence
under large prediction error remains an interesting open question. Our approach of
augmenting buffer sharing with predictions is not limited to drop-tail algorithms,
but push-out algorithms can also benefit from predictions. We discuss exciting
future research directions both in systems and theory at the end of this chapter.
In summary, our key contributions in this chapter are:

■ Credence, the first buffer sharing algorithm augmented with predictions,
achieving near-optimal performance with perfect predictions while also guar-
anteeing performance under arbitrarily large prediction error, and gradually
degrading the performance as the prediction error increases.

■ Extensive evaluations using realistic datacenter workloads, showing that
Credence outperforms existing approaches in terms of flow completion
times.

■ All our artifacts have been made publicly available at https://github.com/
inet-tub/ns3-datacenter.

6.1 Motivation
In this section, we provide a brief background and motivate our approach by
highlighting the drawbacks of traditional approaches. We show the potential

https://github.com/inet-tub/ns3-datacenter
https://github.com/inet-tub/ns3-datacenter

124 Chapter 6. Augmenting Buffer Sharing with ML Predictions

for reaching close-to-optimal performance when buffer sharing algorithms are
augmented with machine-learned predictions. To this end, we first describe our
model and throughput competitiveness (§6.1.1). We then discuss the drawbacks of
existing approaches (§6.1.2). We show that a renewed hope for improved buffer
sharing is enabled by the recent rise in algorithms with predictions (§6.1.3).

6.1.1 Buffer Sharing from Online Perspective
A network switch receives packets one after the other at each of its ports. The
switch does not know the packet arrivals ahead of time. This makes buffer
sharing inherently an online problem i.e., algorithms must take instantaneous
decisions upon packet arrivals without the knowledge of the future. In order to
systematically understand the performance of such algorithms, we take an online
approach following the classical model in the literature [44, 111, 119, 155, 158].
Figure 6.2 illustrates the model.

Buffer model: We consider a network switch equipped with an on-chip buffer
size of B units shared by N ports. Time is discrete, and we refer to each step
as timeslot. Packets (each of size unit 1) arrive in an online manner as time
progresses. Each timeslot is divided into two phases, arrival phase and departure
phase. During each arrival phase, at most N number of packets (in aggregate)
arrive destined to N ports. During each departure phase, every queue drains out
one packet unless the queue is empty. A buffer sharing algorithm manages the
shared buffer allocation across the N ports. We next define preemptive (push-out)
and non-preemptive (drop-tail) buffer sharing.

Definition 2 (Preemptive buffer sharing). During every arrival phase, the buffer
sharing algorithm is allowed to preempt i.e., drop any number of existing packets
in the buffer.

Definition 3 (Non-preemptive buffer sharing). During every arrival phase, the
buffer sharing algorithm is only allowed to accept or drop the incoming packet.
Every accepted packet must eventually be drained out from the corresponding
queue.

Online algorithm: When a packet arrives, a buffer sharing algorithm determines
whether it should be accepted into the available buffer space. Drop-tail algorithms
can only accept or discard incoming packets, while push-out algorithms can also
remove packets from the buffer.

Objective: The network throughput is of utmost importance for datacenter
operators since throughput often relates to the cost in typical business models
(e.g., $ per bandwidth usage). We hence study the performance of a buffer sharing
algorithm in terms of throughput i.e., our objective is to maximize the total
number of packets transmitted over the entire arrival sequence. The throughput
maximization objective is closely related to packet drops minimization objective.
In this sense, our objective captures two important performance metrics i.e.,
throughput and packet drops.

Competitive Ratio: We use competitive ratio as a measure to compare the
performance of an online algorithm to the optimal offline algorithm. Specifically,

Chapter 6.1. Motivation 125

Input
Ports

Output
Ports

Shared Buffer

B
uf

fe
r

S
ha

rin
g

A
lg

or
ith

m

RX TXObjective: Maximize Throughput

Figure 6.2: The switch has a buffer size of B shared across N output ports. Each
color indicates the packets residing in the shared buffer corresponding to each port.
A buffer sharing algorithm takes decisions (accept or drop) for each input packet.

let ALG and OPT be an online and optimal offline algorithm correspondingly.
We denote by σ(t) = (σi(t), σi(t), ..., σN(t)), an N -tuple, where σi(t) denotes the
number of packets arriving at time t to queue i. Let ALG(σ) be the throughput of
ALG for the packet arrival sequence σ. We say an algorithm ALG is c-competitive
if the following relation holds for any packet arrival sequence.

Definition 4 (Competitive ratio). Let ALG be an online algorithm and OPT be an
offline optimal algorithm for the buffer sharing problem. Let ALG(σ) and OPT(σ)
be the total number of packets transmitted by ALG and OPT for the arrival
sequence σ. We say ALG is c-competitive if it satisfies the following condition for
any arrival sequence σ.

OPT (σ) ≤ c · ALG(σ) (6.1)

Competitive ratio is a particularly interesting metric for buffer sharing since it
offers performance guarantees without any assumptions on specific traffic patterns.
For example, the buffer may face excessive packet drops or may temporarily
experience throughput loss due to bursty traffic. One could argue that the buffer
sharing algorithm is the culprit and should have allocated more buffer to the
bursty traffic. While this may have solved the problem for a particular bursty
arrival, the same solution could result in unexpected drops and throughput loss if
there were excessive bursty arrivals i.e., large bursts could monopolize the buffer.
Instead, from an online perspective, better competitive ratio indicates that the
buffer sharing algorithm performs close to optimal under any traffic conditions.

■ Takeaway. A buffer sharing algorithm with lower competitive ratio improves
the throughput of the switch and reduces packet drops under worst-case packet
arrival patterns.

6.1.2 Drawbacks of Traditional Approaches
We observe two main drawbacks of traditional buffer sharing algorithms, both
affecting the competitive ratio. First, algorithms proactively and unnecessarily
drop packets in view of accommodating future packet arrivals. Second, algorithms
reactively drop packets when the buffer is full and incur throughput loss, which
could have been avoided. We argue that these drawbacks are rather fundamental
to drop-tail algorithms and cannot be addressed by traditional online approaches.

126 Chapter 6. Augmenting Buffer Sharing with ML Predictions

Output
Ports

Shared Buffer

RX TX

(a) ALG
Output
Ports

Shared Buffer

RX TX

(b) OPT

Figure 6.3: Upon a large burst arrival, a typi-
cal drop-tail algorithm (ALG) proactively drops
the incoming packets in anticipation of future
bursts and significantly under-utilizes the buffer.
In this case, an optimal offline algorithm accepts
the entire burst without any packet drops.

Output
Ports

Shared Buffer

RX TX

(a) ALG
Output
Ports

Shared Buffer

RX TX

(b) OPT

Figure 6.4: In pursuit of high burst absorption,
a drop-tail algorithm ALG may absorb bursts
but this results in excessive reactive drops for
the future packet arrivals. In this case, an op-
timal offline algorithm OPT drops few packets
such that the overall throughput is maximized.

Proactive unnecessary packet drops → throughput loss: A drop-tail buffer
sharing algorithm typically drops packets even if there is remaining buffer space
available [16,46,86]. We refer to such drops as proactive drops. Being proactive is
indeed necessary in order to accommodate transient bursts. However, proactive
packet drops and the corresponding remaining buffer space ends up being wasteful
if the future packet arrivals do not need additional buffer space (if the anticipated
burst does not arrive). Figure 6.3a and Figure 6.3b illustrate an example. Consider
a traffic pattern where there is little to no congestion on all the ports but once
in a while, a large burst appears. Specifically, the buffer is empty initially and a
large burst of size B appears. A deterministic drop-tail algorithm has two choices:
(i) accept a portion of the burst and proactively drop the rest of the burst or (ii)
accept the entire burst. Typical algorithms in the literature choose the former
in view of accommodating future packet arrivals. An optimal offline algorithm
that knows the arrivals ahead of time would accept the entire burst of size B in
this case. This makes an online algorithm at least c-competitive for this particular
arrival pattern, where 1

c
is the fraction of the burst accepted: since the optimal

solution accepts and transmits B packets over time, whereas an online algorithm
only accepts and transmits only B

c
packets over time. We observe that recent

works focus on minimizing proactive unnecessary packet drops by prioritizing
bursty traffic to the extent that they allow burst on a single port to monopolize
the buffer [16,46,133]. However, note that competitive ratio is not defined for a
particular arrival sequence, but over all scenarios. To this end, accepting a larger
burst size may be helpful in the above example but if there were indeed future
packet arrivals on other ports that need buffer, the algorithm incurs excessive

Chapter 6.1. Motivation 127

reactive drops (described next) and throughput loss.
Reactive avoidable packet drops → throughput loss: Any drop-tail algo-
rithm is forced to drop the incoming packets once the shared buffer is full. We call
such drops reactive drops. Reactive drops result in throughput loss if the algorithm
fills up significant portion of the buffer on a small set of ports but reactively drops
incoming packets to other ports. Figure 6.4a and Figure 6.4b illustrate an example.
Consider that the buffer is initially empty and four simultaneous bursts each of size
B arrive to four ports. If an algorithm proactively drops a significant portion of the
bursts, it would suffer under arrival sequences such as in the previous example (Fig-
ure 6.3a). Alternatively, the algorithm may choose to accept a larger portion of the
bursts and ends up filling up the entire buffer in aggregate. At this point, several
short bursts arrive to multiple other ports. An optimal offline algorithm accepts
only a fraction of the large bursts such that it is able to accommodate upcoming
short bursts. In doing so, the optimal algorithm benefits in throughput since the
switch transmits packets from more number of ports. However, since the online
algorithm fills up the entire buffer due to the initial large bursts, it is forced to reac-
tively drop the upcoming short bursts, losing throughput. In fact, a similar arrival
pattern for Dynamic Thresholds yields at least Ω

(︂√︂
N

log(N)

)︂
-competitiveness [119].

The known upper bound for Dynamic Thresholds is O(N) [119]. Further, it has
been shown in the literature that no deterministic drop-tail algorithm can be better
than Ω

(︂
log(N)

log(log(N))

)︂
-competitive [155].

Interestingly, push-out algorithms are not prone to the problems discussed
above, since they can take revocable decisions i.e., to accept a packet and drop it
later. Hence, push-out algorithms do not have to maintain free space in the buffer
in order to accommodate transient bursts. Instead, such algorithms can defer the
dropping decision until the moment the drop turns out to be necessary.
■ Takeaway. Traditional drop-tail algorithms are fundamentally limited in
throughput-competitiveness as they are unable to effectively navigate proactive and
reactive drops due to the online nature of the problem i.e., future packet arrivals
are unknown to the algorithm.

6.1.3 Predictions: A Hope for Competitiveness
Given that the fundamental barrier in improving drop-tail buffer sharing algorithms
is the lack of visibility into the future arrivals, we turn towards predictions. The
recent rise of algorithms with predictions offers a renewed hope for competitive
buffer sharing. Algorithms with predictions successfully enabled close to optimal
performance for various classic problems [223]. The core idea is to guide the
underlying online algorithm with certain knowledge about the future obtained via
predictions. The machine-learned oracle that produces predictions is considered a
blackbox with a certain error. The main challenge is to offer performance guarantees
at the extremes i.e., close to optimal performance under perfect predictions and a
minimum performance guarantee when the prediction error gets arbitrarily large.
Further, it is desirable that the competitiveness of the algorithm smoothly degrades
as the prediction error grows.

6.1.3.1 Prediction Model
In the context of the buffer sharing problem, there are several prediction models

128 Chapter 6. Augmenting Buffer Sharing with ML Predictions

that can be considered e.g., drops or packet arrivals. In this chapter, we assume
that a blackbox machine-learned oracle predicts packet drops. Our choice is due to
the fact that packet drops are the basic decisions made by an algorithm. Concretely,
we consider an oracle that predicts whether an incoming packet would eventually
be dropped (or pushed out) by the Longest Queue Drop (LQD) algorithm serving
the same packet arrival sequence. We classify the predictions into four types:
(i) true positive i.e., a correct prediction that a packet is eventually dropped by
LQD, (ii) false negative i.e., an incorrect prediction that a packet is eventually
transmitted by LQD, (iii) false positive i.e., an incorrect prediction that a packet is
eventually dropped by LQD and (iv) true negative i.e., a correct prediction that a
packet is eventually transmitted by LQD. Figure 6.5 summarizes this classification.
Following the literature [198,223], our goals for prediction-augmented buffer sharing
are consistency, robustness and smoothness.
α-Consistent buffer sharing algorithm has a competitive ratio α when the predic-
tions are all true i.e., perfect predictions.
β-Robust buffer sharing algorithm has a competitive ratio β when the predictions
are all false i.e., large prediction error.
Smoothness is a desirable property such that the competitive ratio degrades
smoothly as the prediction error grows i.e., a small change in error does not
drastically influence the competitive ratio.

Our goal is to design a prediction-augmented buffer sharing algorithm that is
close to 1-consistent (with perfect predictions) i.e., near-optimal, at most N -robust
(with arbitrarily large error) i.e., not worse than Complete Sharing algorithm, and
has the desirable property of smoothness.

6.1.3.2 Common Pitfalls
It is intuitive that predictions can potentially improve the performance of a

drop-tail algorithm. For instance, in the examples from Figure 6.3 and Figure 6.4,
our prediction-augmented online algorithm could take nearly the same decisions as
a push-out algorithm. However, the main challenge is to ensure robustness and
smoothness. If an algorithm blindly trusts the predictions, we observe that false
positive and false negative predictions have a significantly different impact on the
performance.
Excessive false positives can lead to starvation: The worst case for a naive
algorithm that blindly trusts predictions is when all the predictions are false
positives. In this case, the algorithm ends up dropping every incoming packet.
Blindly trusting false predictions could lead to a competitive ratio worse than the
simplest drop-tail algorithm Complete Sharing i.e., the competitive ratio becomes
unbounded (∞-robust) if the predictions are mostly false positives.

A single false negative can hurt throughput forever: A naive algorithm
that blindly relies on false negative predictions is susceptible to adverse effects
that propagate over time. Consider a packet arrival sequence that hits only one
queue initially and consider that the predictions are all true negatives until the
queue length reaches B − 1, where B is the total buffer size. At this point, one
more packet arrives and our prediction is a false negative. As a result, our naive
algorithm has a queue of size B and the optimal algorithm has a queue of size
B− 1. Note that all non-empty queues drain one packet after each timeslot. From

Chapter 6.2. Prediction-Augmented Buffer Sharing 129

Ground truth: Drop
 Prediction: Drop

Ground truth: Accept
 Prediction: Accept

Ground truth: Accept
 Prediction: Drop

Ground truth: Drop
 Prediction: Accept

True Positive

True Negative

False Negative

False Positive

Figure 6.5: Confusion matrix for our prediction model.

here on, in every timeslot, one packet (first) arrives to the large queue and one
packet (second) arrives to any other queue. Also consider that all the predictions
are true from now on. The optimal algorithm accepts both first and second packet
in every timeslot. However, in every timeslot our naive approach can only accept
the first packet to the large queue and cannot accept the second packet since the
buffer is full. Notice that relying on just one false negative resulted in cumulative
drops in this case even though all other predictions were true. In fact, a tiny error
such as just N number of false negatives even with all other predictions being
true could result in a competitive ratio for a naive approach as worse as Complete
Sharing.
■ Takeaway. Augmenting drop-tail algorithms with predictions has the poten-
tial to unlock the optimal performance. Ensuring performance guarantees with
inaccurate predictions remains a challenge.

6.2 Prediction-Augmented Buffer Sharing
Reflecting on our observations in §6.1, our goal is to design a drop-tail buffer
sharing algorithm that performs close to optimal with perfect predictions but also
provides a minimum performance guarantee when the prediction error is arbitrarily
large. In essence, our aim is to enable performance improvement in terms of
throughput and packet drops in datacenter switches. To this end, we first present
an overview of our algorithm (§6.2.1). We then present the workings of Credence
(§6.2.2) and discuss its properties (§6.2.3). Finally, we discuss the practicality of
Credence (§6.2.4).

6.2.1 Overview
In a nutshell, Credence relies on predictions and follows a push-out algorithm,
reaching close to optimal performance under perfect predictions. Credence
cleverly takes certain decisions independent of the predictions in order to guarantee
a minimum performance. Further, Credence’s competitiveness gradually degrades
as prediction error grows (a property known as smoothness [198]), hence the
algorithm still performs near-optimally when predictions are slightly inaccurate.
Credence follows Longest Queue Drop algorithm: Our design of Credence
consists of two key ingredients. First, Credence uses thresholds as a drop
condition irrespective of the predictions. Credence treats thresholds as queue

130 Chapter 6. Augmenting Buffer Sharing with ML Predictions

lengths of LQD and updates the thresholds based on the LQD algorithm (simply
arithmetic) upon every packet arrival. Second, Credence relies on predictions as
long as the queue lengths satisfy the corresponding thresholds. The combination of
thresholds and predictions allows Credence to closely follow the Longest Queue
Drop algorithm (LQD) without requiring push-out operations2.
Credence guarantees performance under extremities: When all the pre-
dictions are perfectly accurate, Credence achieves a competitive ratio of 1.707
(consistency) due to the straight-forward argument that the drops by Credence
and LQD are equivalent for true predictions. In order to guarantee a minimum
performance even with arbitrarily large prediction error (robustness), Credence
bypasses the threshold and predictions as long as the longest queue is within B

N
size.

Here, B is the buffer size and N is the number of ports. This allows Credence to
be most N -competitive even under large prediction error, similar to the Complete
Sharing algorithm. We prove our claim formally in § 6.2.3.
Credence smoothly degrades with prediction error: We design our error
function in terms of the performance of LQD and the predicted drops. We analyze
the types of drops incurred by Credence due to false positive and false negative
predictions. This allows us to show that Credence satisfies the smoothness
property i.e., the competitive ratio smoothly degrades from 1.707 to N as the
prediction error grows.

6.2.2 Credence
We now present Credence and explain how it operates. Algorithm 4 presents
the pseudocode of Credence. Our pseudocode is simplified to discrete time for
ease of presentation and for simplicity of analysis. It can be trivially extended to
continuous time, and our implementation incorporates it3.
Arrival: Upon a packet arrival, Credence has three important steps that are
highlighted in Algorithm 4. First, Credence updates the threshold for the
current queue (highlighted in blue). Second, Credence takes a decision based
on the thresholds and predictions whether or not to accept the incoming packet
(highlighted in yellow). Finally, the packet is either accepted or dropped. We next
describe each of these steps in detail. Third, depending on the state of the buffer,
Credence bypasses the thresholds and predictions with a safeguard condition in
order to accept or drop the incoming packet (highlighted in green).
Thresholds: Credence updates its thresholds based on the longest queue drop
algorithm. Specifically, upon a packet arrival at time t to a queue i, Credence
increments the threshold Ti(t) for queue i by the packet size. If upon arrival
the sum of thresholds Γ(t) is equal to the buffer size B, then Credence first
decrements the longest queue threshold by packet size and then increments the
threshold for queue i by the packet size. Note that upon a packet arrival to a
queue, the corresponding threshold is updated before accepting or dropping the
packet.
Drop criterion: Similar to existing threshold-based algorithms, Credence also
uses thresholds as a drop criterion. Credence compares the queue length qi(t) of
a queue i against its threshold Ti(t) and drops an incoming packet if the queue

2Recall that LQD is close to optimal with a competitive ratio of 1.707.
3Our source code is available is at https://github.com/inet-tub/ns3-datacenter.

https://github.com/inet-tub/ns3-datacenter

Chapter 6.2. Prediction-Augmented Buffer Sharing 131

length is larger than or equal to the corresponding threshold; and if the aggregate
shared buffer occupancy Q(t) equals the buffer size B. If an incoming packet
satisfies the thresholds, then Credence takes input from a machine-learned oracle
that predicts whether to accept or drop according to our prediction model discussed
in §6.1.3.1. Finally, based on the thresholds and predictions, Credence either
accepts or drop the incoming packet.
Safeguard: In order to bound Credence’s competitiveness under arbitrarily
large prediction error, we bypass the above drop criterion under certain cases.
Specifically, when the longest queue length is less than B

N
, Credence always

accepts a packet irrespective of the thresholds and predictions. This ensures
that Credence is at least N -competitive even with large prediction error. Our
safeguard is based on the observation that even the push-out longest queue drop
algorithm cannot push out a packet from a queue less than B

N
size since the longest

queue must be at least B
N

size when the buffer is full. In essence, Credence
circumvents the impact of large prediction error by accepting packets until a
certain amount of buffer is filled up.
Predictions: Credence can be used with any ML oracle that predicts whether
to accept or drop a packet, according to our prediction model (see §6.1.3.1). We
do not rely on the internal details of the oracle. However, certain choices of ML
oracles are better suited to operate within the limited resources available in a
switch hardware. We discuss further on our choice of oracle later in §6.2.4.

6.2.3 Properties of Credence
Credence offers attractive theoretical guarantees in terms of competitive ratio.
In this section, for simplicity, we refer an offline optimal algorithm as OPT .

In order to analyze the performane of Credence, we first introduce a new
online deterministic algorithm FollowLQD in the non-preemptive model, which
is a non-predictive building block of Credence. Intuitively, FollowLQD simply
follows the Longest Queue Drop (LQD) queues in the preemptive model. In
particular, FollowLQD maintains a threshold Ti(t) for each queue at time t. The
thresholds are updated for every packet arrival and departure according to LQD in
the preemptive model. We present the pseudocode for FollowLQD in Algorithm 5.
While FollowLQD tries to follow LQD queue lengths by accepting packets as
long as the queue lengths are smaller than the thresholds, it may happen that
FollowLQD queues are larger than their thresholds. This is since FollowLQD
cannot preempt (remove) existing packets in the buffer whereas LQD can preempt
and correspondingly the thresholds may drop below the queue lengths. FollowLQD
simply drops an incoming packet if it finds that the corresponding queue exceeds
its threshold.

Although LQD is known to be 1.707-competitive, we show that FollowLQD
is still at least N+1

2 -competitive. We present our lower bound based on a simple
arrival sequence.

Observation 1. FollowLQD is at least N+1
2 -competitive.

Proof. We construct an arrival sequence such that for every two packets transmit-
ted by FollowLQD, the offline optimal algorithm OPT transmits N + 1 packets.
Consider that all the queues are empty at time t = 0. We then burst packets to
a single queue say i until its queue length reaches B. Note that this is possible

132 Chapter 6. Augmenting Buffer Sharing with ML Predictions

Algorithm 4: Credence
Input : Packet arrivals σ, Drop predictions ϕ′(σ)

1 procedure arrival(σ(t)):
2 for each packet p ∈ σ(t) do
3 Let i be the destination queue for the packet p
4 updateThreshold(i, arrival)

5

Let j be the longest queue ▷ Guarantees N-competitiveness
if qj(t) < B

N
then

qi(t)← qi(t) + 1 ▷ Accept
Continue to next packet

end if

6

if qi(t) < Ti(t) then ▷ Enables 1.707 η-competitiveness
if Q(t) < B then

drop = GetPrediction()
if drop then

▷ Drop
else

qi(t)← qi(t) + 1 ▷ Accept
end if

end if
else

▷ Drop
end if

7 end for
8 procedure departure(i):
9 if qi(t) > 0 then

10 qi(t)← qi(t)− 1 ▷ Drain one packet
11 end if
12 updateThreshold(i, departure)
13 procedure updateThreshold(i, event):
14 if event = arrival then

15

▷ Thresholds are treated as LQD queue lengths
if Γ(t) = B then ▷ Sum of thresholds

Let Tj(t) be the highest threshold
Tj(t)← Tj(t)− 1 ▷ Decrease
Ti(t)← Ti(t) + 1 ▷ Increase

else
Ti(t)← Ti(t) + 1 ▷ Increase
Γ(t)← Γ(t) + 1

end if
16 end if
17 if event = departure then
18 if Ti(t) > 0 then
19 Ti(t)← Ti(t)− 1 ▷ Decrease
20 Γ(t)← Γ(t)− 1
21 end if
22 end if

Chapter 6.2. Prediction-Augmented Buffer Sharing 133

Algorithm 5: FollowLQD
Input : σ(t)

1 procedure arrival(σ(t)):
2 for each packet p ∈ σ(t) do
3 Let i be the destination queue for the packet p
4 updateThreshold(i, arrival)
5 if qi(t) < Ti(t) then
6 if Q(t) < B then
7 qi(t)← qi(t) + 1 ▷ accept
8 end if
9 else

10 ▷ Drop
11 end if
12 end for
13 procedure departure(i):
14 if qi(t) > 0 then
15 qi(t)← qi(t)− 1 ▷ Drain one packet
16 end if
17 updateThreshold(i, departure)
18 function updateThreshold(i, event):
19 if event = arrival then
20 if Γ(t) = B then ▷ Sum of thresholds
21 Let Tj(t) be the largest threshold
22 Tj(t)← Tj(t)− 1 ▷ Decrease
23 Ti(t)← Ti(t) + 1 ▷ Increase
24 else
25 Ti(t)← Ti(t) + 1 ▷ Increase
26 Γ(t)← Γ(t) + 1
27 end if
28 end if
29 if event = departure then
30 if Ti(t) > 0 then
31 Ti(t)← Ti(t)− 1 ▷ Decrease
32 Γ(t)← Γ(t)− 1
33 end if
34 end if

since the threshold for queue i that follows the corresponding LQD queue also
grows up to B. At the end of the departure phase, FollowLQD transmits one
packet and the queue length becomes B − 1. At this point, we send N packets,
one packet to each of the N queues. The thresholds are updated based on LQD,
which has the following actions: (i) preempt N − 1 packets from queue i and (ii)
accept all N packets to N queues. Correspondingly, the threshold for queue i
of FollowLQD drops to B −N + 1 but it still has B − 1 packets in queue i. As
a result, it can only accept one packet out of the N incoming packets. At the
end of the departure phase during this timeslot, FollowLQD has B − 1 packets
in queue i and has transmitted 1 packet in total. In the next timeslot, we send
N packets to the queue i so that LQD’s queue i now gets back to size B again.

134 Chapter 6. Augmenting Buffer Sharing with ML Predictions

As the threshold is larger than the queue length (B − 1), FollowLQD accepts 1
packet. At the end of the departure phase, FollowLQD transmits 1 packet from
the queue i. Overall, FollowLQD transmitted 2 packets but OPT transmitted
N + 1 packets. We then repeat the sequence such that for every N + 1 packets
transmitted by OPT, FollowLQD transmits 2 packets. The competitive ratio is
then at least N+1

2 .

Although we have so far discussed the prediction error more intuitively, it
requires a quantitative measure in order to analyze the performance of an algorithm
relying on predictions. There are two important considerations in defining a
suitable error function. First, following the literature, an error function must be
independent of the state and actions of our algorithm, so that we can train a
predictor without considering all possible states of the algorithm [134]. Second,
it is desirable that the performance of our algorithm can be related to the error
function in an uncomplicated manner. Taking these into consideration, we define
our error function in the following.

Recall that our prediction oracle predicts packet drop (or accept) for each
packet in the arrival sequence σ, according to the prediction model introduced in
§6.1.3.1. We denote the drop sequence of LQD for the arrival sequence σ by ϕ(σ),
and the predicted drop sequence by ϕ′(σ). We classify prediction for each packet
in to four types: true positive, false positive, true negative and false negative
(see Figure 6.5). We denote the sequence of true positive predictions by ϕ′T P (σ),
false positive predictions by ϕ′F P (σ), true negative predictions by ϕ′T N (σ) and false
negative predictions by ϕ′T P (σ). We drop σ in our notations when the context is
clear.

Hereafter, we mainly compare our online non-preemptive algorithm with pre-
dictions against online LQD (preemptive). We now formally define the error made
by the oracle by the following error function.

Definition 5 (Error function). Let LQD(σ) and FollowLQD(σ) denote the total
number of packets transmitted by the online push-out algorithm LQD and the
online drop-tail algorithm FollowLQD over the arrival sequence σ. Let ϕ denote
the sequence indicating drop by LQD for each packet in the arrival sequence σ.
Let ϕ′ denote the sequence of drops predicted by the machine-learned oracle. Let
ϕ′T P , ϕ′F P , ϕ′T N , and ϕ′F N denote the sequence of true positive, false positive, true
negative and false negative predictions for the arrival sequence σ. We define the
error function η(ϕ, ϕ′) as follows:

η(ϕ, ϕ′) = LQD(σ)
FollowLQD (σ − ϕ′T P − ϕ′F P) (6.2)

Our definition captures the prediction error in terms of the performance of LQD
(push-out) and the performance of an algorithm FollowLQD. Here, FollowLQD
(Algorithm 5) is a deterministic drop-tail algorithm (without predictions) with
thresholds similar to Credence.

We now analyze Credence that relies on drop predictions ϕ′ and takes
decisions in pursuit of following LQD more accurately. In the following, we study
the competitive ratio of Credence as the error grows. We obtain the competitive
ratio as a function of the error η: we show that Credence is 1-competitive
against LQD with perfect predictions but at most N -competitive when the error is
arbitrarily large.

Chapter 6.2. Prediction-Augmented Buffer Sharing 135

Theorem 12. The competitive ratio of Credence grows linearly from 1.707 to N
based on the prediction error η(ϕ, ϕ′), where N is the number of ports, ϕ is the drop
sequence of LQD and ϕ′ is the predicted sequence of drops i.e., the competitive
ratio is at most min(1.707 η(ϕ, ϕ′), N).

Using Definition 5, we analyze the throughput of Credence over an entire
packet arrival sequence σ based on the predictions ϕ′. In fact, our error function
is upper bounded by an intuitive closed form expression, in terms of the number
of true and false predictions, as follows, that can be easily computed.

Lemma 3. Let ϕ′ denote the sequence of drops predicted by the machine-learned
oracle. Let ϕ′T P , ϕ′F P , ϕ′T N , and ϕ′F N denote the sequence of true positive, false
positive, true negative and false negative predictions for the arrival sequence σ.
The error function η(ϕ, ϕ′) (Definition 5) is upper upper bounded as follows:

η(ϕ, ϕ′) ≤ ϕ′T N + ϕ′F P

ϕ′T N −min ((N − 1) · ϕ′F N , ϕ′T N)

Proof. Our proof is based on two arguments: (i) LQD(σ) = ϕ′T N + ϕ′F P and (ii)
FollowLQD(σ − ϕ′T P − ϕ′F P) ≥ ϕ′T N −min ((N − 1) · ϕ′F N , ϕ′T N).

First, LQD(σ) is the total number of transmitted packets by LQD. Recall that
the ground-truth (transmitted by LQD) for a prediction is an accept if and only if
the prediction is either true negative or a false positive. Hence, the total number of
packets transmitted by LQD i.e., LQD(σ) is the sum of true negative predictions
and the false positive predictions.

Second, FollowLQD(σ−ϕ′T P −ϕ′F P) transmits at least ϕ′T N + ϕ′F N −Y , where
Y is the total number of drops caused by false negative predictions. Note that
σ = ϕ′T N + ϕ′F N + ϕ′F P + ϕ′T P . The proof follows by showing that each false
negative results in at most N extra drops due to the buffer limit. Further, these
extra drops must be true negative predictions since we have already removed
positive predictions from our arrival sequences (i.e., we assume at most all the
positive predictions have be dropped). Additionally, since the extra drops are true
negative predictions, it implies that LQD transmits those packets but although our
prediction is true, we incur additional drop due to the buffer limit. For each false
negative, there can be at most one drop in a single timeslot for up to N −1 distinct
timeslots such drops that LQD accepts and transmits those packets but FollowLQD
drops them. Beyond N − 1 drops, there can only be at most 1 other drop upon
which the existence of an additional packet (false negative) in FollowLQD’s buffer
would be nullified. This is since, during the initial N − 1 drops, FollowLQD could
not accept the incoming packet but after the transmission phase, the queues having
false negative predictions decrement their size by 1. This leaves at least N − 1
packets free space in FollowLQD after N − 1 drops and LQD also has the same
remaining space after those extra N − 1 accepted by LQD are also transmitted.
At this time, both LQD and FollowLQD have the same remaining space and they
also transmit the same number of packets in each timeslot. One additional drop
by FollowLQD corresponding to a false negative is still possible due the thresholds
i.e., if there exists a packet arrival to the queue having false negative, the incoming
packet is dropped since the existence of false negatives implies that the queue
length is large than the threshold. As a result, there are at most N drops by
FollowLQD for each false negative prediction.

The proof follows by the above two arguments.

136 Chapter 6. Augmenting Buffer Sharing with ML Predictions

The upper bound of our error function indicates intuitively that (i) the error
decreases as the total number of true negative predictions dominate the total false
predictions, (ii) the error increases with each false positive prediction and (iii) the
error increases with each false negative with a larger weight.

Next, Lemma 4 states the relation between the throughput of Credence,
throughput of LQD and the prediction error.
Lemma 4. The total number of packets transmitted by Credence for an arrival
sequence σ, a drop sequence ϕ by LQD and the predicted drop sequence ϕ′ is given
by

Credence(σ) ≥ LQD(σ)
η(ϕ, ϕ′)⏞ ⏟⏟ ⏞

error

(6.3)

Proof. For simplicity, we refer to Credence as ALG in the following. We prove
our claim by analyzing the drops of ALG and relating the transmitted packets by
ALG(σ) to LQD(σ′). Every drop of ALG arises from three types of situations.
First, ALG can drop a packet due to the thresholds. Note that the thresholds used
by ALG correspond to the queue lengths of preemptive LQD over the same arrival
sequence σ. As a result, both ALG and FollowLQD algorithm have the same
thresholds at any time instance. Second, ALG drops a packet if the prediction is
either true positive or false positive if and only if the queue length satisfies the
corresponding thresholds. This type of drops are at most the total number of true
positive and false positive predictions. Third, ALG drops a packet when the buffer
is full which is the same condition for FollowLQD. In essence, ALG drops at most
all the positive predictions and drops at most the number of packets dropped by
FollowLQD serving the arrival sequence σ − ϕ′T P − ϕ′F P i.e., the arrival sequence
in which all the packets predicted as positive are removed from σ. In order to
prove our main claim, it remains to argue that the extra packets accepted by
ALG due to the safeguard condition do not result in additional drops compared to
FollowLQD with the arrival sequence σ − ϕ′T P − ϕ′F P . For every packet that fails
to satisfy the threshold but gets accepted due to the safeguard condition by ALG,
could cause at most one extra drop due to the thresholds before the buffer full
again compared to FollowLQD. This is since, if FollowLQD accepts a packet, then
its queue length is certainly less that the corresponding threshold (that is same
for ALG). However, the queue length of ALG may have some extra packets that
are accepted due to the safeguard condition. As a result, each such extra packet
(dropped by FollowLQD) contributes to at most one drop compared compared
to FollowLQD and the transmitted packets remains equivalent. Further, by the
time the buffer is full in ALG, all the extra packets accepted due to the safeguard
condition would have been drained out of the buffer. This is due to the fact that
any such extra packet is at a queue length of at most B

N
(the safeguard condition)

that drains out before the buffer fills up i.e., it takes at least B
N

timeslots to fill the
buffer (only N packets can arrive in each timeslot). As a result, ALG transmits
at least the total number of packets transmitted by FollowLQD over the arrival
sequence σ − ϕ′T P − ϕ′F P i.e.,

ALG(σ) ≥ FollowLQD(σ − ϕ′T P − ϕ′F P)

Using Definition 5, we express FollowLQD in terms of LQD and the error function
η(ϕ, ϕ′), and obtain Equation 6.3.

Chapter 6.2. Prediction-Augmented Buffer Sharing 137

Equation 6.3 shows that the throughput of Credence reaches closer to (moves
away from) LQD as the prediction error becomes smaller (larger). Recall that
Credence bypasses the drop criterion and accepts packets through a safeguard
condition under certain cases (see §6.2.2). Based on this, we obtain another
bound for the throughput of Credence in Lemma 5, which is independent of the
prediction error.

Lemma 5. Credence transmits at least 1
N

times the number of packets trans-
mitted by an offline optimal algorithm OPT i.e., Credence(σ) ≥ 1

N
· OPT (σ).

Lemma 5 shows that irrespective of the prediction error (even under large error),
Credence can always transmit at least 1

N
fraction of the packets transmitted by

an optimal solution. Our proof of Lemma 5 is based on the fact that upon a drop
by Credence, there is at least one queue with length B

N
(the safeguard condition).

As a result, for every B packets transmitted by OPT , there are at least B
N

number
of packets transmitted by Credence over the arrival sequence σ. This leads us
to the bound expressed in Lemma 5.

Proof. Irrespective of the predictions, Credence always accepts an incoming
packet if the longest queue is less than or equal to B

N
. When Credence drops

a packet, there is at least one queue that has at least B
N

number of packets.
Hence, every packet in OPT can be matched to at least B

N
number of packets.

Consequently, the competitive ratio is at most N .

We are now ready to prove our main claim (Theorem 12) using the above
results.

Proof of Theorem 12. From Definition 4, in order to prove the competitive ra-
tio of our Credence, we are mainly concerned with the upper bound of OP T (σ)

Credence(σ)

for any arrival sequence σ. Since OP T (σ)
LQD(σ) ≤ 1.707 is known from literature [44,119],

we use this result to compare Credence and LQD in order to argue about the
competitive ratio i.e, OP T (σ)

Credence(σ) ≤ 1.707 · LQD(σ)
Credence(σ) for any request sequence σ.

From Lemma 4, we have the following:

LQD(σ)
Credence(σ) ≤ η(ϕ, ϕ′)

From Lemma 5, irrespective of the predicted sequence, we have that OP T (σ)
Credence(σ) ≤

N . Finally, since OP T (σ)
Credence(σ) ≤ 1.707 · LQD(σ)

Credence(σ) , the competitive ratio of Cre-
dence is given by:

OPT (σ)
Credence(σ) ≤ min (1.707 η(ϕ, ϕ′), N)

The proof follows by Definition 4.

Theorem 12 essentially shows how Credence’s competitive ratio in terms
of throughput improves from N to 1.707 as the prediction error (Definition 5)
decreases. Interestingly, Credence’s competitive ratio is independent of the buffer
size B i.e., Credence is compatible for shallow buffers as well as deep buffers. We
note that our analysis compares an algorithm against an optimal offline algorithm

138 Chapter 6. Augmenting Buffer Sharing with ML Predictions

over a fixed packet arrival sequence. This allows us to analyze the competitive ratio
via an error function defined over the corresponding arrival sequence. However,
real-world traffic is responsive in nature due to congestion control and packet
retransmissions. Although we have used η as our error function to express the
competitiveness of Credence, in our evaluation (§6.3), we compare Credence
with state-of-the-art approaches under realistic datacenter workloads and we also
present the quality of our predictions using more natural error functions that are
widely used for machine learning models.

6.2.4 Practicality of Credence
Credence’s algorithm itself is simple and close to complexity of the longest queue
drop (push-out). However, the machine-learned oracle producing the predictions
adds additional complexity in order to deploy Credence on switches. Overall,
there are three main parts of Credence that contribute to additional complexity
in terms of memory and computation: (i) finding the longest queue (and its
threshold), (ii) remembering thresholds and (iii) obtaining predictions.
Finding the longest queue (and its threshold): For every packet arrival,
Credence requires finding the longest queue for the safeguard condition described
in §6.2.2. Additionally, Credence requires finding the largest threshold during
the threshold updates upon every packet arrival. The maximum value search
operation has a run-time complexity of O(N), where N is the number of ports.
Note that typical datacenter switches have a relatively small number of ports
e.g., 64 ports in Broadcom Tomahawk4 [75]. Prior work in the context of LQD
proposes an approximation to further reduce the complexity of finding the longest
queue [253] to O(1). The average case complexity can further be reduced by only
maintaining the list of queue lengths (and their thresholds) that are larger than
B
N

. This is sufficient since the safeguard condition checks whether the longest
queue is less than B

N
, which is the same as checking that no queue is longer than

B
N

. Similarly, the largest threshold search during the threshold updates is only
triggered when the buffer is full. In this case, the longest queue must be at least
B
N

. Given that switches are becoming more and more computationally capable, we
believe that a basic function such as finding the maximum value in a small list is
feasible to implement within the available resources.
Thresholds memory: In contrast to existing threshold-based algorithms, Cre-
dence’s thresholds depend on their previous value i.e., thresholds must be re-
membered. As a result, Credence adds a small memory overhead of O(N) for
the thresholds. The threshold calculations are in fact much simpler than existing
schemes and do not add any further computational complexity since Credence
only requires adding and subtracting the threshold values by the packet size.
Predictions: Our prediction model (drop or accept) essentially boils down to
binary classification problem. To this end, numerous ML techniques exist ranging
from linear classifiers to more advanced neural networks. In view of practicality, we
consider random forests as they are implementable in programmable hardware [30,
76, 140]. In order to reduce the prediction latency, we also limit the number of
trees and the maximum depth of our trained random forest model. We find that,
even a model trained with a maximum depth of four, and as low as four to eight
trees achieves reasonable prediction error (precision ≈ 0.65). Further, to reduce
the complexity of the model, we also limit the number of features to four: queue

Chapter 6.3. Evaluation 139

length, total shared buffer occupancy and their corresponding moving averages
(exponentially weighted) over one round-trip time (baseRTT).

The fundamental blocks required for Credence are all individually practical
in today’s hardware. Unfortunately, modifying the buffer sharing algorithm
and integrating it with predictions requires switch vendor support. Even in
programmable switches, the traffic manager is merely a blackbox that implements
Dynamic Thresholds with a single parameter exposed to the user [38,45]. Given
the superior performance of Credence (§6.3), we wish to gain attention from
switch vendors to discuss further on the implementation of Credence.

6.3 Evaluation
We evaluate the performance of Credence and compare it against state-of-the-art
buffer sharing algorithms in the context of datacenter networks. Our evaluation
aims at answering three main questions:
(Q1) Does Credence improve the burst absorption?
Our evaluation shows that Credence significantly improves the burst absorption
capabilities of switches. We find that Credence improves the 95-percentile flow
completion times for incast flows by up to 95.4% compared to Dynamic Thresholds
(DT) and by up to 96.9% compared to ABM.
(Q2) Can Credence improve the flow completion times for short flows as well as
long flows?
We find that Credence performs similar to existing approaches in terms of
95-percentile flow completion times for short flows and improves upon ABM by
up to 22% correspondingly for long flows.
(Q3) How does prediction error impact the performance of Credence in terms
of flow completion times?
We increase the error of our prediction by artificially flipping the predictions with a
probability. As the probability increases (error increases), we find that Credence
sustains performance up to 0.01 probability and smoothly degrades in performance
beyond 0.01.

6.3.1 Setup
Our evaluation is based on packet-level simulations in NS3 [209]. We embed a
Python interpreter within NS3 using pybind11 [224] in order to obtain predictions
from a random forest model trained with scikit-learn [236].
Topology: We consider a leaf-spine topology with 256 servers organized into 4
spines and 16 leaves. Each link has a propagation delay of 3µs leading to a round-
trip-time of 25.2µs. The capacity is set to 10Gbps for all the links leading to 4 : 1
oversubscription similar to prior works [16,21,232]. All the switches in our topology
have 5.12KB buffer-per-port-per-Gbps similar to Broadcom Tomahawk [75].
Workloads: We generate traffic using websearch [35] flow size distribution that
is based on measurements from real-world datacenter workloads. We vary the
load on the network in the range 20-80%. We additionally generate traffic using a
synthetic incast workload similar to prior work [16]. Our incast workload mimics
the query-response behavior of a distributed file storage system where each query
results in a bursty response from multiple servers. We set the query request rate

140 Chapter 6. Augmenting Buffer Sharing with ML Predictions

to 2 per second from each server, and we vary the burst size in the range 10-100%4

of the switch buffer size. We use DCTCP [35] and PowerTCP [21] as transport
protocols.
Comparisons & metrics: We compare Credence with Dynamic Thresholds [86]
(the default algorithm in datacenter switches), ABM [16] and LQD (push-out).
Hereafter, we refer to Dynamic Thresholds as DT. We report four performance
metrics: 95-percentile flow completion times for short flows (≤ 100KB), incast
flows (incast workload), long flows (≥ 1MB), and the 99-percentile shared buffer
occupancy. We present the CDFs of flow completion times in §6.4.
Predictions: We collect packet-level traces from each switch in our topology
when using LQD (push-out) as the buffer sharing algorithm. Each trace consists
of five values corresponding to each packet arrival: (i) queue length, (ii) average
queue length, (iii) shared buffer occupancy, (iv) average shared buffer occupancy
and (v) accept (or drop). We train a random forest classifier using queue length
and shared buffer occupancy as features and the model predicts packet drops. We
set the maximum depth for each tree to 4 in view of practicality. At a train-test
split 0.6 of our LQD trace, based on our parameter sweep across the number of
trees used for our classifier (Figure 6.15 in §6.4), we set the number of trees to
4. We observe that the quality of our predictions does not improve significantly
beyond four trees in our datasets. This gives us an accuracy of 0.99, error score 1

η

0.995 (inverse of our error function based on Definition 5), precision of 0.65, recall
of 0.35 and F1 score of 0.45. We train our model with an LQD trace corresponding
to websearch workload at 80% load, and a burst size of 75% buffer size for the
incast workload, using DCTCP as the transport protocol. We use the same trained
model in all our evaluations. We ensure that our test scenarios are different from
the training dataset by using different random seeds in addition to different traffic
conditions (different loads and different burst sizes) in each experiment in our
evaluation.

For completeness, although well-known in the literature, we define accuracy,
precision, recall and f1 score below.

Accuracy = ϕ′T P + ϕ′T N

ϕ′T P + ϕ′T N + ϕ′F P + ϕ′F N

Precision = ϕ′T P

ϕ′T P + ϕ′F P

Recall = ϕ′T P

ϕ′T P + ϕ′F N

F1 score = 2 · ϕ′T P

2 · ϕ′T P + ϕ′F P + ϕ′F N

Configuration: Credence is parameter-less, and it takes input from an oracle
(described above) that predicts packet drops. We set α = 0.5 for DT and ABM
similar to prior work [16]. ABM uses α = 64 for all the packets which arrive

4We note that if the burst size exceeds the buffer size (> 100%), then no buffer sharing
algorithm can prevent excessive packet drops. As such, controlling and mitigating the extent of
incast scenarios can be better addressed by congestion control and scheduling techniques.

5The high values of accuracy and our error score 1
η are attributed to the dataset being skewed

i.e., congestion is not persistent.

Chapter 6.3. Evaluation 141

DT LQD ABM Credence

20 40 60 80
Load (%)

1

10

100

400

95
-p

ct
 F

CT
 sl

ow
do

wn

(a) Incast flows

20 40 60 80
Load (%)

1
2

4

6

8

10

95
-p

ct
 F

CT
 sl

ow
do

wn

(b) Short flows

20 40 60 80
Load (%)

10

20

30

40

95
-p

ct
 F

CT
 sl

ow
do

wn

(c) Long flows

20 40 60 80
Load (%)

20

40

60

80

100

Bu
ffe

r o
cc

up
an

cy
 (%

)

(d) Shared buffer occupancy

Figure 6.6: Performance of Credence across various loads of websearch workload
and incast workload at a burst size 50% of the buffer size, with DCTCP as the
transport protocol. As the load increases, ABM penalizes long flows. DT and ABM
are unable to absorb bursts of size 50% of the buffer size. Credence achieves
superior burst absorption and does not penalize long flows.

during the first round-trip-time [16]. We configure DCTCP according to [35] and
PowerTCP according to [21].

6.3.2 Results

Credence significantly improves burst absorption: In Figure 6.6a, using
DCTCP as the transport protocol, we generate websearch traffic across various
loads in the range 20-80% and generate incast traffic with a burst size of 50% buffer
size. We observe that Credence performs close to the optimal performance of
LQD. Credence improves the 95-percentile flow complete times for incast flows
by 95.50% compared to DT, and by 95.53% compared to ABM. In Figure 6.7a,
we set the load of websearch traffic at 40% and vary the burst size for incast
workload in the range 10-100% buffer size. Credence performs similar to DT
and ABM for small burst sizes. As the burst size increases, Credence improves
the 95-percentile flow completion times for incast workload by 95% on average
compared to DT, and by 96.92% on average compared to ABM. In Figure 6.8a,
even when using PowerTCP as the transport protocol, we see that Credence
improves the 95-percentile flow completion times for incast flow by 93.27% on
average compared to DT and by 93.36% on average compared to ABM. In terms
of burst absorption, both DT and ABM are drop-tail algorithms, hence they face
the drawbacks discussed in §6.1.2. Credence relies on predictions and unlocks
the performance of LQD (push-out) as shown by our results in Figure 6.6a and
Figure 6.7a.
Credence improves long flows FCTs: Credence not only improves the

142 Chapter 6. Augmenting Buffer Sharing with ML Predictions

DT LQD ABM Credence

25 50 75 100
Burst size (% of buffer size)

10

100
400

95
-p

ct
 F

CT
 sl

ow
do

wn

(a) Incast flows

25 50 75 100
Burst size (% of buffer size)

1
2
4
6
8

10

95
-p

ct
 F

CT
 sl

ow
do

wn

(b) Short flows

25 50 75 100
Burst size (% of buffer size)

2
4
6
8

10
12
14

95
-p

ct
 F

CT
 sl

ow
do

wn

(c) Long flows

25 50 75 100
Burst size (% of buffer size)

20
40
60
80

100

Bu
ffe

r o
cc

up
an

cy
 (%

)
(d) Shared buffer occupancy

Figure 6.7: Performance of Credence across various burst sizes of incast workload
and websearch workload at 40% load, with DCTCP as the transport protocol.
At small burst sizes, DT and ABM achieve similar performance compared to
Credence but as the burst size increases, Credence outperforms DT and ABM
in terms of FCTs for incast flows (burst absorption).

DT ABM Credence

25 50 75 100
Burst size (% of buffer size)

10

100
400

95
-p

ct
 F

CT
 sl

ow
do

wn

(a) Incast flows

25 50 75 100
Burst size (% of buffer size)
1
2
4
6
8

10

95
-p

ct
 F

CT
 sl

ow
do

wn

(b) Short flows

25 50 75 100
Burst size (% of buffer size)
2
4
6
8

10
12
14

95
-p

ct
 F

CT
 sl

ow
do

wn

(c) Long flows

25 50 75 100
Burst size (% of buffer size)

20
40
60
80

100

Bu
ffe

r o
cc

up
an

cy
 (%

)

(d) Shared buffer occupancy

Figure 6.8: Performance of Credence across various burst sizes of incast workload
and websearch workload at 40% load, with PowerTCP as the transport protocol.
Even with advanced congestion control, DT and ABM only benefit in terms of
FCTs for long flows, but Credence outperforms in terms of FCTs for incast flows
(burst absorption) as well as FCTs for long flows.

Chapter 6.3. Evaluation 143

ABM Credence

64 32 24 16 8
RTT (μs)

1

10

102

103

95
-p

ct
 F

CT
 sl

ow
do

wn

(a) Incast flows

64 32 24 16 8
RTT (μs)

2
4
6
8

10

95
-p

ct
 F

CT
 sl

ow
do

wn

(b) Short flows

64 32 24 16 8
RTT (μs)

2
4
6
8

10

95
-p

ct
 F

CT
 sl

ow
do

wn

(c) Long flows

64 32 24 16 8
RTT (μs)

20
40
60
80

100

Bu
ffe

r o
cc

up
an

cy
 (%

)
(d) Shared buffer occupancy

Figure 6.9: ABM is sensitive to RTT and performs significantly worse compared
to Credence at low RTTs. At high RTTs, ABM performs similar to Credence.

LQD Credence

10−3 10−2 10−1

Probability of flipping prediction
1

10

100

1000

95
-p

ct
 F

CT
 sl

ow
do

wn

(a) Incast flows

10−3 10−2 10−1

Probability of flipping prediction
1

10

100

1000

95
-p

ct
 F

CT
 sl

ow
do

wn

(b) Short flows

10−3 10−2 10−1

Probability of flipping prediction
1

50

100

95
-p

ct
 F

CT
 sl

ow
do

wn

(c) Long flows

10−3 10−2 10−1

Probability of flipping prediction
0

20
40
60
80

100

Bu
ffe

r o
cc

up
an

cy
 (%

)

(d) Shared buffer occupancy

Figure 6.10: Even though the predictions from our random forest classifier are
intentionally flipped (to increase error), Credence performs close to LQD up
to 0.005 flipping probability but smoothly diverges from LQD at 0.01 flipping
probability.

144 Chapter 6. Augmenting Buffer Sharing with ML Predictions

(a) Load = 20% (b) Load = 40% (c) Load = 60% (d) Load = 80%

Figure 6.11: CDF of flow completion times (slowdown) for Credence, DT, ABM
and LQD across various loads of websearch workload and incast workload at a
burst size 50% of the buffer size, with DCTCP as the transport protocol.

burst absorption but also improves the flow completion times for long flows. In
Figure 6.6c, at 50% burst size for incast workload and across various loads of
websearch workload, we observe that Credence performs similar to DT in terms
of 95-percentile flow completion times for long flows and improves upon ABM on
average by 28.49%. At 80% load, Credence improves upon ABM by 49.34%.
Across various burst sizes, and at 40% load of websearch workload, we observe
from Figure 6.7c that Credence improves upon ABM by up to 22.02% and
by 12.02% on average. With PowerTCP as the transport protocol (Figure 6.8c),
Credence improves the 95-percentile flow completion times for long flows by
3.31% on average compared to DT and by 17.35% compared to ABM. At a burst
size of 100% buffer size, Credence improves the flow completion times by 5.49%
compared to DT and by 24.09% compared to ABM. As described in §6.1.2, drop-tail
algorithms such as DT and ABM cannot effectively navigate proactive and reactive
drops, resulting in throughput loss i.e., high flow completion times for long flows.
In contrast, predictions guide Credence to effectively navigate proactive and
reactive drops. This allows Credence to achieve better flow completion times
even for long flows.
Credence does not waste buffer resources: In anticipation of future burst
arrivals, both DT and ABM buffer resources. We show the 99.99-percentile buffer
occupancies6 in Figure 6.6d for various loads of websearch workload and at a burst
size of 50% buffer size for incast workload. We observe that, DT (ABM) utilizes
3.77% (18.68%) lower buffer space on average compared to Credence, at the
cost of increased flow completion times even for long flows. Even as the burst
size increases (Figure 6.7d), DT and ABM are unable to efficiently utilize the
buffer space. In contrast, Credence efficiently utilizes the available buffer space
as the burst size increases, improving burst absorption without sacrificing flow
completion times for long flows.
ABM is sensitive to RTT: Although ABM is expected to outperform DT, our
evaluation results especially in terms of flow completion times for incast flows

6DT, ABM and Credence have similar tail occupancies (100-percentile) that occurs at rare
congestion events in our simulations.

Chapter 6.3. Evaluation 145

(a) Burst size = 12.5%(b) Burst size = 25% (c) Burst size = 50% (d) Burst size = 75%

Figure 6.12: CDF of flow completion times (slowdown) for Credence, DT, ABM
and LQD across various burst sizes of incast workload and websearch workload at
40% load, with PowerTCP as the transport protocol. Burst size is expressed as a
percentage of the buffer size.

contradict the results presented in [16]. We ran several simulations varying all the
parameters in our setup in order to better understand the performance of ABM.
We found that ABM is in fact sensitive to round-trip-time (RTT). We vary the
base RTT of our topology in Figure 6.9 and compare Credence with ABM. At
high RTTs, we observe that ABM performs close to Credence, but degrades
in performance as RTT decreases. Specifically, at 8µs RTT, ABM performs
97.73% worse compared to Credence in terms of flow completion times for incast
flows. Although ABM achieves on-par flow completion times for short flows, we
observe that ABM degrades in flow completion times for long times as well as
under-utilizes the buffer as RTT decreases. The poor performance of ABM at low
RTTs is due to the fact that ABM prioritizes the first RTT packets and considers
the rest of the traffic as steady-state traffic. However, it is not uncommon that
datacenter switches experience bursts for several RTTs [108]. Further, congestion
control algorithms require multiples RTTs to converge to steady-state. In contrast,
Credence is parameter-less and does not make such assumptions. Credence
performs significantly better than existing approaches even with an off-the-shelf
machine-learned predictor with a simple model.
Credence gradually degrades with prediction error: Our random forest
classifier that we used in our evaluations so far, has a precision close to 0.65.
In order to evaluate the performance of Credence with even worse prediction
error, we artificially introduce error by flipping every prediction obtained from
our random forest classifier with a certain probability. We consider LQD (push-
out) as a baseline since Credence is expected to perform close to LQD and
degrade as the prediction error grows large. Figure 6.10 presents our evaluation
results, under websearch workload at 40% and burst size 50% of the buffer size
for incast workload. At 0.001 flipping probability, Credence performs close to
LQD. However, at 0.01 flipping probability Credence starts to diverge7 from
LQD and gets significantly worse at 0.1 flipping probability. Figure 6.10 gives
practical insights into smoothness of Credence in addition to our analysis.

7The extent of divergence in FCT slowdown relates to minRTO (set to 10 ms) due to packet
drops that result in timeouts, and is not explicitly bounded by O(N) similar to throughput. Yet,
incast and short flows can be protected by incorporating packet priorities (discussed in §6.6).

146 Chapter 6. Augmenting Buffer Sharing with ML Predictions

(a) Burst size = 12.5%(b) Burst size = 25% (c) Burst size = 50% (d) Burst size = 75%

Figure 6.13: CDF of flow completion times (slowdown) for Credence, DT, ABM
and LQD across various burst sizes of incast workload and websearch workload
at 40% load, with DCTCP as the transport protocol. Burst size is expressed as a
percentage of the buffer size.

6.4 Additional Results
In this section, we present additional results from our evaluations. Figures 6.13,
6.11, 6.12 present the CDF of flow completion times for each experiment in our
evaluations (§6.3), showing the complete performance profile of each algorithm.

Figure 6.14 presents our numerical results based on a custom simulator in
discrete time. Note that Figure 6.14 shows the throughput ratio of an algorithm vs
LQD. We perform this experiment using custom simulator in order to fully control
the prediction error (artificially).

We generate large bursts of the size of the total buffer, where each such burst
arrives according to a poisson process (which is fixed in subsequent runs). We
then collect a trace of per-packet drop (or accept) trace using LQD as the buffer
sharing algorithm. This trace serves as the ground-truth as well as the case for
perfect predictions for Credence. We then run Credence over the same packet
arrival sequence from above, and use the drop trace of LQD as predictions. With
full access to this trace i.e., perfect predictions case, Credence performs exactly
as LQD as expected. However, in order to study the performance of Credence
with increasing error, in a controlled manner, we flip each packet drop (or accept)
from our LQD’s drop trace i.e., each flip becomes a false prediction. We control
the error via the flipping probability i.e., the false prediction rate. We observe
from Figure 6.14 that Credence degrade in throughput as the probability of false
predictions increases i.e., as the prediction error increases. However, even at as
high as 0.7 probability of false predictions, Credence still out-performs DT.

In Figure 6.15, we present our results obtained from a parameter sweep across
the number of trees used for random forest model vs prediction scores.

6.5 Related Work
The buffer sharing problem has been widely studied for many decades. Research
works in the literature range from push-out as well as drop-tail algorithms tailored

Chapter 6.6. Future Work 147

0.0 0.2 0.4 0.6 0.8 1.0
Probability of a false prediction

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 ra

tio
 LQ

D
AL

G Credence
DT
LQD

Figure 6.14: As the probability of false
predictions increases, Credence’s
throughput compared to LQD (push-
out) i.e., the ratio LQD

ALG
increases from

1 to 2.9 (lower values are better). Cre-
dence performs significantly better
than DT even when the probability of
false predictions is as high as 0.7.

1 2 4 8 16 32 64 128
Number of trees

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Accuracy
Precision
Recall

F1 score
Error score 1η

Figure 6.15: The quality of our pre-
dictions does not improve significantly
beyond 4 trees in our random forest
classifier.

for ATM networks [78,86,161,253,272] to more recent drop-tail algorithms tailored
for datacenter networks [16, 19, 38, 46, 133, 240]. While we focus on the buffer
sharing problem in this work, several related but orthogonal approaches also tackle
buffer problems in datacenter networks e.g., end-to-end congestion control [21, 35,
77,112,164,173], AQM [102,139,215], scheduling [37,130], packet deflection [278]
and load-balancing [34, 110, 152]. These approaches aim at reducing congestion
events and the overall buffer requirements, but they cannot fundamentally address
buffer contention across multiple switch ports sharing the same buffer. Research
on algorithms with predictions for various problems has recently been an active
field of research [135,195--198,223] but ours is the first approach tackling the buffer
sharing problem with predictions. Ongoing research efforts show the feasibility of
deploying machine-learned predictions in the network data plane [30,76,140,274].
A multitude of recent works have focused on verifying neural networks [174,233,
243,263,275,280] and learning-augmented systems [96,153,228]. In contrast, the
analysis framework [39,198] used in our work assumes the prediction oracle to be a
black box and focuses on the algorithmic aspects in order to bound the performance
of a prediction-augmented system.

6.6 Future Work

Credence is the first approach showing the performance benefits and guarantees
by augmenting buffer sharing algorithms with predictions. This work barely
scratches the surface and leaves intriguing open questions: (i) practically training
the prediction oracle in the real-world, (ii) accounting for packet priorities in taking
buffering decisions, (iii) integrating predictions with buffer sharing in hardware.
We believe that this chapter opens several interesting avenues for future work both
in systems and theory. In this section, we discuss some of the future work directions
to push approaches such as Credence to be deployed in the real-world (§6.6.1), as
well as to improve the performance guarantees offered by such approaches (§6.6.2).

148 Chapter 6. Augmenting Buffer Sharing with ML Predictions

6.6.1 Systems for In-Network Predictions
In this chapter, we show how predictions can improve the performance of drop-tail
buffer sharing. Many interesting systems research questions remain in order to
integrate buffer sharing and predictions in the network data plane.
Training the model: Training a prediction oracle based on the model described
in §6.1.3.1 involves collecting the buffering decisions (ground truth) of Longest
Queue Drop algorithm (LQD), i.e., push-out, along with a set of features e.g.,
queue lengths, overall buffer occupancy. We envision two approaches to collect the
training data in practice. First, similar to our approach in §6.3, the training data
can be obtained from packet-level simulations that implement LQD on the switches.
While this approach is simple, it has the limitation that the training data does
not necessarily reflect real-world traffic arrivals and the corresponding buffering
decisions of LQD. However, simulation-based training data could still be suitable
for traffic patterns of a datacenter that can be explicitly modeled e.g., collective
communications in GPU clusters [266,284]. Second, the buffering decisions of the
LQD algorithm can be exported by each switch in a real-world datacenter. This can
be achieved by implementing LQD virtually without taking any buffering decisions
on packets, along side any underlying buffer sharing algorithm i.e., maintaining
per-queue counters that are incremented and decremented upon packet arrival,
departure and drop (virtually based on LQD) events, similar to Credence’s
thresholds. Any feature values exported must also correspond to these counter
values. Exporting LQD’s events even in a coarse-grained manner would suffice
if the trace is sufficiently large. We believe that future work on implementing a
virtual LQD (Credence’s thresholds) in hardware would not only strengthen
Credence’s practicality but also improves the accuracy of the trained model,
thereby also improving the performance. For simplicity, our random forest model
in § 6.3 uses only four features, yet exploring the tradeoff between prediction error
and model complexity in terms of space and time would be valuable. Further, the
trained model must be simple enough that fits within the resources available in
the data plane. Developing such trained models is an important step forward.
Deploying the model: Recent works propose practical implementations for
in-network machine-learning models e.g., in the context of traffic classification [76].
P4 implementation of a model that predicts drops would enhance not only the prac-
ticality but also stimulate further research to design algorithms with performance
guarantees better than Credence.
Alternative predictions: As mentioned in §6.1.3, there are several different
prediction models that can be considered for the buffer sharing problem. For
instance, instead of predicting the drops, an oracle could predict packet arrivals
just for a tiny window of the near future. Alternatively, techniques such as online
reinforcement learning can be adopted, where rewards are based on how closely the
queue lengths track their thresholds8. Systems research on studying the practicality
and deployability of different prediction models is a valuable future direction that
would better guide the design of algorithms with predictions for the buffer sharing
problem.
Understanding push-out complexity: While push-out algorithms raised much
interest initially, over the last years, research on this approach has been less active.

8Credence’s thresholds are equivalent to LQD’s (push-out) queue lengths for the same
packet arrivals (see §6.2.2).

Chapter 6.7. Summary 149

We believe this is partly due to the lack of support from switch vendors. It is an
open question how the complexity of obtaining drop predictions and the complexity
of push-out fare against each other. Although we focused on augmenting drop-tail
algorithms with predictions, we believe that our approach of using predictions has
much potential also in other types of buffer algorithms. While switch vendors may
be better informed about the complexity of push-out buffers, an understanding of
this complexity in the scientific community is much needed in order to navigate
the complexity vs performance spectrum.

6.6.2 Theory for Performance Guarantees
We believe the performance guarantees offered by Credence can be improved
in the future. Further, considering packet priorities and traffic classes in the
competitive analysis is an open question.
Improving consistency and robustness: An open question is whether an algo-
rithm could be designed to improve the competitive ratio under perfect predictions
(consistency) better than 1.707, while also improving the ratio under large error
(robustness) better than N . Further research in this direction would enable a
better understanding whether a consistency-robustness tradeoff exists for the buffer
sharing problem.
Competitive analysis with packet priorities: Literature in theory considers
that all packets are of the same priority in the context of competitive analysis. One
of the current limitations of Credence is its obliviousness to packet priorities.
It is well-known that preferential treatment of packets has various performance
benefits, especially in terms of flow completion times when short flow packets
are prioritized. The performance degradation of Credence for short flows and
incast flows (Figure 6.10a, 6.10b) can potentially be shielded from prediction errors
by employing packet priorities. We believe that defining throughput (objective
function) as the weighted sum of the number of transmitted packets of different
priorities would enable the design of online algorithms that prioritize higher-priority
packets, e.g., bursts or short flows, in order to be competitive. For instance,
throughput can be defined as ∑︁αp · np, where αp is the relative importance of a
priority p and np is the number of transmitted packets of priority p by a buffer
sharing algorithm. To this end, developing analysis techniques for such a setup is
an interesting future research direction.

6.7 Summary
We presented Credence, the first buffer sharing algorithm augmented with
predictions that not only reaches close to optimal performance given low prediction
error but also guarantees performance with arbitrarily large prediction error, while
maintaining smoothness. We analytically proved our claims and our evaluations
show the superior performance of Credence even with an off-the-shelf machine-
learned predictor, compared to the state-of-the-art buffer sharing algorithms. The
building blocks required for Credence are all individually practical in today’s
hardware. In future, we plan to pursue switch vendors to further discuss the
integration of predictions with buffer sharing algorithm in hardware.

150 Chapter 6. Augmenting Buffer Sharing with ML Predictions

Part III
Reconfigurable Datacenter Networks

151

7
Oblivious Optical Interconnects
With the popularity of data-centric and distributed applications, the traffic in
datacenters is growing explosively. Dealing with this traffic however becomes
increasingly challenging: while cloud traffic roughly doubles each year [246], the
capacity increase provided by electrical switches for a given power and cost starts
to lag behind. This gap is expected to worsen with the current trend to hardware-
driven workloads such as distributed machine learning training [60].

As the throughput of datacenter networks is becoming more and more critical
for application performance, over the last years, great efforts have been made
to increase the capacity of datacenter topologies. A particularly innovative ar-
chitecture to meet the stringent bandwidth requirements of modern datacenters,
are reconfigurable (optical) datacenter networks (RDCNs) [60, 79, 98, 109, 121,
187,189,234,249,261], e.g., based on optical circuit switches, tunable lasers, and
simple passive gratings [205]. By quickly cycling through a sequence of different
topologies---typically matchings between top-of-rack (ToR) switches---RDCNs such
as RotorNet [189], Opera [187] or Sirius [60] can provide periodic direct connectivity
between rack pairs, at microsecond or even nanosecond granularity. A common
property of these systems is that they emulate a complete graph, and so avoid
the ‘‘bandwidth tax’’ of multi-hop forwarding [114,187]. Indeed, empirical studies
show that periodic reconfigurable datacenter topologies can achieve significantly
higher throughput compared to cost-equivalent traditional datacenters based on
static topologies [60,187,189].

This chapter is motivated by the observation that the existing approach of using
reconfigurable technologies to emulate complete graphs comes at a price: long
delays and large buffer requirements.

First, at scale, emulating a complete graph can entail long delays: the denser
the emulated network, the longer the periodic reconfiguration cycle and hence
the longer a given rack pair has to wait to be connected again. Second, as we
show analytically in this chapter, the resulting long reconfiguration cycles require
excessive buffering at the ToR switches and end-hosts. The required buffer can
intuitively be viewed as bandwidth-delay product of dynamic topologies similar
to the corresponding notion for static topologies in TCP literature. In practice
though, datacenter switches are equipped with shallow buffers. Further, several
studies in the recent past show an increasing gap between switch capacity and
buffer sizes [59,112].

Our main insight in this chapter is that accounting for buffer constraints
can significantly change the design considerations of reconfigurable datacenter
networks.

In particular, we initiate the study of — and make the case for — reconfigurable

153

154 Chapter 7. Oblivious Optical Interconnects

Topo. Throughput Delay Buffer
1

Low
(Optimal) Low Low

2
High

(Optimal) High High

3
Low

(Not optimal) High Low

4
High

(Optimal) Moderate Any

Figure 7.1: Periodic reconfigurable datacenter topologies pose fundamental tradeoffs
across throughput, delay and buffer requirements. Existing designs are at the
extremes of a spectrum of optimal designs with lower delay and buffer requirements.

networks which emulate graphs of lower node degree, uncovering an entire spectrum
of possible topology designs. We present a systematic and formal analysis of
the design spectrum and the tradeoffs that these topologies introduce in terms
of throughput, delay, and buffer requirements. Our perspective and the main
tradeoffs are intuitively visualized in Figure 7.1 (left), where on the x-axis (at the
bottom) we show the topologies according to the node degree of the graph they
emulate. The x-axis (at the top) also represents increasing delay from left to right.
The y-axis shows the throughput of the system from low to high. Let us elaborate
on the important points in the figure (summarizes in the table on the right):
1 Static DCNs: On the very left of the design space are traditional static

datacenter networks referred as uni-regular topologies [204] e.g., expander based
DCNs [65, 248, 256]1. Such a design in principle incurs the lowest delay and
requires the least amount of buffer to achieve its ideal throughput, i.e., the optimal
throughput under low delay tolerance. However, since the topology remains static,
for scalability reasons, each ToR switch can only connect to a limited number
of other ToR switches. This results in long multi-hop paths and hence a high
‘‘bandwidth tax’’ [114], and lower throughput.
2 Existing periodic RDCNs: To reduce the ‘‘bandwidth tax’’ and to achieve

high throughput, existing designs resort to emulating a complete graph where each
rack-pair is connected directly once in every matching cycle [60,189]. Such designs
achieve high throughput, in fact maximum across all topologies in our design space,
i.e., the optimal throughput. However, as we will show in this chapter, the high
throughput offered by emulating a complete graph comes at the cost of high delay
and is subject to the availability of large buffers.
3 Existing periodic RDCNs under resource constraints: Given the large

buffer requirements of existing designs (emulating a complete graph), we study
their throughput under limited buffer. Interestingly, we find that, existing periodic
reconfigurable datacenter topologies may perform equally or worse compared to a
static uni-regular topology in terms of throughput, when buffer sizes are bounded.
4 Mars: Exploiting the fundamental tradeoffs across the design space, we

1These works also claimed that static expander-based topologies are similar or better designs
(in terms of performance and cost) compared to Clos-based topologies. We henceforth focus on
static expanders. A detailed discussion can be found in §7.6.

Chapter 7.1. Preliminaries: Throughput of Static Topologies 155

propose Mars, a periodic reconfigurable topology that provides near optimal,
high throughput with the limited amount of available buffer. Specifically, we
parametrize our design based on the delay tolerance and available buffer. We
systematically determine the optimal degree d which depending on the resource
constraints lies between a static topology and a complete graph.

It is interesting to observe from Figure 7.1 that the throughput-delay relation
implies an infeasible region for topology design (shown in red shade). The available
buffer space further restricts the design space (shown in gray shade), imposing a
fundamental tradeoff across the topologies within the feasible region in terms of
throughput, delay and buffer.

Our analytical approach in this chapter is novel and relies on a reduction of a
periodic evolving graph to a specific static graph (Theorem 13). This enables us to
study the throughput maximization problem using well-known graph analysis tech-
niques for static graphs and to analytically evaluate the throughput of both existing
dynamic topologies (RotorNet, Opera, and Sirius) as well as possible alternatives
(Mars). We believe that this reduction technique may be of independent interest
and could be potentially used to study other properties of dynamic topologies.

In summary, our key contributions in this chapter are:

■ We provide a throughput-centric view and formal model of the performance
of periodic reconfigurable datacenter topologies. In particular, we analytically
derive the relation between throughput, delay, and the required amount of
buffer in the network which reveals a non-trivial tradeoff in the design of
periodic reconfigurable topologies.

■ We present Mars, a novel reconfigurable datacenter design that maximizes
throughput under limited buffer and delay requirements.

■ We report on an extensive evaluation showing that Mars improves through-
put by up to 4x compared to existing approaches when buffer sizes are
bounded. Our evaluation also shows that Mars improves the 99-percentile
flow completion time for short flows by up to 75% compared to the state-of-
the-art approach [187] and by up to 87% compared to Sirius and RotorNet.

7.1 Preliminaries: Throughput of Static Topolo-
gies

Our goal in this section is to formally introduce throughput for static topologies and
the relevant definitions, including the limitations of existing bounds. This section
builds the intuition and motivation for our throughput analysis in the context of
periodic reconfigurable topologies (§7.3.1). Much of the prior work [145,204,247]
focused on static topologies and it remains unclear how the existing methodologies
can be used to study the throughput problem in the context of reconfigurable
topologies which is the focus of this chapter. Initial studies on reconfigurable
topologies [114] informally define throughput of specific existing systems (e.g.,
RotorNet) which emulate a complete graph. We emphasize that our definitions
hold for any periodic reconfigurable topology.

156 Chapter 7. Oblivious Optical Interconnects

The predominant throughput metrics for static topologies are defined via
demand matrices (Definition 6, below), and in particular, the worst-case demand
matrix. Following the definition of Jyothi et al. [145], we formally introduce
throughput given a demand matrix for static topologies. In a nutshell, given a
demand matrix M, throughput is the highest scaling factor θ(M) such that the
scaled demand matrix θ(M) · M is feasible in the topology i.e., there exists a
feasible flow that satisfies the demand. The throughput θ∗ under a worst case
demand matrix is the minimum θ(M) over the set of all saturated demand matrices
i.e., θ∗ = minM θ(M). Before formally defining throughput, we first define certain
preliminaries which build the intuition for our definition of throughput in dynamic
topologies (§7.3.1).

Consider any static topology (at switch level) represented as a static directed
multigraph G = (V, E) where V is the set of vertices (switches) and E is the set of
labelled edges (links). Labelled edges allow for distinguishing parallel links. Let
c(e, ℓ) denote the capacity of an edge (e, ℓ) ∈ E where ℓ is the corresponding label
and e is directed edge of the form (u, v) connecting two vertex u to vertex v. We
denote by c(u), the sum of capacities of all outgoing (correspondingly incoming)
edges of a node u. We assume that each node has equal incoming and outgoing
total capacity. A demand matrix specifies the demand in bps (bits/second) between
every pair of vertices.

Definition 6 (Demand matrix). Given a set of vertices V , a demand matrix
specifies the demand rate between every pair of vertices in bps defined as M =
{mu,v | u ∈ V, v ∈ V } where mu,v is the demand between the pair u, v. A saturated
demand matrix is such that the total demand originating at a source s equals its
outgoing capacity and the total demand terminating at a destination d equals its
incoming capacity i.e., ∑︁u∈V ms,u = c(s) and ∑︁u∈V mu,d = c(d).

We consider saturated demand matrices since we focus on the maximum
achievable throughput. Specifically, saturated demand matrices allow for studying
the maximum demand that can be routed in a topology within the capacity
constraints.

7.1.1 Paths and Flow in Static Graphs
Given a demand matrixM, the graph G has a set of s-d paths for transmitting the
demand ms,d from source s to destination d for all s-d pairs. We consider simple
paths i.e., without cycles.

Definition 7 (Simple paths in static graphs (Standard)). Given a static directed
graph G = (V, E) with set of vertices V and the set of all labelled edges E, a
path p∗ of length n connecting a source s and a destination d is a sequence of
n labelled edges ⟨(e1, ℓ1), (e2, ℓ2) ... (en, ℓn)⟩ where (ei, ℓi) ∈ E; the corresponding
sequence of vertices is ⟨v1, v2 ... vn, vn+1⟩ where vi ∈ V , v1 is the source s, vn+1 is
the destination d and ei is an edge between vi and vi+1 i.e., ei = (vi, vi+1) for all
i ∈ [1, n]. We consider simple paths where each vertex appears only once in the
path, so there are no cycles.

Similar to edge labels in a multigraph, we generalize the definition of paths to
facilitate distinguishing between two paths with the same sequence of labelled edges
(crucial for our analysis later). From here on, we will use an extended definition of

Chapter 7.1. Preliminaries: Throughput of Static Topologies 157

paths in static graphs, formally defined below. We associate each path p with a
unique identifier. As a result, notice that by associating each path with a unique
identifier, the set of all extended paths P may contain more than one path with
the same sequence of labelled edges and vertices. For example, (p∗, i) and (p∗, j)
are treated as two different paths unless i = j even though p∗ from Definition 7
has the same sequence of labelled edges and vertices. We define paths with unique
identifiers deliberately for ease of analysis later. Given a set of (extended) paths P
and a path p ∈ P , we denote by I(p), the set of all (extended) paths which have
the identical sequence of labelled edges and vertices as that of p.

Definition 8 (Extended paths in static graphs). Given a static directed graph
G = (V, E), an extended path p is a pair p = (p∗, i), where p∗ is a standard path
(Definition 7) and i is a unique identifier. An extended set of paths P is a set of
extended paths. Given such P , the set of all s-d (extended) paths in P is denoted
by Ps,d.

Intuitively, the transmission of s-d demand from s to d in a graph is called
an s-d flow. The set of all s-d flows is called a flow. We consider that s-d flow is
splittable over multiple edges along all s-d paths. A legal (or feasible) flow in a
static graph must be conserved along the path and must obey capacity constraints
on every edge. Given a static graph and the set of all paths (Definition 7), there
are infinite possibilities for an extended set of paths from Definition 8. Note that,
flow is a map from a finite set of extended paths. We explicitly assume that for
each path p ∈ P , and any p′ ∈ I(p), we have F (p) = F (p′).

Definition 9 (Flow in static graphs). Given static graph G = (V, E) and a finite
set of (extended) paths P , a Flow F is a map F : P → R+ where R+ denotes
non-negative real numbers. A legal flow further has the following constraints: (i)
flow is conserved along the path and (ii) it obeys the capacity constraints. The
amount of flow on a path p ∈ P is denoted by F (p), namely F (p) is the amount of
flow in each edge e ∈ p, denoted by F (p, e). Formally, F (p, e) = F (p) for all e ∈ p.
Additionally, w.l.o.g, we assume that for each path p ∈ P , and any p′ ∈ I(p),
we have F (p) = F (p′). The capacity constraint for a legal flow is given by the
following inequality, where I(·) is the indicator function.∑︂

p∈P

F (p) · I((e, ℓ) ∈ p) ≤ c(e, ℓ) ∀e, ∀ℓ (7.1)

7.1.2 Throughput of Static Graphs
Following the definition of Jyothi et al. [145], throughput given a demand matrix
M is the highest scaling factor θ such that the scaled demand matrix θ · M is
feasible in the topology i.e., there exists a legal flow which can serve the scaled
demand matrix θ · M. The Throughput θ∗ of a static topology is defined as the
throughput under a worst-case demand matrix. Importantly, the following formal
definition builds intuition for our context of periodic reconfigurable topologies.

Definition 10 (Throughput of static graphs). Given a demand matrix M and a
graph G, a legal flow F has a throughput θ(M, F) if it satisfies the scaled demand
matrix θ(M, F) ·M. Formally, for each s, d pair, the s-d flow sent from the source

158 Chapter 7. Oblivious Optical Interconnects

s to destination d is greater than the scaled demand θ(M, F) ·ms,d.
∑︂

p∈Ps,d

F (p) ≥ θ(M, F) ·ms,d ∀s ∈ V, ∀d ∈ V (7.2)

The graph G has throughput θ(M) = maxF θ(M, F) and the throughput θ∗ under
a worst-case demand matrix is the minimum θ(M) i.e., θ∗ = minM θ(M).

Given a demand matrix M, the throughput maximization problem has the
objective to maximize θ, subject to Equation 7.1 (capacity constraint) and Equa-
tion 7.2 (demand constraint). Unfortunately, a linear program approach does not
scale well to large topologies.

7.1.3 TUB and its Limitations
Recently, Namyar et al., proposed TUB [204], a scalable throughput upper bound
for static topologies. The focus of this chapter is not on the throughput of static
topologies but rather on periodic reconfigurable topologies. However, even the
most recently proposed throughput upper bound for static topologies has key
limitations. Specifically, Namyar et al. propose the following throughput upper
bound (Theorem 2.2 in [204]),

θ∗ ≤ min
M

∑︂
e

c(e)∑︂
s∈V

∑︂
d∈V

ms,d · Ls,d

where c(e) is the capacity of an edge e ∈ E and Ls,d is the shortest path length
from s to d.
Key limitations of TUB: Consider a topology represented as a complete graph
Kn with edge capacity c. Every node connects to every other node and hence
the shortest path length for all pairs is one. In this case, TUB suggests that the
topology has full throughput under a saturated permutation demand matrix, i.e.,
θ∗ ≤ 1. However, the actual throughput is only n

2·n−1 ≈
1
2 . This is since the

saturated permutation demand matrix specifies a demand of (n− 1)× c but the
shortest path can only accommodate c demand. The remaining demand must be
routed through multi hop paths resulting in lower throughput. Unfortunately,
TUB does not capture this effect. In general we observe that TUB does not
converge even for large scale topologies when the shortest path length significantly
differs from the average route length. We show in our analysis that the throughput
upper bound for any static graph is indeed related to the average route length
(Theorem 14) which gives a much tighter bound θ∗ ≤ 1

2 in the above example.

7.2 Background: Periodic Reconfigurable Net-
works

We first give a brief background on the periodic reconfigurable topologies and
introduce our model.

Chapter 7.2. Background: Periodic Reconfigurable Networks 159

7.2.1 Periodic Reconfigurable Topologies
The key enablers and building blocks for fast periodic reconfigurations are optical
circuit switching technologies such as rotor-switches [189], AWGR gratings [84]
and tunable lasers [60, 88]. Such technologies are oblivious to the demand, thus
avoiding the overhead of measuring and estimating the demand. For instance, the
overhead is in the order of microseconds for RotorNet and nanoseconds for Sirius
which periodically reconfigure the network topology.

Timeslot

Timeslots (Period)

periodic

Input portOutput port

Figure 7.2: The periodic sequence of matchings of an optical circuit switch.

Circuit switch model: As a unified model of periodic circuit switching tech-
nologies, a rotor-switch serves as a building block for us in the rest of the chapter.
Rotor-switches perform circuit switching and implement a sequence of matchings
in a periodic schedule with period Γ where a matching is a map from the switch’s
input ports to its output ports. The packets arriving at an input port of a rotor-
switch are forwarded to the matched output port. Specifically, rotor-switches do
not process packets and the forwarding is dictated by the matching at any given
instance of time. Figure 7.2 shows an example of a rotor-switch with four input
and output ports with a sequence of three matchings. We use the term timeslot
denoted by ∆ to refer to the total time spent by rotor-switch in each matching
including the reconfiguration time. We denote the reconfiguration time by ∆r.
The utilization time (when traffic is sent) is then ∆−∆r. In essence, a rotor-switch
pays a ‘‘latency tax’’ of ∆u = ∆r

∆ .
Note that, newer proposals such as Sirius [60] use optical gratings and tunable

lasers to achieve fast periodic reconfigurations at nanosecond scale. In contrast to
rotor-switches, Sirius uses optical gratings which are the building blocks and the
ToR switches (or end-hosts) connect to the gratings via tunable lasers which tune
the wavelength of emitted light periodically. However, both RotorNet and Sirius
logically capture a rotor-switch that rotates periodically across a fixed number of
matchings. To this end, Sirius can be abstracted as a topology with rotor-switches
and the difference arises in the system level parameters such as reconfiguration
time ∆r. We do not model system level parameters in this work and only focus on
the topological aspects. In the following, we will sometimes use the more general
term optical switch when referring to the rotor-switch.

Topology: Following the literature on existing proposals [60,187,189], we consider
2-tier reconfigurable datacenter topologies with a set of ToR switches (leaf layer)
and a set of circuit switches (spine layer) as shown in Figure 7.3a, where each
circuit switch functions as a rotor-switch. The uplinks of the ToR switches connect
to the spine layer which interconnects the datacenter2. Concretely, as illustrated in
Figure 7.3b, we consider a periodic reconfigurable datacenter with nt ToR switches

2Each ToR uplink is a set of two SERDESes [4,60] which are uni-directional corresponding to
ToR output (pentagons) and input (circles) as depicted in Figure 7.3b.

160 Chapter 7. Oblivious Optical Interconnects

Servers

ToRs

 Circuit
Switches

Circuit Switch
 (over time)

(a) A 2-tier periodic RCDN.

Circuit Switching Spine Layer

ToR Input

ToR Output

(b) An abstract view of periodic RCDN topologies.

Figure 7.3: Illustration of periodic RCDN model we consider in this work, consisting
of nu ToR switches each with nu uplinks. The datacenter is interconnected by a
circuit switching spine layer consisting of ns circuit switches, each with np input
and output ports.

Timeslot 0 Timeslot 2 Periodic

(a) Example of a periodic evolving graph with period Γ = 2
depicting the ToR-to-ToR connectivity over time; nt = 16,
nu = 2, ns = 2 and np = 16.

(b) The corresponding Em-
ulated graph (static) over
time.

Figure 7.4: Given the number of ToR switches nt with uplinks nu and a periodic
sequence of matchings corresponding to each circuit switch, the topology is a
periodic evolving graph which emulates a static graph over time.

each with nu uplinks; ns circuit switches each with np input and output ports. We
assume that a link e in the topology has capacity c(e). We will later show that
this generalized view reveals an entire spectrum of topologies where the existing
systems (e.g., RotorNet and Sirius) are special instances of the spectrum which
emulate a complete graph i.e., each ToR connects to every other ToR in a period.

7.2.2 Graph Theoretic Model of Periodic ToR-to-ToR Con-
nectivity

In contrast to packet switched networks, circuit switched networks do not buffer
packets. To this end, since periodic reconfigurable topologies are circuit switched,
we are mainly interested in the connectivity between the end points of the circuit
switched network, namely the ToR-to-ToR connectivity. Hence, circuit availability
between a pair of ToR switches can be considered as a direct link between the pair.
In the following, we model the periodically reconfigurable ToR-to-ToR connectivity
over time as a periodic evolving graph.
Periodic evolving graph: Consider the periodic reconfigurable topology described
in §7.2.1 (shown in Figure 7.3b). ToR switches connect to the optical switches
via uplinks. The optical spine layer in turn establishes a circuit between ToR

Chapter 7.3. Motivation: Fundamental Tradeoffs of Periodic RDCNs 161

pairs periodically as shown in Figure 7.4a since the optical switches reconfigure
periodically according to a fixed schedule. To this end, we represent the ToR-to-
ToR connectivity as periodic evolving graph denoted by G = (V, E). Specifically,
G is a periodic sequence of directed graphs defined for timeslots t ∈ [0,∞) where
each timeslot is of ∆ duration. We denote the graph at time t as Gt = (V, Et),
where V is the set of all ToR switches and the edge set Et represents the circuit
availability between the ToR switches at time t. The sequence of edge sets Et

and consequently the evolving graph G are periodic with period of Γ timeslots.
The period in turn relates to the periodic switching schedule of the optical switch.
We denote the capacity of circuit between ToR pairs at any time t as ct(e) for
all e ∈ Et. We explicitly set ct(e) = 0 if e ̸∈ Et. Further, we model the ‘‘latency
tax’’ ∆u due to reconfigurations by limiting the access to an edge e ∈ Et to only
a (1−∆u) fraction of a timeslot (from the start of every timeslot). This model
serves as an entry point for our formal analysis of throughput, delay, and buffer
requirements of reconfigurable topologies in the next section.

7.3 Motivation: Fundamental Tradeoffs of Peri-
odic RDCNs

We now provide a more detailed motivation for our work. Specifically, we analyti-
cally derive the throughput of periodic RDCNs (§7.3.1) and its relation to delay
(§7.3.2). We further study the buffer requirements (§7.3.3) and highlight that the
topologies introduce a fundamental tradeoff between throughput, delay and buffer.
We then present remarks and practical implications of our results (§7.3.4). Finally,
we discuss the optimization opportunities in the design of periodic reconfigurable
topologies (§7.3.5).

7.3.1 Throughput of Periodic RDCNs
We now study the throughput of periodic reconfigurable topologies. Similar to
static topologies, we first need to formally define paths and flow in the context of
periodic reconfigurable topologies. In this section, we follow the periodic evolving
graph model introduced in §7.2.2. Recall that the period of the periodic evolving
graph is denoted by Γ, timeslot is denoted by ∆ and the reconfiguration time is
denoted by ∆r. Since circuit switches do not route traffic during reconfiguration,
links remain idle for ∆r amount of time in every timeslot ∆. We denote this
fraction of time spent in reconfiguration by ∆u. We next formally define periodic
evolving graph.

Definition 11 (Periodic Evolving Graph). A periodic evolving graph (henceforth
for simplicity referred to as evolving graph) denoted by G = (V, E) is a periodic
sequence of directed graphs with a period of Γ timeslots, defined for each timeslot
t ∈W. The directed graph at time t ∈W is defined as Gt = (V, Et), where V is the
set of vertices and Et ⊆ V × V is the set of directed edges at time t and W is the
set of whole numbers. Note that an edge e ∈ V × V may appear in multiple edge
sets Et at different times t. The evolving graph G has the following properties:

■ The sequence of graphs starts at t = 0 and is defined for each timeslot in the
interval t ∈ [0,∞).

162 Chapter 7. Oblivious Optical Interconnects

■ The edge set Et at time t is periodic with period Γ i.e., Et+Γ = Et and
consequently the graph Gt is periodic with period Γ.

■ An edge e ∈ V ×V has a capacity ct(e) at time t. Since the graph is periodic,
the capacity of an edge is also periodic: ct+Γ(e) = ct(e). For notational
convenience we set ct(e) = 0 whenever e ̸∈ Et.

In this section, we first define the notions of path and flow in the periodic
evolving graph. Using these definitions, we then formally define throughput.

7.3.1.1 Temporal Paths and Temporal Flow
Recall from Definition 11 that a periodic evolving graph G is a periodic sequence

of directed graphs with period Γ. The graph at time t is denoted by Gt = (V, Et)
where V is the set of vertices (switches) and Et is the set of edges (links) at time t.
Note that the edge set evolves over time. As a result, paths are formed over time
as opposed to static paths. To this end, we define a temporal path in the evolving
graph as a sequence of (e, t) edge-time pairs, where an edge e is accessed at time
t. Consecutive edges along the path are accessed in non-decreasing order of time.
We assume that the next edge along a path is accessed within Γ timeslots (the
period). Further, temporal paths are periodic. We define the set of all temporal
paths which start within the first period as the foundation set of temporal paths
denoted by P0. The set of all temporal paths is denoted by P∗. The foundation
set is a crucial part of our throughput analysis, especially since temporal paths are
periodic. We define temporal paths formally in the following.

Definition 12 (Temporal paths in evolving graphs). Given a periodic evolving
graph G with set of vertices V , a temporal path δ of length n connecting a
source s and a destination d is a sequence of n edges and corresponding time
values ⟨(e1, t1), (e2, t2) ... (en, tn)⟩ where ti is the time when the edge ei is accessed
along the path and ei is an edge in Eti

; the corresponding sequence of vertices is
⟨v1, v2 ... vn, vn+1⟩ where v1 is the source s, vn+1 is the destination d and ei is an
edge between vi and vi+1 i.e., ei = (vi, vi+1) for all i ∈ [1, n]. A legal temporal path
additionally has the following properties:

■ An edge ei+1 is accessed at time ti+1 within a period time (Γ) after accessing
ei at time ti i.e., ti < ti+1 ≤ ti + Γ

■ vi ̸= vj if i ̸= j i.e., the temporal path is simple and has no cycles

The foundation set of temporal paths, denoted as P0 includes all legal temporal
paths in G that start within the first period (i.e., t1 ∈ [0, Γ)). For the foundation
set P0, we define the set P∗ of all legal temporal paths in G as follows:

■ P0 ⊂ P∗ and temporal paths are periodic with period Γ.

■ A function periodic(δ) is defined as follows for every temporal path δ: the set
of all temporal paths which have the same sequence of edges with the time
sequence shifted by an integer multiple of Γ. Precisely, for any temporal path
δ ∈ P, periodic(δ) = {⟨(e1, t1 + k · Γ), (e2, t2 + k · Γ) ... (eℓ, tℓ + k · Γ)⟩ | k ∈
W}, where δ = ⟨(e1, t1), (e2, t2) ... (eℓ, tℓ)⟩ and W is the set of whole numbers.

Chapter 7.3. Motivation: Fundamental Tradeoffs of Periodic RDCNs 163

■ P∗ = ⋃︁
δ∈P0 periodic(δ) i.e., the set of all temporal paths P∗ is the union of

periodic temporal paths for each temporal path in the foundation set P0.
For simplicity of notation, we say P∗ = periodic(P0).

The sets P0 and P∗ are unique given G. Let the set of all s-d temporal paths in
P0 and P∗ be denoted by P0

s,d and P∗s,d, respectively.

Similar to paths and flow in static graphs (§7.1), in our context, the evolving
graph and the set of s-d paths (Definition 12) in the evolving graph allow for
transmitting the demand of all s-d pairs. Intuitively, the transmission of s-d
demand along s-d paths is called flow. In contrast to the flow in static graphs, the
evolving graph G forces for the flow (Definition 9) to be additionally split in time
since temporal paths are spread over time. Similar to the flow in static graphs, in
the following we define a Temporal-Flow and its constraints in periodic evolving
graphs. Specifically, a legal temporal flow must obey capacity constraints i.e., the
sum of all flows on an edge at time t is upper bounded by the edge capacity ct(e).

Definition 13 (Temporal flow in evolving graphs). Given a periodic evolving
graph G a legal set of temporal paths P , a temporal flow F is a map F : P → R+.
The amount of flow on a path δ ∈ P is denoted by F(δ), namely F(δ) is the amount
of flow in each edge (e, t) ∈ δ, denoted by F(δ, e, t). Formally, F(δ, e, t) = F(δ) for
all (e, t) ∈ δ and otherwise F(δ, e, t) = 0. Temporal-Flow is periodic on periodic
paths i.e., F(δ) = F(δ′) if δ′ ∈ periodic(δ). A temporal flow is said to be legal if
it obeys the capacity constraints at any time t, formally∑︂

δ∈P
F(δ, e, t) ≤ ct(e) ∀e, ∀t (7.3)

where ct(e) is the capacity of an edge e at time t.

7.3.1.2 Throughput of Evolving Graphs
Based on the definition of temporal-paths and temporal-flow, we are now ready to

define throughput in evolving graphs. Intuitively, given a demand matrix M, we
define throughput as the highest scaling factor θ(M) such that θ(M)·M amount of
demand can be routed in the evolving graph over one period on average. Specifically,
a temporal path δ sends F(δ) · (∆−∆r) amount of demands (in bits) over Γ ·∆
time before its next periodic flow begins. Hence, (∆−∆r)

Γ·∆ · F(δ) = (1−∆u

Γ) · F(δ)
is the average bits per second transmitted on a temporal path δ. Following this
intuition, we define throughput in the evolving graph.

Definition 14 (Throughput in the evolving graph). Given a demand matrix M
and an evolving graph G, a legal temporal flow F has throughput θ(M,F) if it
satisfies the scaled demand matrix over Γ timeslots. For each s, d pair, the s-d
temporal flow sent from the source s to destination d over Γ timeslots is greater
than the scaled demand θ(M,F) ·ms,d. Formally, let P0 be the foundation set of
G and P0

s,d is the set of all s-d temporal flows starting in the first period.(︄
1−∆u

Γ

)︄
·
∑︂

δ∈P0
s,d

F(δ) ≥ θ(M,F) ·ms,d ∀s ∈ V, ∀d ∈ V

The graph G has throughput θ(M) = maxF θ(M,F) and the throughput θ∗ under
a worst-case demand matrix is the minimum θ(M) i.e., θ∗ = minM θ(M).

164 Chapter 7. Oblivious Optical Interconnects

Throughput in the evolving graph can be calculated over any one period time-
interval. For simplicity, we consider the first period and the foundation set of
temporal paths P0 especially since the summation of s-d flows can be converted
to the first period using the periodic property of temporal paths and flow i.e., for
every δ ∈ P0

s,d, F(δ) = F(δ′) for δ′ ∈ periodic(δ). However, note that it takes at
most the duration of the longest temporal path, in order for Definition 14 to hold
at the destination. In essence, Definition 14 for periodic evolving graphs, follows
the reasoning behind throughput of static topologies i.e., the maximum scaling
factor θ such that the scaled demand matrix is feasible to route continuously in
the periodic topology.

We now begin to analyze the throughput maximization problem in periodic
evolving graphs. Notice that the problem is much more complicated compared
to static graphs. First, the set of all temporal paths is infinite. Second, even the
foundation set of temporal paths is exponential in size and grows with larger Γ
(period).

To this end, our technique involves a static graph which we call the Emu-
lated graph corresponding to a periodic evolving graph. We then show that a
periodic evolving graph and its corresponding static emulated graph have the same
throughput.

7.3.1.3 Emulated Graph: An Equivalent Static Topology
Given a periodic evolving graph G, we define the corresponding emulated graph

G(G) as a function of G. Specifically, edge set of the emulated graph is obtained
from the union of edge sets of the periodic evolving graph taken over any one
period time interval and the edges are labelled with the corresponding time of
the edge in the evolving graph. The edge capacities are such that the emulated
graph has the same amount of average capacity between all pairs compared to the
evolving graph, including the overhead of reconfiguration (∆r). In the following,
we formally define the emulated graph.

Definition 15 (Emulated graph). The emulated graph G(G) of periodic graph G
is defined as a static directed multigraph G = (V, E), where V is the set of vertices
of G and E = {(e, ℓ) | e ∈ Eℓ, ℓ ∈ [0, Γ)} is the set of directed edges obtained from
the union of edges of the evolving graph over the [0, Γ) time interval and every
edge (e, ℓ) is labelled with ℓ if e ∈ Eℓ. An edge (e, ℓ) ∈ E has capacity ĉ(e, ℓ) where
the relation between ĉ(e, ℓ) and the original capacity cℓ(e) in the evolving graph is
given by,

ĉ(e, ℓ) =
(︄

1−∆u

Γ

)︄
· cℓ(e) ∀e, ∀ℓ ∈ [0, Γ) (7.4)

We now precisely specify the extended set of paths (see Definition 8) in the
emulated graph. Specifically, the extended set of paths with unique identifiers
allow for a relation between a path in the emulated graph to a temporal path in
the evolving graph. We define a function static which converts a temporal path
to static extended path and a function temporal which converts a static extended
path to a temporal path. In essence, the set of all extended paths in the emulated
graph is P ∗ = static(P0). The temporal function allows for backward conversion
i.e., P0 = temporal(P ∗).

Chapter 7.3. Motivation: Fundamental Tradeoffs of Periodic RDCNs 165

Definition 16 (Extended paths in Emulated graph). Given a periodic evolving
graph G with the foundation set of paths P0, the corresponding emulated graph G(G)
has a set of extended paths P ∗ given by static(P0). The static function is defined
as follows: for every temporal path δ, where δ = ⟨(e1, t1), (e2, t2) ... (en, tn)⟩, the
extended static path p = static(δ) is given by p = (⟨(e1, ℓ1), (e2, ℓ2) ... (en, ℓn)⟩ , δ),
where ℓi = ti mod Γ and δ is the unique identifier of the extended static path;
recall that δ is unique. The inverse of static function is defined as: temporal(p) =
static−1(p) = δ, for all p ∈ P ∗, where δ is the unique identifier associated with the
extended path p.

P ∗ = static(P0) = {static(δ) | δ ∈ P0}
P0 = temporal(P ∗) = {temporal(p) | p ∈ P ∗} (7.5)

Note that, given a periodic evolving graph G, its foundation set of temporal
paths P0 is unique and includes all temporal paths which start in the first period.
Since the emulated graph is a function of the periodic evolving graph, the set of
extended static paths (Definition 16) is also unique. The extended set of paths
and the static, temporal functions are a crucial part of our throughput analysis in
the next section.

7.3.1.4 Throughput Analysis of Periodic RDCNs
Before presenting our analysis, we first state our main result in this section.

Consider a periodic periodic evolving graph (see Definition 11) G = (V, E) with
edge capacities ct(e) for every edge e at time t. Consider a static graph which
is a function of the evolving graph G obtained from Definition 15 represented as
G(G) = (V, E). We prove that the throughput of a periodic evolving graph is
equivalent to the corresponding emulated graph.

Theorem 13 (Relation to Emulated Graph). Given a demand matrixM, any legal
temporal flow F in the periodic evolving graph G with throughput θ(M,F) can be
converted to a legal flow F in the emulated graph G(G) with the same throughput
θ(M, F) = θ(M,F) and vice versa. Consequently the periodic evolving graph
and the emulated graph have the same throughput θ(M) = maxF θ(M, F): the
maximum scaling factor given a demand matrix M; they further have the same
throughput θ∗ for a worst-case demand matrix, where θ∗ = minM θ(M).

A sketch of our approach is as follows: (i) we prove in Lemma 6 that if a
legal flow in the emulated graph has throughput θ over set of extended paths
P ∗ = static(P0), then there exists a legal temporal flow in the periodic evolving
graph with the same throughput; (ii) we prove in Lemma 7 that if a legal temporal
flow achieves throughput θ in the evolving graph, then there exists a legal flow
in the emulated graph with the same throughput over the set of extended paths
P ∗ = static(P0); (iii) finally, we prove in Lemma 8 that a flow in emulated graph
over the set of all paths P has the same throughput upper bound as that of a flow
over the set of extended paths P ∗ = static(P0). Using the above three results, we
prove our main claim.

Lemma 6. Let M be a demand matrix, G be a periodic evolving graph, G(G) be
its emulated graph and P ∗ = static(P0). If F : P ∗ → R+ is a legal flow in G(G)
with throughput θ(M, F) then there exists a legal temporal flow F in the evolving

166 Chapter 7. Oblivious Optical Interconnects

graph G with the same throughput θ(M,F) = θ(M, F). The temporal flow F in
the evolving graph can be constructed as follows:

F(δ) =
(︄

Γ
1−∆u

)︄
· F (p)

∀p ∈ P ∗; δ ∈ periodic(temporal(p)) (7.6)

where F is periodic; for any temporal path δ ∈ temporal(P ∗), F(δ, e, t) = F(δ) for
all (e, t) ∈ δ and F(δ, e, t) = 0 if (e, t) ̸∈ δ. F is then a map F : P∗ → R+, where
P∗ = periodic(temporal(P ∗)).

Proof. From Definition 9, since F is a legal flow in the emulated graph, F obeys
capacity constraints.∑︂

p∈P ∗
F (p) · I((e, ℓ) ∈ p) ≤ ĉ(e, ℓ) ∀e, ∀ℓ ∈ [0, Γ)

We first substitute ĉ(e, ℓ) = (1−∆u)
Γ ·cℓ(e) and change ℓ to ℓ mod Γ without changing

the value of both sides of the above inequality.
∑︂

p∈P ∗
F (p) · I((e, ℓ mod Γ) ∈ p) ≤

(︄
1−∆u

Γ

)︄
· c(ℓ mod Γ)(e)

∀e, ∀ℓ ∈ [0, Γ)

We now expand the above inequality as follows for all ℓ ∈ [0,∞), without changing
the value on both sides of the inequality. Recall that cℓ(e) = cℓ+k·Γ for any integer
k ≥ 0 (cℓ(e) is periodic).

∑︂
p∈P ∗

F (p) · I((e, ℓ mod Γ) ∈ p) ≤
(︄

1−∆u

Γ

)︄
· cℓ(e)

∀e, ∀ℓ ∈ [0,∞)

The above inequality holds since cℓ(e) is periodic and ℓ mod Γ always ranges
between [0, Γ). Substituting the temporal flow F for the static flow F , using
Equation 7.6, ∑︂

p∈P ∗
F(temporal(p)) · I((e, ℓ mod Γ) ∈ p) ≤ cℓ(e)

∀e, ∀ℓ ∈ [0,∞)

From Definition 16 and from the periodic property of temporal paths (Definition 12),
for every path p ∈ P ∗ and for every (e, ℓ mod Γ) ∈ p, there exists exactly one path
δ ∈ periodic(temporal(p)) such that (e, ℓ) ∈ δ. Using this relation, we convert the
above inequality as follows,∑︂

δ∈periodic(temporal(P ∗))
F(δ) · I((e, t) ∈ δ) ≤ ct(e)

∀e, ∀t ∈ [0,∞)

Since periodic(temporal(P ∗)) = P∗, and since ct(e) = 0 if e ̸∈ Et, we obtain the
following relation. ∑︂

δ∈P∗
F(δ, e, t) ≤

⎧⎨⎩ct(e) e ∈ Et

0 e ̸∈ Et

Chapter 7.3. Motivation: Fundamental Tradeoffs of Periodic RDCNs 167

From Definition 13, we conclude that F (from Equation 7.6) obeys capacity
constraints. Further since temporal flow is constant and equal for all (e, t) ∈ δ for
all temporal paths, it obeys flow conservation rules. It remains to prove that F
also achieves throughput θ. Since F has a throughput θ(M), from Definition 23
we have that, ∑︂

p∈P ∗
s,d

F (p) ≥ θ(M, F) ·ms,d ∀s ∈ V, ∀d ∈ V

using the relation between F and F from Equation 7.6, we obtain the following
inequality. From Definition 14, we conclude that F also achieves throughput
θ(M,F) = θ(M, F).(︄

1−∆u

Γ

)︄
·
∑︂

δ∈P0
s,d

F(p) ≥ θ(M, F) ·ms,d ∀s ∈ V, ∀d ∈ V

From Lemma 6, we have that, given a demand matrixM, if the static emulated
graph has throughput θ(M, F) for a specific flow F , then the scaled demand matrix
θ(M, F) · M is feasible in the periodic evolving graph. In the following, we state
the reverse i.e., given a demand matrix M, if the periodic evolving graph has
throughput θ(M,F) for a specific temporal flow F , then the scaled demand
θ(M,F) · M is feasible in the static emulated graph.

Lemma 7. Given a demand matrix M, if F : P∗ → R+ is a legal temporal flow
in the evolving graph G with throughput θ(M,F) then there exists a legal flow
F in the emulated graph G(G) with same throughput θ(M, F) = θ(M,F). F is
obtained as follows:

F (static(δ)) =
(︄

1−∆u

Γ

)︄
· F(δ) ∀δ ∈ P0 (7.7)

F is then a map F : P ∗ → R+, where P ∗ = static(P0).

Proof. From Definition 9, for F to be a legal flow in the emulated graph G, F
must obey capacity and flow conservation constraints. Further in order to achieve
throughput θ(M, F), we require that F ≥ θ(M, F) · M. Since F is a legal flow
in the evolving graph, F obeys capacity constraints. From Definition 13, for all
e ∈ Et at any time t we have that,∑︂

δ∈P∗
F(δ) · I((e, t) ∈ δ) ≤ ct(e) ∀e, ∀t ∈ [0,∞)

The remainder of the proof follows similar logic as that of the proof of Lemma 6.
Since for any path δ ∈ P∗, P∗ = periodic(P0) = periodic(temporal(P ∗)), if
(e, t) ∈ δ, then there exists no other path δ′ ∈ periodic(δ) where (e, t) ∈ δ′, except
for the path δ itself. For every such path δ, there exists exactly one path p ∈ P ∗

where (e, ℓ) ∈ p and ℓ = t mod Γ. Using the relation between F and F from
Equation 7.7 and substituting the capacity relation ĉ(e, ℓ) = (1−∆u)

Γ · cℓ(e), we
obtain the following:∑︂

p∈P ∗
F (p) · I((e, ℓ) ∈ p) ≤ ĉ(e, ℓ) ∀e, ∀ℓ ∈ [0, Γ)

168 Chapter 7. Oblivious Optical Interconnects

From Definition 9, the above inequality implies that the flow F obeys capacity
constraints. Further, flow is conserved since F (p) is constant and equal for all e ∈ p
for all paths. It remains to prove that F achieves throughput θ(M, F) = θ(M,F).
Since F has a throughput θ(M,F) for a demand matrix M, from Definition 14
we have that,(︄

1−∆u

Γ

)︄
·
∑︂

δ∈P0
s,d

F(δ) ≥ θ(M,F) ·ms,d ∀s ∈ V, ∀d ∈ V

We now substitute static variables using Equation 7.7 and obtain the throughput
relation, ∑︂

p∈static(P0
s,d

)
F (p) ≥ θ(M,F) ·ms,d ∀s ∈ V, ∀d ∈ V

Using the above inequality and since static(P0
s,d) = P ∗s,d, from Definition 23, we

conclude that F also achieves throughput θ(M, F) = θ(M,F).

From Lemma 6 and Lemma 7, given a demand matrixM, the periodic evolving
graph and the emulated graph with extended set of paths P ∗ = static(P0), have the
same throughput. It remains to show that the emulated graph with set of extended
paths P ∗ = static(P0) has the same throughput compared to the emulated graph
with set of all possible paths (not extended).

Lemma 8. Let M be a demand matrix, G be a periodic evolving graph, G(G) be
its emulated graph and P ∗ = static(P0). If F : P → R+ is a legal flow in G(G)
with throughput θ(M, F) where P is the set of all simple paths then there exists
a legal flow F ′ : P ∗ → R+ in the emulated graph G with the same throughput
θ(M, F ′) = θ(M, F) where F ′ is as follows:

F ′(p′) = F (p)
|I(p)| ∀p

′ ∈ I(p) (7.8)

where I(p) is the set of all extended paths which have the same sequence of labelled
edges as that of a path p ∈ P .

Proof. We have that F : P → R+ is a legal flow in the emulated graph and has a
throughput θ(M, F). The proof follows by showing that F ′ : P ∗ → R+ also obeys
capacity constraints and has throughput θ(M, F ′) = θ(M, F). We will first prove
that the following capacity constraint (from Definition 9) for F ′ holds. We prove
this using the relation between F and F ′ from Equation 7.8 and the fact that
F obeys capacity constraints. Since F obeys capacity constraints, the following
inequality holds. ∑︂

p∈P

F (p) · I((e, ℓ) ∈ p) ≤ c(e) ∀e, ∀ℓ

For every path p ∈ P , the set of extended paths P ∗ consists of a set I(p) of
extended paths. Note that I(p) is strictly greater than zero i.e., I(p) > 0. The
argument is that (i) P is the set of all paths; (ii) P ∗ is obtained from the foundation
set of all temporal paths P0 as P ∗ = static(P0); (iii) for any path p ∈ P with
the sequence of edges ⟨e1, e2, ...en⟩, there exists at least one legal temporal path

Chapter 7.3. Motivation: Fundamental Tradeoffs of Periodic RDCNs 169

δ ∈ P0 where δ = ⟨(e1, t1), (e2, t2) ... (en, tn)⟩ such that t1 is the time when the
edge e1 appears for the first time in the first period, t2 is the time when the edge e2
appears for the first time after t1 and so on; each edge appears within Γ timeslots
due to the periodicity of the edge set and such a temporal path δ belongs to P0 by
definition. Further, for any path p ∈ P and a labelled edge (e, ℓ) ∈ p, by definition,
the labelled edge (e, ℓ) also belongs to any path p′ ∈ I(p). Using this relation, we
expand the summation in the above inequality as follows:

∑︂
p∈P

∑︂
p′∈I(p)

F (p)
|I(p)| · I((e, ℓ) ∈ p′) ≤ c(e) ∀e, ∀ℓ

Substituting F ′ using Equation 7.8, we obtain the following relation.∑︂
p∈P ∗

F ′(p′) · I((e, ℓ) ∈ p′) ≤ c(e) ∀e, ∀ℓ

From Definition 9, the above inequality suggests that F ′ obeys capacity constraints.
Similarly, it is easy to show that ∑︁p′∈P ∗

s,d
F ′(p′) ≥ θ(M, F) ·ms,d using the fact that

F has a throughput θ(M) i.e., ∑︁p∈Ps,d
F (p) ≥ θ(M, F) ·ms,d, for all s, d source-

destination pairs. This concludes that the flow F ′ has throughput θ(M, F ′) =
θ(M, F).

Using Lemma 6, Lemma 7 and Lemma 8, it is now straight-forward that our
claim in Theorem 13 holds.

Proof of Theorem 13. From Lemma 6 and Lemma 7, for any feasible temporal
flow F in the evolving graph with throughput θ(M,F), there exists a feasible
flow F in the emulated graph with the same throughput θ(M, F) = θ(M,F) and
vice versa. From Lemma 8, we have that, our definition of extended paths and
its use in our analysis does not impact the throughput of emulated graph i.e.,
throughput with our definition of extended set of paths is same as the throughput
with the standard definition of paths. This concludes that the evolving graph
and the corresponding emulated graph have the same throughput θ(M): the
maximum scaling factor given a demand matrix and the same throughput θ∗ under
a worst-case demand matrix.

Corollary 1 (Reduction to simple graph). Throughput of a periodic evolving
graph G = (V, E) is equivalent to the simple static graph G(G) = (V, E), where V
is the set of vertices (same as the evolving graph) and E = ⋃︁

t∈[0,Γ) Et is the union
of edges over one period of time (without any labels). The capacity of an edge
e ∈ E is given by,

ĉ(e) =
(︄

1−∆u

Γ

)︄
·
∑︂

t∈[0,Γ)
ct(e)

where ct(e) is the capacity of an edge e ∈ Et at time t in the evolving graph.

Notice that the simple static graph in Corollary 1 is a weighted simple graph
corresponding to the emulated graph (Definition 15) with the same amount of
capacity between any u, v ∈ V for every (u, v) ∈ E. It is standard in the literature
that a multigraph and the corresponding weighted graph have the same max-
flow [208].

170 Chapter 7. Oblivious Optical Interconnects

■ Discussion. Theorem 13 enables us to study the throughput of periodic
reconfigurable topologies with the techniques used in static graphs. We emphasize
that our result is general for periodic reconfigurable topologies and is not specific to
the existing systems; for instance the emulated graph could indeed be an expander
graph, or even a non-regular graph, but our result still holds. We believe that our
proof renders useful not only to study throughput maximization problem but also
other variants of flow problems. For example, by using our technique to convert
flows from the static to the periodic graph and vice versa one could easily derive a
relation between the metric of interest in each graph. We leave this exploration
for future work.

7.3.1.5 Revisiting Throughput of Static Topologies
We now shift our focus to obtain the throughput upper bound of static topologies

for two reasons. First, from Theorem 13, the throughput of a periodic reconfigurable
topology is equivalent to its corresponding emulated graph (a static graph). Second,
the best known throughput upper bound [204] for static topologies is specific to
certain datacenter topologies and is not general enough (see §7.1). To this end,
we revisit the problem and analyze it again using the formal definitions typically
used in the literature. We find that, the throughput of a static topology is directly
proportional to the total capacity and inversely proportional to the average route
length, which generalizes the recently derived throughput upper bound [204] for
shortest paths.

Definition 17 (Average route length). Given a demand matrixM, a static graph
G = (V, E) and a flow F that satisfies the demand, the average route length
denoted by ARL(M, F) is defined by,

ARL(M, F) =
∑︂

s,d∈V

∑︂
p∈Ps,d

ms,d

M
· rp · len(p)

where M = ∑︁
s∈V

∑︁
d∈V ms,d; rp is the fraction of s-d demand transmitted on the

path p and len(p) is the length of the path p.

Theorem 14 (Throughput). Given a demand matrix M and a flow F , the
throughput θ(M, F) of a static graph represented as G = (V, E) is given by
Equation 7.9. The graph G has throughput θ(M) = maxF θ(M, F): the maximum
scaling factor given a demand matrix M; and has throughput θ∗ = minM θ(M)
for a worst-case demand matrix.

θ(M, F) ≤ Ĉ

M · ARL(M, F) (7.9)

where Ĉ = ∑︁
e∈E ĉ(e) is the total capacity of the network, M = ∑︁

s,d∈V ms,d is the
total demand for the network and ARL(M, F) = ∑︁

s,d∈V

∑︁
p∈Ps,d

ms,d

M
· rp · len(p)

is the average route length for M and F , where rp is the fraction of demand
transmitted on the path p.

Proof. We restrict our analysis to saturated demand matrices. Let the static
topology under consideration be a graph G = (V ′, E), where V ′ is the set of all
vertices and E is the set of all edges. A set V ⊆ V ′ denotes the set of all vertices

Chapter 7.3. Motivation: Fundamental Tradeoffs of Periodic RDCNs 171

generating traffic (demand). Specifically, given any set of vertices V , a demand
matrix M from Definition 6 has elements mu,v such that ∑︁v∈V mu,v = c(u) for all
u ∈ V where c(u) is the total physical bandwidth of the vertex u. We denote the
capacity of an edge e by ĉ(e).

Given a graph G = (V ′, E), the set of vertices generating traffic (demand)
V ⊆ V ′, a demand matrix M for V , and a flow F , the relation between the
throughput as a function of demand matrix M is given by Definition 23. From
Definition 9, for F to be legal we have that,∑︂

p∈P

F (p) · I(e ∈ p) ≤ ĉ(e) ∀e

summing over all the edges e ∈ E, we obtain the following:∑︂
e∈E

∑︂
p∈P

F (p) · I(e ∈ p) ≤
∑︂
e∈E

ĉ(e) (7.10)

From Definition 23, a flow F achieves throughput θ(M, F) if it obeys the following
constraint: ∑︂

p∈Ps,d

F (p) ≥ θ(M, F) ·ms,d ∀s ∈ V, d ∈ V

Let rp = F (p)∑︁
p∈Ps,d

F (p) for all p ∈ Ps,d for each s, d pair. We now expand the
inequality in Equation 7.10 as follows:

∑︂
s∈V

∑︂
d∈V

∑︂
e∈E

∑︂
p∈Ps,d

F (p) · I(e ∈ p) ≤
∑︂
e∈E

ĉ(e)

we convert the summation over all edges e ∈ E to a summation over only edges of
each path e ∈ p and drop the identifier I without changing the value of the LHS
in the above inequality: ∑︂

s∈V

∑︂
d∈V

∑︂
p∈Ps,d

∑︂
e∈p

F (p) ≤
∑︂
e∈E

ĉ(e)

substituting F (p) = rp ·
∑︁

p∈Ps,d
F (p) and since ∑︁p∈Ps,d

F (p) ≥ θ(M, F) ·ms,d:
∑︂
s∈V

∑︂
d∈V

∑︂
p∈Ps,d

∑︂
e∈p

θ(M, F) ·ms,d · rp ≤
∑︂
e∈E

ĉ(e)

Since θ(M, F) ·ms,d · rp is constant for all edges of a given path, the summation
over all edges e ∈ p gives len(p) ·θ(M, F) ·ms,d ·rp where len(p) denotes the number
of edges in the path p or simply the length of the path.∑︂

s∈V

∑︂
d∈V

∑︂
p∈Ps,d

len(p) · θ(M, F) ·ms,d · rp ≤
∑︂
e∈E

ĉ(e)

Finally from the inequality, we obtain the throughput upper bound given a demand
matrix as follows,

θ(M, F) ≤
∑︁

e∈E ĉ(e)∑︁
s∈V

∑︁
d∈V ms,d ·

(︂∑︁
p∈Ps,d

len(p) · rp

)︂

172 Chapter 7. Oblivious Optical Interconnects

where ∑︁p∈Ps,d
len(p) · rp is conceptually the average route length from s to d. Let

M = ∑︁
s∈V

∑︁
d∈V ms,d and Ĉ = ∑︁

e∈E ĉ(e),

θ(M, F) ≤ Ĉ

M · ARL(M, F) (7.11)

where ARL(M, F) = ∑︁
s,d∈V

∑︁
p∈Ps,d

ms,d

M
· rp · len(p) is the average route length for

M and F .
Given a demand matrix, the above inequality varies based on the flow F . In order
to maximize throughput, we rewrite the above inequality as a maximum over
possible flow F .

θ(M) = max
F

Ĉ

M · ARL(M, F) (7.12)

The throughput under a worst-case demand matrix is then the minimum θ(M)
over the set of all saturated demand matrices.

θ∗ = min
M

max
F

Ĉ

M · ARL(M, F) (7.13)

We note that providing a lower bound for the ARL(M, F), even when M
and/or F are not known would provide an upper bound for θ∗. One such example
is to take the shortest paths in the topology, as was done in [204]. But this
will not always lead to a tight bound (see §7.1.3), for example in the complete
graph Kn. While efficiently computing the throughput upper bound is an on-going
research [145,204,247], Theorem 14 shows that computing throughput essentially
boils down to computing average route lengths.
■ Discussion. Theorem 14 indeed expresses that the throughput maximization
problem essentially boils down to minimizing average route length as opposed to
shortest path lengths [204] or average shortest paths [247]. Both Theorem 13 and
Theorem 14 provide a concrete understanding on the achievable throughput of
periodic reconfigurable topologies. First, Theorem 13 provides a relation between
the throughput of periodic reconfigurable topologies and the throughput of static
topologies. Second, Theorem 14 provides the throughput of static topologies more
concretely. Finally, for the worst-case demand matrix, we rely on an important
result stated in [204] (and even earlier informally in [145,247]) and claims that the
worst-case demand matrix in a static topology is a specific permutation matrix
(longest-matching). Consequently the worst-case demand matrix for any periodic
reconfigurable topology, due to Theorem 13, is a specific permutation matrix in
the corresponding emulated graph3.

However, so far we still assumed that (i) a certain amount of buffer is available
at each intermediate node and (ii) any amount of delay is tolerable. Hence, we
study two important questions in the remainder of this section. We first seek to
understand whether high throughput provided by periodic reconfigurations comes
at the cost of inflated delay.

3A similar but less general result was recently claimed for specific RDCN designs [114]. In
particular, it holds only for designs which emulate a complete graph, while our result holds for
any emulated graph due to our new result in Theorem 13.

Chapter 7.3. Motivation: Fundamental Tradeoffs of Periodic RDCNs 173

(Q1) Delay: What is the relation between throughput and delay in a periodic
reconfigurable topology?

Given the increasing gap between capacity growth and switch buffers, we
are further interested in investigating whether periodic reconfigurable topologies
address the near-end of Moore’s law w.r.t buffer requirements.

(Q2) Buffer: How much buffer is required at each node to achieve the throughput
upper bound stated in Theorem 14?

7.3.2 Delay of Periodic RDCNs
The periodic reconfigurations naturally introduce a certain delay. In our context,
delay is the time it takes for a packet sent from a source to reach its destination
in the periodic evolving graph, without experiencing congestion from other packets.
The maximum delay for a path δ is bounded by len(δ) · Γ since every consecutive
edge in the path is available within Γ timeslots (period). We are mainly interested
in the maximum delay incurred by feasible paths which typically reflects in the tail
latencies observed in a datacenter. In the following, we state the relation between
throughput θ∗ and delay. We first formally define the delay of a temporal path.

Definition 18 (Temporal path delay). Given a periodic evolving graph G and
the set of all temporal paths P, the delay of a temporal path δ ∈ P denoted
by L(δ) is time it takes when the first edge e1 ∈ δ is accessed until the time
the flow reaches the destination on the last edge en ∈ δ. Formally, for a path
δ ∈ P, if ⟨(e1, t1), (e2, t2) ... (en, tn)⟩ is the sequence of edge-time values, then
L(δ) = (tn − t1 + 1) ·∆ + (Γ− 1) ·∆ where ∆ is the absolute time of each timeslot
and Γ is the period of the evolving graph.

Clearly, the delay is lower bounded by len(δ) ·∆ + (Γ− 1) ·∆ since it takes
∆ (timeslot) amount of time to send over each edge e ∈ δ and there is always an
inherent delay of (Γ− 1) timeslots due to the periodic nature. Similarly, the delay
is upper bounded by len(δ) · Γ · ∆ since the delay between accessing each edge
along a path can be at most Γ timeslots.

We define average route delay similar to average route length (Definition 17,
which plays a key role in our analysis of the maximum latency.

Definition 19 (Average route delay). Given a demand matrix M, a periodic
evolving graph G and a flow F that satisfies the demand, the average route delay
denoted by ARD(M,F) is defined by,

ARD(M,F) =
∑︂

s,d∈V

ms,d

M
· Ls,d

where M = ∑︁
s∈V

∑︁
d∈V ms,d; Ls,d = ∑︁

δ∈P0
s,d

rδ · L(δ) is the s-d delay; rδ is the
fraction of s-d demand transmitted on the temporal path δ and L(δ) is the delay
of the temporal path δ.

We now state the lower bound for the maximum delay in a periodic evolving
graph.

174 Chapter 7. Oblivious Optical Interconnects

Theorem 15 (Delay). Given a demand matrix M, a nu-regular periodic evolving
graph G emulating a d-regular graph with a period of Γ timeslots each of duration
∆ and a flow F that achieves throughput θ(M,F), the average route delay
ARD(M,F) and the maximum delay Lmax are given by4,

Lmax ≥ ARD(M,F) = ARL(M,F) · Γ ·∆

≥ Ω
(︄

d ·∆
nu · θ(M,F)

)︄
(7.14)

where ARD(M,F) = ∑︁
s,d∈V

∑︁
δ

ms,d

M
· rδ · L(δ) is the average route delay for M

and F , where rδ is the fraction of demand transmitted on the legal temporal path δ,
and L(δ) is the delay of the path δ, M = ∑︁

s∈V

∑︁
d∈V ms,d is the total demand. In

particular, for a worst-case demand matrix, the maximum latency is bounded by

Lmax ≥ Ω
(︄

d ·∆
nu · θ∗

)︄
(7.15)

Proof. Based on Definition 14, for every s-d source-destination pair, the source
generates θ(M,F) ·ms,d flow on average in bits per second in every period. From
Definition 19, Ls,d denote the average delay between a source s and destination d.
Then the destination only receives its first data at Ls,d time later, implying that
the source has already generated θ(M,F) ·ms,d · (Ls,d) amount of data. From
then on, the source transmits θ(M,F) ·ms,d average flow in bits per second and
the destination receives θ(M,F) ·ms,d average flow in bits per second in every
period. Due to conservation of flow, for every source-destination pair, the data
generated until Ls,d delay i.e., θ(M,F) ·ms,d · (Ls,d) amount of data, circulates
(moves between source-destination) in the network in every period. As a result,
the capacity consumed by each s-d flow is θ(M,F) ·ms,d · Ls,d

Γ·∆ . The total capacity
utilized is then ∑︁s∈V

∑︁
d∈V θ(M,F) ·ms,d · Ls,d

Γ·∆ . However, the total utilized capacity
can also be written as θ(M,F) ·M · ARL(M,F), where θ(M,F) ·M is the total
bits per second generated by the sources and ARL(M,F) is the average route
length. Equating the above two, we have that,∑︂

s∈V

∑︂
d∈V

θ(M,F) ·ms,d ·
Ls,d

Γ ·∆ = θ(M,F) ·M · ARL(M,F)

1
M

∑︂
s∈V

∑︂
d∈V

ms,d · Ls,d = ARD(M,F) = ARL(M,F) · Γ ·∆

Since the maximum delay Lmax is atleast the average delay,

Lmax ≥ ARD(M,F) = ARL(M,F) · Γ ·∆

The period Γ is at least d
nu

timeslots since the node degree is limited to the number
of uplinks nu in each timeslot. Further, since the total capacity Ĉ equals the total
demand M for saturated demand matrices; and using the relation between ARL
and θ∗ from Theorem 14, for a worst-case demand matrix we obtain the following:

Lmax ≥ Ω
(︄

d ·∆
nu · θ∗

)︄

4Ω is the asymptotic lower bound notation.

Chapter 7.3. Motivation: Fundamental Tradeoffs of Periodic RDCNs 175

■ Discussion. Using Theorem 15, we illustrate the throughput and delay relation
for different values of d in Figure 7.1. Here d is the degree of the graph emulated
by a periodic reconfigurable topology. Note that the worst-case demand matrix (a
permutation matrix) specifies non-zero demands between ToR pairs at maximum
distance in the graph [204] and hence the average route lengths ARL is close to the
diameter which is bounded by logd(nt) for d-regular graphs. Hence the throughput
θ∗ is inversely proportional to logd(nt) whereas the delay based on Eq. (7.15) is
proportional to d · logd(nt). Specifically, we notice that the existing designs which
emulate a complete graph achieve the highest throughput but at the cost of high
delay.

7.3.3 Buffer Requirements of Periodic RDCNs
With the understanding of the relation between throughput and delay of periodic
reconfigurable topologies, we now study their buffer requirements. We assume
that each node is equipped with a memory region shared across the entire device
and hence buffer is an aggregate value per node in our analysis. This model is
similar to shared memory architectures with complete sharing [16]. Notice from
Definition 12 and Definition 13 that it requires to ‘‘store’’ flow for a certain time
and ‘‘forward’’ the flow when the next edge along a path is available. As a result,
every node in the evolving graph requires certain amount of buffer space to store
and forward flow on temporal paths in the evolving graph. Our analysis reveals
an interesting inequality for the required buffer, which is conceptually of the
well-known ‘‘bandwidth-delay product’’ form.
Theorem 16 (Buffer). Given a demand matrix M, a periodic evolving graph
G requires at least B̂ total amount of buffer in the network in order to achieve
throughput θ(M,F).

B̂ ≥ (θ(M,F) ·M) · ARD(M,F) (7.16)

where B̂ = ∑︁
u∈V B(u) is the total buffer of the network and B(u) is the avail-

able buffer at a node u; M = ∑︁
s,d∈V ms,d is the total demand for the network;

ARD(M,F) = ∑︁
s,d∈V

∑︁
δ

ms,d

M
· rδ · L(δ) is the average route delay for M and F ,

where rδ is the fraction of demand transmitted on the legal temporal path δ.
Proof. Let B(u) be the amount of available (and used) buffer at a node u ∈ V .
Then at any time T ≥ 0, the difference between the total flow arrived and departed
from node u (except the flow originating and terminating at u) is the amount of
flow stored at u, formally expressed below. For simplicity, we set ∆t = ∆−∆r

and ∆t

∆ = 1− ∆r

∆ = 1−∆u. We denote the set of incoming (outgoing) edges of a
node u at any time t by E−t (u) (E+

t (u)).

B(u) ≥
T∑︂

t=0

∑︂
s,d∈V \{u}

∑︂
δ∈Ps,d

⎛⎜⎝ ∑︂
e∈E−

t (u)

F(δ, e, t)−
∑︂

e∈E+
t (u)

F(δ, e, t)

⎞⎟⎠ ·∆ (7.17)

For simplicity, we define the sum of all flows arriving and departing from a node
u at any time t as follows:

R−t (u) =
∑︂

s,d∈V

∑︂
δ∈Ps,d

∑︂
e∈E−

t (u)

F(δ, e, t)

176 Chapter 7. Oblivious Optical Interconnects

R+
t (u) =

∑︂
s,d∈V

∑︂
δ∈Ps,d

∑︂
e∈E+

t (u)

F(δ, e, t)

Notice that at any time t, ∑︁u∈V R−t (u) = ∑︁
u∈V R+

t (u). Since we take the summa-
tion over all nodes, for every outgoing flow on an edge, there is a corresponding
equal flow incoming at the other end of the edge.
We now simplify Equation 7.17 using the above notation. Note that∑︁

s∈V \{u}
∑︁

δ∈Ps,u

∑︁
e∈E−(u)F(δ, e, t) is same as∑︁s∈V

∑︁
δ∈Ps,u

∑︁
e∈E−(u)F(δ, e, t) since

Pu,u is a null set.

B(u) ≥
∑︂

t∈[0,T]

⎛⎝R−t (u)−
∑︂
s∈V

∑︂
δ∈Ps,u

∑︂
e∈E−(u)

F(δ, e, t)
⎞⎠ ·∆

−
∑︂

t∈[0,T]

⎛⎝R+
t (u)−

∑︂
d∈V

∑︂
δ∈Pu,d

∑︂
e∈E+(u)

F(δ, e, t)
⎞⎠ ·∆

Summing over all the nodes u ∈ V , we obtain the following,

∑︂
u∈V

B(u) ≥

Data sent out from each source u ∈ V⏟ ⏞⏞ ⏟∑︂
u∈V

⎛⎝ ∑︂
t∈[0,T]

∑︂
d∈V

∑︂
δ∈Pu,d

∑︂
e∈E+(u)

F(δ, e, t)
⎞⎠ ·∆

−
∑︂
u∈V

⎛⎝ ∑︂
t∈[0,T]

∑︂
s∈V

∑︂
δ∈Ps,u

∑︂
e∈E−(u)

F(δ, e, t)
⎞⎠ ·∆

⏞ ⏟⏟ ⏞
Data received at each destination u ∈ V

Let L(δ) denote the temporal path delay. F(δ) · L(δ)·(1−∆u)
Γ is the amount of

flow sent on a periodic path before the first data arrives at the destination i.e.,
F(δ) ·∆ ·(1−∆u) is the data sent over Γ timeslots (Γ ·∆ time) and F(δ) · L(δ)·(1−∆u)

Γ
is the data sent over L(δ) time. For each s-d source-destination, the total data
received at the destination d until time T is the total data sent from source s until
time T minus the total data sent from source s before the destination d receives
its first data.

∑︂
u∈V

B(u) ≥
∑︂
u∈V

⎛⎝T ·∆ ·
∑︂
d∈V

θ(M,F) ·mu,d

⎞⎠
−
∑︂
u∈V

(︄
T ·∆ ·

∑︂
s∈V

θ(M,F) ·ms,u

)︄

+
∑︂
u∈V

∑︂
s∈V

∑︂
δ∈P0

s,u

F(δ) · L(δ) · (1−∆u)
Γ

Finally, the above inequality reduces to,

∑︂
u∈V

B(u) ≥
∑︂
s∈V

∑︂
d∈V

∑︂
δ∈P0

s,d

F(δ) · L(δ) · (1−∆u)
Γ

We expand the above summation ∑︁
δ∈P0

s,d
F(δ) by multiplying and dividing by

Chapter 7.3. Motivation: Fundamental Tradeoffs of Periodic RDCNs 177

θ(M,F) ·ms,d where θ(M,F) ·ms,d = ∑︁
δ∈P0

s,d

F(δ)·(1−∆u)
Γ from Definition 14.∑︂

u∈V

B(u) ≥

∑︂
s∈V

∑︂
d∈V

⎛⎜⎜⎜⎜⎜⎜⎝
θ(M,F) ·ms,d · Γ ·

∑︂
δ∈P0

s,d

F(δ) · L(δ) · (1−∆u)
Γ∑︂

δ∈P0
s,d

F(δ) · (1−∆u)

⎞⎟⎟⎟⎟⎟⎟⎠
Let rδ denote the fraction of temporal flow on a path δ ∈ P 0

s,d i.e., rδ = F(δ)∑︁
δ∈P0

s,d
F(δ) .

∑︂
u∈V

B(u) ≥θ(M,F) ·
∑︂
s∈V

∑︂
d∈V

⎛⎜⎝ms,d ·
∑︂

δ∈P0
s,d

rδ · L(δ)

⎞⎟⎠
Let M = ∑︁

s∈V

∑︁
d∈V ms,d and the average route delay for M and F is denoted by

ARD(M,F) = ∑︁
s,d∈V

∑︁
δ∈Ps,d

ms,d

M
· rδ · L(δ). The total buffer in the network is

B̂ = ∑︁
u∈V B(u). We obtain the following,

B̂ ≥ (θ(M,F) ·M) · ARD(M,F)

■ Discussion. Theorem 16 reveals a non-trivial tradeoff across the spectrum of
periodic reconfigurable topologies which we discuss in detail in §7.3.5. Our result
for the required buffer in Theorem 16 intuitively resembles the ‘‘bandwidth-delay
product’’ commonly used in the TCP literature. A ‘‘pipe’’ must have at least
a bandwidth-delay product amount of bytes in transit (or inflight) in order to
achieve full utilization. Similarly, our result shows that the total buffer in a periodic
reconfigurable network must be at least the product of total demand (in bits per
second) and the average route delay. The required buffer stems from the waiting
times at intermediate nodes along a path due to the periodic reconfigurations. We
believe this analogy may also render useful for instance to predict the overall graph
throughput based on the configuration of transport protocols. For example, the
window size5 of a transport protocol typically relates to the amount of buffering,
and the maximum window size may relate to the overall periodic graph throughput.
We leave it for future work to study such relations in detail.

7.3.4 Remarks and Discussion on Theorems 13-16
Our results in the previous sections allow us to answer and shed light on several
basic questions also discussed in the literature [60, 175,189].
Can buffering at the end-hosts instead of ToRs alleviate the problems
of excessive buffering?
Our result in Theorem 16 expresses the total amount of buffering required in the
network. We note that this buffering can either be done at the ToR switches or
can be moved to the end-hosts. Several works in the past [175, 189] informally
discussed the need for in-network buffers but outside the circuit switching layer6.

5The window size of a transport protocol is typically the maximum amount of bytes allowed
to be in transit at any point in time.

6Recall that circuit switches are bufferless.

178 Chapter 7. Oblivious Optical Interconnects

Two-hop and in general multi-hop routing further worsens the need for additional
in-network buffers in periodic reconfigurable networks [189]. To this end, prior
works proposed to move the buffering from ToR switches to the end-hosts with
specialized synchronization and packet pause/unpause techniques between the
end-hosts and the ToR switches [175]. These techniques are motivated based
on the fact that end-host DRAM memory is cheap and abundant while on-chip
ToR buffers are costly and limited in size. Nevertheless, excessive buffering at
the end-hosts still poses the well-known problems of queuing delay, although it
alleviates the problems of scarce buffer resource at the ToRs. The question of
buffering at the end-hosts vs ToR switches poses an inherent tradeoff between
a) simplicity by buffering at the ToR but at the cost of large on-chip costly
buffers and b) cost-effectiveness by buffering at the end-hosts but at the cost of
complex techniques that consume additional CPU resources and potentially added
processing delays.
Can nanosecond reconfiguration mask the problems of delay and buffer
needs?
Notice that delay (from Theorem 15) is directly proportional to the timeslot
duration ∆. Naturally, if the reconfiguration delay ∆r is small, the timeslot duration
∆ can also be reduced. As a result, the maximum delay and the average route
delay can be significantly reduced. However, notice that the buffer requirements
(from Theorem 16) are directly proportional to the timeslot duration ∆ as well as
the total capacity e.g., the buffer requirements would remain the same if all the
links in the network are increased in capacity by 2x even if the reconfiguration
time is reduced by 2x.
What is the difference between the degree of the emulated graph and
the physical topology?
We emphasize that the emulated graph is obtained by the union of edges of the
periodic evolving graph (ToR-to-ToR connectivity) over one period of a time-
interval. Hence, the node degree of the emulated graph is the number of ToR
switches that are directly connected to a given ToR switch (over one period). In
contrast, the node degree of the physical topology is the number of circuit switches
that are directly connected to a given ToR switch at any time. In particular,
the node degree in the physical topology is given by nu: the number of uplinks.
However, for example, both RotorNet and Sirius emulate a complete graph and
hence have the same node degree in the emulated graph given by nt: the total
number of ToR switches. Hereafter in this chapter, the emulated graph and
its degree play an important role (§7.4) especially as seen in Theorem 13 and
Theorem 15 where d is the degree.
Are the results applicable to Valiant routing?
We stress that our results in Theorem 13, 14, 15, 16 are general for an ideal routing
scheme and are not based on Valiant load balancing. We only assume the specific
case of Valiant load balancing later in §7.4.

7.3.5 Tradeoffs & Optimization Opportunity
Interestingly, the relation between throughput and delay is a concave function
without buffer constraints (Theorem 14) but is a convex function for a fixed
amount of buffer (Theorem 16). Figure 7.1 illustrates the tradeoffs that arise

Chapter 7.4. Mars: Near-Optimal Throughput RDCN with Shallow
Buffers 179

across the design space of periodic reconfigurable topologies. Specifically, for a
certain fixed amount of buffer, existing designs emulating a complete graph are
no longer throughput optimal as the available buffer simply cannot hold enough
traffic to achieve the ideally achievable maximum. Further, throughput and delay
pose a fundamental tradeoff in terms of performance.

Although periodic reconfigurable datacenter designs were developed in view of
bandwidth scaling problem posed by the gradual end of Moore’s law, the required
buffer with linear relation to throughput does not indicate high scalability in future.
Several studies in the recent past show an increasing gap between the capacity
growth and switch buffers [59, 112]. Specifically, the top-of-the-rack buffers are
extremely shallow and the buffer per port per Gbps has been gradually decreasing
over the recent years. In the following, we summarize our key motivation to
explore the design space of topologies.

■ Throughput: If buffer is not a concern, then emulating a complete graph
(existing designs) results in high throughput but at the cost of high delay.

■ Delay: If delay is a concern, even without buffer concerns, emulating a
d-regular graph where d < nt results in lower delay but at the cost of
throughput.

■ Buffer: Finally, if buffer is a concern, there exists a d-regular graph that
maximizes throughput within the buffer limits.

Our goal in this work is to design a periodic reconfigurable topology that
maximizes throughput given the buffer and delay requirements.

7.4 Mars: Near-Optimal Throughput RDCN with
Shallow Buffers

Reflecting on our observations in §7.3, we study the family of periodic reconfigurable
topologies that emulate a d-regular graph. Specifically, our aim is to systematically
determine the high throughput topology within the underlying buffer limits.

7.4.1 Overview
We first give an intuition on our design. Recall that the network consists of nt

ToR switches each with nu in/out ports interconnected via optical circuit switches.

Mars emulates a d-regular graph with near-optimal throughput: Given
the importance of the graph emulated by the topology, Mars emulates a ‘‘good’’ d-
regular graph with the degree d optimized for throughput with the limited available
buffer. Specifically, the degree d of the emulated graph influences two factors (i)
average path lengths which relates to throughput and (ii) delay which relates to
the buffer requirements. Among the set of all d-regular graphs, we are interested
in the ‘‘good’’ graphs with diameter close to logd(nt), where nt is the number of
ToR switches. Note that the lower bound for diameter of any d-regular graph is
logd(nt). Following prior work [60], we assume Valiant load balancing [258] for the
routing scheme for simplicity. This inflates the average route length by a factor

180 Chapter 7. Oblivious Optical Interconnects

of two i.e., 2 · logd(nt). Notice that emulating a Knt complete graph with large
degree would result in shorter average route length. However, as we will see later,
emulating a degree d ≤ nt results in better delay and better throughput under
limited buffer.

A parametrized approach: We parametrize our design based on two values (i)
delay requirement L and (ii) buffer limit B. The degree d of the emulated graph
of Mars depends on the delay and buffer requirements.

Delay and buffer requirements: Mars finds a balance between throughput,
delay and buffer. Specifically in Figure 7.1, Mars is the topology at the intersection
of throughput upper bound with and without buffer restrictions. To this end,
Mars maximizes the throughput while finding a balance in delay and buffer
requirements.

7.4.2 Properties of Mars
We first express the throughput of Mars without delay and buffer constraints
which gives an intuition on the ideally achievable throughput.

Theorem 17 (Unconstrained Throughput Upper Bound). The throughput of
Mars connecting nt ToR switches each with nu in/out ports, emulating a d-regular
graph without any delay and buffer constraints, under Valiant load balancing, is
given by:

θ∗ = 1
ARL

≈ 1
2 · logd(nt)

First the diameter of Mars’s emulated graph is close to logd(nt). Second,
we then argue that the worst-case permutation demand matrix specifies non-zero
demands between ToR pairs which are separated by a distance close to diameter.
Further, Valiant load balancing inflates the route lengths by a factor of 2 e.g.,
similar to existing designs [60] i.e., ARL = 2 · logd(nt) under worst-case demand
matrix and hence θ∗ = 1

2·logd(nt) . For instance, in the case of d = nt (emulating a
complete graph), we obtain θ∗ = 1

2 .
With the understanding of the throughput of Mars, we can now relate its

throughput to delay. Using our result in Theorem 15, the delay Lmax of Mars is
related to throughput as Ω(d·∆

nu·θ∗) = Ω(2·(logd nt)·d·∆
nu

). Given a constraint on delay
i.e., the topology must ideally incur a delay less than L, we state the optimal
degree for Mars in the following.

Theorem 18 (Optimal degree d with delay constraints). The optimal d-regular
graph emulated by Mars that maximizes throughput (given the delay requirement
L and under Valiant load balancing) has a degree d given by,

d = ⌊e−W(k)⌋

where k = −2·ln(nt)·∆
nu·L ; W is the Lambert W function [89]; ln(.) is the natural

logarithm and e is the Euler’s number.

Proof. We begin by equating the delay of Mars and the desired delay L.

L = 2 · logd(nt) · d ·∆
nu

Chapter 7.4. Mars: Near-Optimal Throughput RDCN with Shallow
Buffers 181

Rearranging the terms in the above equation, we obtain the following,
ln(d)

d
= 2 · ln(nt) ·∆

nu · L
1
d
· ln

(︃1
d

)︃
= −2 · ln(nt) ·∆

nu · L
For simplicity, let −2·ln(nt)·∆

nu·L be some constant k.
1
d
· ln

(︃1
d

)︃
= k

The above equation is of the form y · ln(y) = k whose solution is y = eW(k) where
W is the lambert W function [89].

1
d

= eW(k)

Substituting k in the above, we obtain the following.

d = e−W(k) = e
−W
(︂
− 2·ln(nt)·∆

nu·L

)︂
Here, if k < −1

e
, there exists no real solution. However, we show that k is always

greater than −1
e

i.e., k > −1
e

k = −2 · ln(nt) ·∆
nu · L

≥ −2 · ln(nt)
nu

≥ −2 · ln(nt) > −1
e

The above inequalities hold since the latency L is at least one timeslot i.e., L ≥ ∆;
the topology consists of at least two ToRs i.e., nt ≥ 2 and ln(2) > 1

e
.

If −1
e
≤ k < 0, there exists two real solutions for the degree d. In this case,

we take the the highest value and round it to the nearest integer. Here, choosing
the highest value d lowers the average route length 2 · logd(nt) and consequently
maximizes throughput within the latency requirement.

Our observations in §7.3 reveal that a key tradeoff arises across the buffer
requirements and the achievable throughput. We are now interested in determining
the optimal degree d of Mars for a limited buffer B at each node. As an intuition,
a topology requires more buffer as the product of the scaled demand and the
average route delay increases.
Theorem 19 (Optimal degree d with buffer constraints). The optimal degree d
for the emulated graph of Mars independent of the specific flow that maximizes
throughput, given a limited buffer B ≤ nt ·∆ at each node, is given by,

d = ⌊ B

c ·∆⌋

where c is the capacity of every edge in the topology and ∆ is the timeslot value.
Proof. From Theorem 16, the required buffer is (θ(M,F) · M · ARD(M,F)).
Further, from Theorem 15 we have that the delay is bounded by d·∆

nu·θ(M,F) . Since
M = nt · nu · c (total demand and capacity), this gives us the buffer requirement
of nt · c · d ·∆ in the whole network. Given the regularity of the Mars, each node
would then require c · d ·∆ amount of buffer to hold the demand. Now, given the
constraint that only B amount of buffer is available at each node, the optimal
degree d is then B

c·∆ rounded to the nearest integer.

182 Chapter 7. Oblivious Optical Interconnects

From Theorem 19, emulating a complete graph like the existing designs would
require a buffer of nt

nu
· (nu · c) ·∆ = nt · c ·∆ where nu · c · ∆ is the amount of

data that can be sent out or received in a single timeslot and nt

nu
is the period

for a complete graph. In contrast, a d-regular graph would only require d · c ·∆
amount of buffer and achieves better throughput under limited buffer compared
to a periodic topology emulating complete graph.

7.4.3 Interconnect
Switch size: Given nt number of ToR switches each with nu uplinks, Mars
requires a switch size of at least np = nt similar to prior work [187,189]. We need
nu such circuit switches to interconnect the datacenter. We leave it for future
work to study the feasibility of using circuit switches with lower port count.

Wiring: Each ToR uses its nu uplinks to connect to each of the nu circuit switches.

Matchings: We first generate a d-regular directed graph. Specifically, in gener-
ating the emulated graph, we choose the d-regular graph for which the diameter
approaches the lower bound of ⌈logd(nt)⌉ [70, 136, 137] e.g., deBruijn digraphs [93].
A straight-forward argument shows that a d-regular directed graph can be decom-
posed into d perfect matchings. The idea is to recursively find a 1-factor and delete
it from the graph where each 1-factor by definition is a perfect matching [203,218].
We shuffle the resulting d matchings and randomly assign d

nu
matchings to each of

the nu circuit switches in the topology. Each circuit switch then cycles through the
d

nu
matchings periodically. We note that decomposing the d-regular emulated graph

into matchings can be computationally expensive. However, this is performed only
once at the time of deployment and the circuit switches cycle through the installed
matchings periodically thereafter.

Note that the interconnect for Mars can be implemented using the same
hardware as in prior work [60,187,189]; in fact, the only change required in Mars
compared to these systems concerns the matchings configurations.

7.4.4 Example: deBruijn-based Emulated Graph

Figure 7.5: An example of a periodic RDCN interconnect with 16 ToR switches
each with 2 in/out ports; 2 circuit switches each with 16 in/out ports. For better
visualization, the ToR switch outputs are depicted as pentagons and inputs are
depicted as circles. Circuit switches are depicted as squares.

We walk through an example to better illustrate the topology construction and
the inherent tradeoffs. We consider an example with nt = 16 ToR switches each
with nu = 2 in/out ports. The interconnect requires ns = nu = 2 optical circuit
switches each of size np = nt = 16. Each ToR uses its uplinks to connect to each

Chapter 7.4. Mars: Near-Optimal Throughput RDCN with Shallow
Buffers 183

(a) Static 2-regular
Emulated Graph (2 Match-
ings)

(b) 4-regular deBruijn
Emulated Graph (4 Match-
ings)

(c) Complete Emulated
Graph
(16 Matchings)

Figure 7.6: A periodic reconfigurable topology (shown in Figure 7.5) can emulate
a spectrum of graphs depending on the matchings schedule in the circuit switches.
(a) A static emulated graph has the least delay but at the cost of throughput. (b)
Mars finds the best degree of the emulated graph in order to achieve near-optimal
throughput based on the available buffer and delay tolerance. (c) Existing designs
emulate a complete graph trading delay for throughput and suffer in terms of
throughput with shallow buffers. Each color in the figure corresponds to a matching.
Since there are two circuit switches (shown in Figure 7.5), at any point in time,
the union of two matchings corresponds to the ToR-to-ToR connectivity.

of the two circuit switches as shown in Figure 7.5. Circuits are set up for 90µs
duration and it takes 10µs to reconfigure (timeslot ∆ = 100µs for each matching)
similar to RotorNet switches [189]. All the links have a capacity of c = 400Gbps.

Before constructing the sequence of matchings, we take one of the factors into
consideration (i) buffer size of ToR switches and (ii) latency tolerance. Using
Theorem 18 and Theorem 19, we determine the optimal degree d to maximize
throughput. It remains to generate a d-regular emulated graph with optimal
diameter and decompose it to a sequence of matchings which are then deployed in
the circuit switches.

We consider the spectrum of deBruijn digraphs in generating the emulated
graph. Specifically, for nt ToR switches (vertices), G = (V, E) is a deBruijn
graph (emulated graph), where V = {0, 1, ..., nt − 1} is the set of vertices and
E = {(u, v) | v ≡ (u · d + a) mod nt, a ∈ {0, 1, ..., d− 1}} is the edge set [137]. It
is known that deBruijn graphs have a low diameter of ⌈logd(nt)⌉ which is close
to Moore’s bound for diameter. Our emphasis on the graph diameter is due to
Theorem 14 as the average route length gets closer to diameter under a worst-
case demand matrix which specifies non-zero demand between pairs at maximum
distance in the graph.

Using the optimal degree d based on Theorem 18 and Theorem 19, we generate
a d-regular directed deBruijn graph and decompose the edge set into d matchings.
We shuffle the d-matchings and assign d

2 number of matchings to each of the two
circuit switches. In Figure 7.6, we show three emulated graph instances which
differ in the degree d for nt = 16 ToR switches each with nu = 2 in/out ports. We
note that the standard complete graph Knt has a degree of nt−1 without self-loops.
For simplicity, we consider that the optical circuit switches match every ToR to
every ToR including one self-loop i.e., degree is nt instead of nt − 1. Table 7.1
summarizes our example. We next walkthrough the throughput, delay and buffer
requirements of different design choices including Mars.

1 Static uni-regular DCNs: With two circuit switches in the topology, each

184 Chapter 7. Oblivious Optical Interconnects

Topology Throughput Delay Buffer
1 0.125 ≈ 0 ≈ 0
2 0.5 1600µs 80MB
3 0.125 1600µs 20MB
4 0.25 850µs 20MB

Table 7.1: Tradeoffs across different design choices based on the degree of the
emulated graph for the example topology shown in Figure 7.6, 7.5.

deployed with only one matching results in a static topology7 as shown in Fig-
ure 7.6a. While this is an extreme choice given the reconfigurable circuit switches,
it is interesting to observe the throughput vs buffer requirements. Specifically, the
diameter is 4 resulting in a throughput of 1

8 (from Theorem 17) for a worst-case
permutation demand matrix. However, the delay is nearly zero theoretically since
the topology remains static assuming negligible transmission and propagation
delays. Since the delay is near-zero, the topology also requires near-zero buffers at
each node to achieve the ideal throughput of 1

8 .
2 Existing designs: Using 16 matchings in total, with 8 matchings deployed in

each of the two circuit switches, the topology emulates a complete graph as shown
in Figure 7.6c which is similar to existing designs [60,189]. Emulating a complete
graph results in optimal throughput of 1

2 but at the expense of high delay as much
as 16 ·∆ = 1600µs (from Theorem 15). In order to achieve the optimal throughput
of 1

2 , each ToR switch would require significantly large buffers as much as 80MB
in our small scale example topology.
3 Existing designs under resource constraints: While emulating a complete

graph as shown in Figure 7.6c may result in optimal throughput, the achievable
throughput critically depends on the available buffer at each ToR switch. For in-
stance, if each ToR switch is equipped with only 20MB buffer, then the throughput
drops to 1

8 (from Theorem 16). Notice that even with 10MB buffer, a simple static
topology achieves similar throughput with significantly lower delay (see above).
4 Mars: Our approach leverages the insights from §7.3. Based on the avail-
able buffer (say B = 20MB) and the delay requirements (say L = 850µs), we
systematically determine the degree d of the emulated graph to be emulated by the
reconfigurable network. In this case, the optimal degree turns out to be d = 4 both
in terms of delay L (from Theorem 18) and available buffer B (from Theorem 19).
The topology has a diameter of log4(16) = 2 and achieves much higher throughput:
1
4 in our example.

7.5 Evaluation
We evaluate Mars and compare against the existing approaches in the design
space. Our evaluation aims at answering four main questions.

(Q1) Can Mars improve the throughput in datacenters? Our evaluation
shows that, Mars improves the throughput of existing datacenter designs by up

7In this case, since there are no reconfigurations, we set the timeslot value as ∆ ≈ 0, the
latency tax due to reconfigurations ∆u = 0 and the period Γ = 1.

Chapter 7.5. Evaluation 185

5 10 15 20
Load (%)

0.00

0.05

0.10

0.15

0.20

Ef
fe

ct
iv

e
th

ro
ug

hp
ut

Expander
Opera
Mars
Sirius
RotorNet

(a) Effective throughput un-
der all-to-all demand ma-
trix and websearch work-
load with 8 packets per port
buffer size.

5 10 15 20
Load (%)

0.00

0.05

0.10

0.15

0.20

Ef
fe

ct
iv

e
th

ro
ug

hp
ut

Expander
Opera
Mars
Sirius
RotorNet

(b) Effective throughput un-
der random permutation de-
mand matrix and websearch
workload with 8 packets per
port buffer size.

4 8 16 32 64
Per port buffer size (Packets)

0

0.04

0.08

0.12

0.16

0.2

Ef
fe

ct
iv

e
th

ro
ug

hp
ut

Expander
Opera
Mars
Sirius
RotorNet

(c) Effective throughput
across buffer sizes under
random permutation de-
mand matrix and websearch
workload.

Figure 7.7: Mars achieves the best throughput under shallow buffers. Existing
approaches which emulate a complete graph (Sirius/RotorNet) suffer significantly
under limited buffer (a,b) but can gain throughput if buffers are large (c).

to 64% compared to an expander DCN, by up to 37% compared to Opera [187]
and by more that 4x compared to Sirius [60] and RotorNet [189] under Valiant
load balancing.

(Q2) How does Mars perform under shallow buffers? Even under extremely
shallow buffers, Mars significantly outperforms existing approaches by improving
the throughput by up to 6x at moderate load conditions. At low loads, Mars
performs similar to existing approaches.

(Q3) Can Mars improve the FCTs of short flows?
We find that Mars does not trade latency for throughput. Indeed Mars’s low
buffer requirements to achieve high throughput also contribute to better latency
even under permutation demand matrices. Our evaluation shows that Mars can
improve the FCTs of short flows by up to 96% compared to expander DCN, by up
to 75% compared to Opera and by up to 87% compared to RotorNet and Sirius
under Valiant load balancing.

(Q4) Do long flows benefit from Mars? Our results show that Mars reduces
the FCTs of long flows for various workloads by up to 4% on average compared to
existing approaches under various loads and demand matrices.

7.5.1 Setup

Our evaluation is based on packet-level simulations using htsim used in prior
work [124,187].

Interconnect: We consider a datacenter network with 256 servers organized
into 64 ToR switches. Each ToR switch has 4 uplinks that connect to 4 rotor-
switches [189] with a reconfiguration delay of 1µs. All the links have a capacity of
10Gbps and 500 nanoseconds delay.

Workload: We generate traffic using websearch [35] workload. We evaluate
across various loads on the server-ToR links in the range 1− 20% for all-to-all and
random permutation demand matrices. Note that 20% load is already close to the

186 Chapter 7. Oblivious Optical Interconnects

104 105 106 107

Flow size (Bytes)

0.01

1

100
99

-p
ct

 F
CT

 (m
s) Expander

Opera
Mars
Sirius
RotorNet

(a) 1% load

104 105 106 107

Flow size (Bytes)

0.01

1

100

99
-p

ct
 F

CT
 (m

s)

Expander
Opera
Mars
Sirius
RotorNet

(b) 5% load

104 105 106 107

Flow size (Bytes)

0.01

1

100

99
-p

ct
 F

CT
 (m

s)

Expander
Opera
Mars
Sirius
RotorNet

(c) 10% load

104 105 106 107

Flow size (Bytes)

0.01

1

100

99
-p

ct
 F

CT
 (m

s)

Expander
Opera
Mars
Sirius
RotorNet

(d) 20% load

Figure 7.8: For the websearch workload under a random permutation demand
matrix, Mars improves the 99-percentile flow completion times for short flows
without sacrificing the flow completion times of long flows. Note the log scale on
both axes.

maximum load that an expander topology can sustain8. Flows arrive according
to a Poisson process and we control the mean inter-arrival time to achieve the
desired load.

Comparisons: We compare Mars to Opera [187], Sirius [60], RotorNet [189] and
static expander networks. For expander, we generate d = 4 (number of uplinks)
random regular graphs G with 64 ToRs as vertices such that λ(G) ≤ 2

√
u− 1

where λ is the second eigen value and 2
√

u− 1 is the Ramanujan constant. This
gives us a Ramanujan graph which is known to be excellent expander.

Metrics: We report server downlink utilization indicating the effective throughput.
We also report 99-percentile flow completion times (FCTs) and buffer occupancies.

Configuration: We construct Mars which emulates a deBruijn directed graph of
degree 8 (see §7.4.3) optimized for a shallow buffer size of 8 packets per port in the
interconnect described above. Switches are configured with routing information
statically at initialization time and packets are sprayed across all equal cost paths.
Mars, Sirius [60] and RotorNet [189] use Valiant load balanced paths; expander
uses all (edge-disjoint) shortest paths; and Opera uses all (edge-disjoint) shortest
paths in each topology slice [187] for short flows and single hop paths for long
flows. The long flow cutoff is set to 15MB based on [187]. We use NDP [124]
as the transport protocol and set the trimming threshold per port to 8 packets
by default based on [124] unless explicitly stated. We vary the packet trimming
threshold to vary the maximum buffer size values in our evaluation. Finally, we
set minRTO to 1ms.

8Atleast 1
ARL capacity is sacrificed due to multi-hop routing; where ARL is the average route

length. An alternative in order to further increase throughput is to simply‘‘undersubscribe’’ i.e.,
with oversubscription < 1. We leave it for future work to analyze such designs which requires a
comprehensive cost-analysis for a fair comparison.

Chapter 7.5. Evaluation 187

104 105 106 107

Flow size (Bytes)

0.01

1

100

99
-p

ct
 F

CT
 (m

s) Expander
Opera
Mars
Sirius
RotorNet

(a) 1% load

104 105 106 107

Flow size (Bytes)

0.01

1

100

99
-p

ct
 F

CT
 (m

s)

Expander
Opera
Mars
Sirius
RotorNet

(b) 5% load

104 105 106 107

Flow size (Bytes)

0.01

1

100

99
-p

ct
 F

CT
 (m

s)

Expander
Opera
Mars
Sirius
RotorNet

(c) 10% load

104 105 106 107

Flow size (Bytes)

0.01

1

100

99
-p

ct
 F

CT
 (m

s)

Expander
Opera
Mars
Sirius
RotorNet

(d) 20% load

Figure 7.9: For the websearch workload under all-to-all demand matrix, as the
load increases, Mars outperforms in flow completion times for both short and
long flows. Note the log scale on both the axes.

7.5.2 Results

Mars significantly improves the throughput: In Figure 7.7a and Figure 7.7b,
we show the effective throughput achieved by Mars and existing approaches across
various loads of websearch workload. Specifically, in Figure 7.7a for the All-to-All
demand matrix, we see that Mars improves the effective throughput at 20%
load by 1.37x compared to Opera, by 1.64x compared to expander and by 7.02x
compared to Sirius and RotorNet under Valiant load balancing. In Figure 7.7b,
for random permutation demand matrix, we see that Mars improves the effective
throughput by up to 1.33x on average compared to Opera and expander; and by
5.66x compared to Sirius and RotorNet. At low loads, Mars achieves similar
throughput compared to existing approaches.
Mars outperforms under shallow buffers: Given the high throughput of Mars,
we evaluate its performance under various buffer sizes at the ToR switches and
compare against existing approaches. In Figure 7.7c, we see that even at extremely
shallow buffers such as 4 packets per port, Mars achieves 1.57x better throughput
on average compared to Opera, expander, Sirius and RotorNet. However, as we
show in Figure 7.1, existing systems require significantly more buffer to achieve
high throughput. As expected, in Figure 7.7c, we see that Opera, Sirius and
RotorNet increase in throughput with large buffers. Indeed, Sirius and RotorNet
can sustain even higher loads up to 50% since they emulate a complete graph
with shorter path lengths but this requires extremely large buffers. We omit these
results for brevity, given that Sirius and RotorNet require buffer sizes as large as
64 packets per port to achieve 20% throughput in Figure 7.7c.
Mars does not require large buffers: In Figure 7.10, we show the CDF of
buffer occupancies at the ToR switches for 20% websearch load and 64 packet
per port buffers. We see that Mars and Opera require significantly lower buffer
compared to expander, Sirius and RotorNet (under Valiant load balancing). Opera
selectively buffers packets at the end-hosts based on their flow size and only routes
short flows across multi-hops which contributes its very low buffer requirements as

188 Chapter 7. Oblivious Optical Interconnects

seen in Figure 7.10. However, Opera achieves 1.22x lower throughput compared to
Mars as seen in Figure 7.7c. We also observe that Sirius and RotorNet emulating
a complete graph, consume significantly more buffer compared to Mars: 2.09x
higher at the tail.

0 50 100 150 200
Buffer occupancy (Packets)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Expander
Opera
Mars
Sirius
RotorNet

Figure 7.10: Mars achieves high throughput but requires significantly less buffer
compared to Expander, Sirius and RotorNet; and similar buffers as Opera.

Mars significantly improves FCTs of short flows: The high throughput as
well as low buffer requirements of Mars significantly improve the FCTs of short
flows. Figure 7.8 shows the 99-percentile FCTs across various loads for random
permutation demand matrix under websearch workload. At 1% load (Figure 7.8a),
we see that Mars achieves similar FCTs for short flows compared to Opera and
expander networks and improves upon Sirius and RotorNet by 87.37%. As the
load increases, Mars outperforms existing approaches. Specifically, at 5% load
(Figure 7.8b), Mars reduces the FCTs for short flows by 77% compared to Opera,
by 98.11% compared to expander and by 88.43% compared to Sirius and RotorNet.
Further, at 10% load (Figure 7.8c), Mars improves the FCTs for short flows
by 93.88% compared to Opera, by 98.11% compared to expander and by 83.47%
compared to Sirius and RotorNet.

We observe similar improvements under an all-to-all demand matrix as shown
in Figure 7.9. At 5% (10%) load, Mars reduces the FCTs for short flows by
66.96% (90.15%) compared to Opera, by 81.35% (97.46%) compared to expander
and by 87.6% (83.90%) compared to Sirius and RotorNet.

It is interesting to observe that the 99%-percentile flow completion times for
short flows at 1% load follows the delay trend shown in Figure 7.1: a static
expander has the least path delay and similarly Opera since it routes all the short
flows over an expander; Sirius and RotorNet which emulate a complete graph
experience the highest delays. However, as the load increases, multi-hop routing
and queueing delays also impact the FCTs of short flows.
Mars does not trade long flow FCTs for short flows: Mars not only
improves the FCTs for short flows but also achieves on-par 99-percentile FCTs for
long flows compared to existing approaches. Under random permutation demand
matrix (Figure 7.8), at 20% load, Mars reduces the 99-percentile FCTs for long
flows by 2.37% compared to Opera, by 85.98% compared to expander and by
99.9% compared to Sirius and RotorNet. Further, under an all-to-all demand
matrix (Figure 7.9), at 20% load, Mars reduces the FCTs for long flows by 63.42%
compared to Opera, by 81.96% compared to expander and by 99.2% compared
to Sirius and RotorNet. Interestingly, at 20% load, under random permutation

Chapter 7.6. Discussion 189

(Figure 7.8d) and all-to-all (Figure 7.9d) demand matrices, Sirius and RotorNet
cannot sustain long flow FCTs given the shallow buffers used in our setup. This
result further strengthens our motivation on the performance of existing approaches
under resource constraints.

Overall, our evaluation confirms that Mars outperforms existing approaches
by improving throughput and reducing the flow completion times for short flows
as well as long flows.

7.6 Discussion
While our model and choice of topologies are in line with the assumptions and
conclusions in the literature, they have certain practical implications which we
discuss below.

Demand Matrix: Our model assumes that a demand matrix is fixed and does
not change over time. In contrast, real-world demand matrices evolve. This would
indeed complicate our analysis framework by introducing time variables to the
demand. However, our analysis still provides insights within the duration in which
the demand matrix remains constant. As demand matrices do not change rapidly
over time [222], one could use our analysis to find the throughput between two
time instances when the demand matrix changes significantly.

Congestion control and load balancing: Both congestion control and load
balancing significantly impact the achievable throughput. Our main results in
this work rely on the theoretical definition of flow and throughput maximization
problem. As a result, we make a simplifying assumption on the underlying system:
congestion control, load balancing and routing have a central view of the entire
network and perform ideally. Our theoretical results can be useful in understanding
the ideal scenario and provides insights into the performance gap of a deployed
system.

Worst-case analysis: Literature defines throughput of topologies based on worst-
case demand matrices and corresponding maximum flow. On one hand, worst-case
demand matrices help in understanding the performance bound of a topology under
any demand matrix (within the scope of our definition). In other words, a topology
optimized for the worst-case demand matrix achieves strictly greater throughput
under any other demand matrix. On the other hand, the theoretical definition of
‘‘flow’’ relates to fluid transmissions with ideal congestion control, load balancing
and routing (see above). In essence, our analysis captures the performance bounds
of an ideal transport under worst-case demand. Our key insights from theory
(summarized in §7.3.5) drove the design of Mars which is optimized for the
worst-case. However, our evaluation of Mars incorporates stochastic flow arrival
process (not the worst-case) based on real-world flow size distributions [35,37] at
a given load. The significantly better performance of Mars (optimized for the
worst-case) in our evaluation setup (not the worst-case) shows that our analysis
indeed finds itself useful even under realistic settings. While we consider static
(fluid) flow definitions in this work, variable flow on an edge and flows over time
have been studied in the past [48,100,101,120,250]. The analytical model for flows
over time is motivated by the propagation delay over edges and appears to have

190 Chapter 7. Oblivious Optical Interconnects

an interesting connection to periodic networks, where the delay is introduced along
paths due to changes in the topology. Extending our analysis to variable flows
and studying their impact on throughput would be a valuable direction for future
research.

Cost-equivalent Clos topologies: We emphasize that our results in Theo-
rem 13, 14, 15, 16 and our evaluation concerns uni-regular topologies i.e., every
switch is connected to servers and generates traffic. In contrast, traditional dat-
acenters built on Clos topologies add additional layers of switches (additional
capacity) that do not generate traffic in order to maximize throughput. This work
does not argue that uni-regular topologies are better than Clos topologies. However,
most recent works [60, 109, 150, 187, 189] demonstrate the significant benefits of
reconfigurable (uni-regular) topologies over Clos. Furthermore, comparing any
other topologies outside the spectrum shown in Figure 7.1 requires a cost analysis
which is volatile in nature abd . We hence focus strictly on the spectrum of topolo-
gies with periodic reconfigurations and their tradeoffs. It would be interesting
to determine the buffer size at which the performance of a throughput-optimal
periodic reconfigurable topology drops below a cost-equivalent Clos topology.

We leave it for future work to theoretically study the throughput of periodic
reconfigurable topologies under dynamic demand matrices and more practical
design considerations.

7.7 Related Work
Indeed, only little is known today about how existing reconfigurable topologies fare
against each other, and whether alternative designs could improve the throughput
further. In the following, we discuss the related work in network throughput both in
the context of traditional static datacenter topologies [31,65,113,246,248,256,281]
and emerging reconfigurable datacenter topologies [60, 69, 79, 80, 91, 98, 109, 121,
123,148,182,187,189,234,235,249,261,279,286].

Throughput as a metric: Bisection bandwidth has been used extensively as a
metric in the networking community. A classic result in graph theory suggests
that the max-flow can be an O(log(n)) factor lower than the sparsest cut [168,169].
The throughput maximization problem has been studied in the context of max-flow
multicommodity flow and maximum concurrent flow problems [52,106,238]. A fully
polynomial-time approximation scheme exists for arbitrary demands and uniform
capacity [238]. Recently, Jyothi et al. [145] revisited the relation between cut-based
metrics and max-flow in our networking context and proposed throughput under a
worst-case demand matrix as metric. While it still remains an active area of research
to efficiently compute throughput of a static topology [145,204,247], initial studies
on dynamic and demand-aware topologies attempt to characterize throughput in
terms of demand-completion times [114]. We are not aware of a formal definition
and analysis of throughput in the context of periodic reconfigurable topologies.

Static topologies: Clos-based topologies [31, 113] have been shown to provide
optimal throughput [204]. Bcube [115] proposes a server-centric architecture and
provides high capacity for all-to-all traffic patterns but may not be optimal in
terms of the throughput metric. JellyFish [248] argues that random graphs are

Chapter 7.8. Summary 191

highly flexible for datacenters in-terms of heterogeneous expansion and fault-
tolerance while achieving high throughput. SlimFly [65] optimizes for diameter of
the topology (consequently throughput) but imposes strict conditions on the size
of switches. Xpander [256] focuses on incremental deployability while achieving
high throughput. F10 [179] on fault-tolerance, and FatClique [281] on the cost,
incremental expansion and management in a datacenter.

Reconfigurable topologies: In contrast to static topologies based on costly,
power-intensive electrical packet switches, reconfigurable topologies rely on cost-
effective technologies such as optical circuit switches and tunable lasers. Reconfig-
urable topologies can be broadly classified into two types (i) demand-aware and
(ii) demand-oblivious. Demand-aware topologies such as Duo [279], ReNets [55]
and others [109, 163, 234, 261] adjust the topology based on the traffic patterns.
However, such networks incur high ‘‘latency tax’’ due to the added complexity
of measuring and calculating the demand via control-plane. Demand-oblivious
topologies such as RotorNet [60, 187,189] rely on a pre-defined schedule for circuit
setup and have been shown to provide high-throughput with low ‘‘latency tax’’
due to reconfigurations. More recently in a parallel work, the relation between
throughput and delay of periodic reconfigurable networks has been studied in
detail [42]. Our main focus in this work has been on demand-oblivious designs
under resource constraints. In particular, we reveal the fundamental tradeoffs
across throughput, delay and buffer requirements for such designs. We further
propose Mars, a throughput-optimal periodic (demand-oblivious) reconfigurable
topology.

Reducing the buffer requirements: A vast literature in buffer management [16,
46,86] and active queue management [102,139,215,267], scheduling [37,130,242]
and end-host congestion control [21,35,124,173,193,199] focuses on reducing the
queueing at a bottleneck link specifically in static datacenter topologies. How-
ever, as we rigorously discussed in this work (§7.3, §7.4), periodic reconfigurable
topologies fundamentally require certain amount of buffering and incur significant
throughput loss under limited amount of buffer. Our approach exploits this tradeoff
to systematically find the throughput-optimal design for any given delay and buffer
constraints.

7.8 Summary
This work was motivated by the observation that while dynamically reconfigurable
datacenter networks can greatly improve throughput, existing RCDN designs
which emulate complete graphs can entail high delays and buffer requirements.
Based on our analysis of the underlying performance tradeoffs, we presented a
more scalable network design, Mars, which achieves near-optimal throughput by
emulating a d-regular graph and ensuring shallow buffers.

We understand our work as a first step and believe that it opens several
interesting avenues for future research. In particular, naturally, the optimal RDCN
topology will also depend on the price, and it will be interesting to conduct an
economic study of the viability of different architectures. Furthermore, we have so
far focused on flat networks; while such networks are common in the literature and
have several advantages, it will be interesting to extend our study of buffer-aware

192 Chapter 7. Oblivious Optical Interconnects

RDCN designs to multi-tier networks as well.

8
Demand-Aware Optical Intercon-
nects
Datacenters have experienced explosive growth in overall network traffic volume
over the past decade [246]. With the recent introduction of high-bandwidth Ma-
chine Learning workloads into datacenters, the peak network traffic is expected
to increase even more rapidly [222]. Unfortunately, traditional networks, which
are built using electrical packet switches, struggle to keep up with this growing
demand [60]. Further, the rapid evolution of datacenter applications and their
changing bandwidth requirements implies: ‘‘the best laid plans quickly become out-
dated and inefficient, making incremental and adaptive evolution a necessity’’ [222].
This led to the emergence of novel technologies based on reconfigurable optical
circuit switches [60, 98, 109, 189, 222]. Two prominent types of reconfigurable
datacenter networks have emerged recently: demand-oblivious [18, 40, 60, 189] and
demand-aware [98,109,279] networks. These networks are optically circuit-switched
and feature bufferless switches. The circuits can be reconfigured, enabling the
network topology to adapt dynamically to evolving communication patterns in
datacenter workloads, which can potentially improve performance. The reconfigu-
ration schedule varies between designs: some achieve high performance but are
impractical for large-scale deployment, while others offer more practical solutions
but at the cost of moderate performance.

From a performance standpoint, demand-oblivious networks, such as Rotor-
Net [189], Sirius [60], and Opera [187], offer low reconfiguration overheads (in the
range of nanoseconds) but sacrifice throughput due to their fixed and periodic
switching schedules, which are independent of the underlying communication
patterns. Only recently have the throughput bounds of demand-oblivious net-
works been established [18,42], showing that they are tightly bounded by 1

2 i.e.,
a sustainable load of at most 50% under worst-case traffic patterns (e.g., ring
communication), even with ideal routing and congestion control. In contrast,
demand-aware networks such as Mordia [221], Helios [98], and ProjecToR [109]
are capable of achieving higher throughput because their switching schedules are
optimized for the underlying communication patterns. Unfortunately, formal
bounds on the achievable throughput of demand-aware networks remains an open
question in the literature.

From a practicality standpoint, periodic fixed-duration reconfigurations have
emerged as a promising design choice for reconfigurable datacenter networks [186,
188]. However, existing periodic networks are demand-oblivious and require non-
trivial additional support from hardware (NIC and switch) in terms of routing,
packet reordering, congestion control and buffer architecture [40, 60, 189]. This
complexity hinders the large-scale deployment of these networks in practice. In

193

194 Chapter 8. Demand-Aware Optical Interconnects

Throughput*
(Sustainable Load)

Reconfigurations in a Period
 (Normalized to a periodic rotor schedule)

Demand-Oblivious
Circuit-Switching

RotorNet
Sirius
Shale
Mars

Ve
rm

ilio
n

Dem
an

d-A
war

e

This Work
Single-Hop Routing

Ordered Packet Delivery
No Congestion control

Existing Designs
Multi-Hop Routing
Packet Reordering

Complex Congestion Control

Infeasible

x x x x x

Figure 8.1: Existing designs based on periodic optical circuit-switching are oblivious
to traffic patterns, requiring complex multi-hop routing and congestion control,
which reduces throughput. Vermilion overcomes this limitation by introducing a few
additional fixed-duration reconfigurations per period in a demand-aware manner,
while significantly simplifying both routing and congestion control.

contrast, demand-aware networks typically only require single-hop (direct) routing
and do not depend on in-network congestion control mechanisms. However, this
comes at the cost of complex reconfiguration schedules with variable durations,
and they often rely on an additional packet-switched network [98,109,221].

In view of both performance and practicality, we explore a new direction in this
chapter: Can a high-throughput network be designed using periodic fixed-duration
reconfigurations, without relying on multi-hop routing?

Figure 8.1 illustrates our perspective. Not only are existing designs limited
in throughput, the worst-case throughput of any demand-oblivious network is
bounded by 1

2 [18, 42, 114], making it infeasible to achieve higher throughput.
However, it remains unexplored so far, whether and to what extent a demand-
aware approach to periodic reconfigurable networks can improve throughput.
Intuitively, if the reconfiguration delay is negligible, a demand-aware network
can ideally achieve full-throughput. For instance, most prior works follow this
intuition and use Birkhoff–von Neumann (BvN) [66] decomposition technique to
devise a circuit switching schedule that perfectly matches the underlying traffic
pattern [176, 221]. However, this not only results in a schedule with variable
duration for each reconfiguration, it can also result in significantly low throughput
due to reconfiguration overheads. Designing a demand-aware network using only
fixed-duration periodic reconfigurations, while surpassing the throughput limits
of oblivious networks, requires new techniques and remains a challenging open
problem.

We present Vermilion, a first demand-aware reconfigurable network design that
breaks the throughput barrier of existing designs, using only fixed-duration periodic
reconfigurations. Vermilion not only achieves higher throughput but also greatly
simplifies the protocol stack by eliminating multi-hop routing, congestion control
and packet reordering. A recent work reports the following regarding single-hop
routing in periodic circuit-switched network:

Chapter 8.1. Motivation 195

‘‘Notably, none of this requires any modifications to the Linux application,
TCP, or the Linux networking stack.’’ [188]

Vermilion relies solely on direct communication. As a result, Vermilion is more
practical for deployment, within the available hardware capabilities e.g., using
Rotor switches [188] and server-grade NICs. We discuss Vermilion’s practicality as
well as future research directions in more detail later in this chapter.

The key innovation behind Vermilion is the use of a matrix rounding tech-
nique [57] to derive a switching schedule that matches the underlying traffic
pattern. This is in contrast to BvN decomposition technique [66] and greedy
approximations [68] that have been largely used in the literature for designing
demand-aware networks [176, 221]. Importantly, our rounding technique allows
decomposing a demand matrix (after rounding) into a set of permutation matrices
that directly serve as the switching schedule with fixed-duration for each circuit,
in a periodic manner. Interestingly, the schedules produced by rounding technique
are capable of serving a large portion of the demand but may leave certain residual
demand. To this end, we introduce one extra cycle that is similar to that of
existing designs, providing direct connections between all communicating nodes.
Our rounding technique is simple and efficient to compute, making it practical
for quick updates based on the changes in the traffic patterns. We establish the
throughput bounds of Vermilion, marking the first theoretical result on the achiev-
able throughput of demand-aware networks, while accounting for reconfiguration
delays.

We evaluate using packet-level simulations and show that Vermilion significantly
improves throughput by up to 2.04x and reduces the flow completion times by up
to 99.88% compared to existing approaches.

Our main contributions in this work are:

■ A first separation result proving that demand-aware reconfigurable datacen-
ter networks are strictly superior to demand-oblivious networks in terms of
throughput.

■ Vermilion, an innovative, yet simple, demand-aware network design based on
periodic fixed-duration reconfigurations. Vermilion achieves a throughput of at
least 2

3 (lower bound): a significant improvement over existing designs.

■ A simplification of the requirements from network protocol stack. Vermilion relies
only on direct communication without multi-hop routing and does not need
additional congestion control mechanisms to be deployed.

■ Evaluations, highlighting the performance benefits of Vermilion compared to
demand-oblivious counterparts. Our results show that Vermilion significantly
improves flow completion times for both short flows and long flows.

8.1 Motivation
In this section, we motivate our work by outlining the limitations of current
periodic reconfigurable networks and the opportunities presented by adopting a
demand-aware approach within these systems. Our primary focus in the rest of
this chapter is on periodic reconfigurable networks, given the recent technological

196 Chapter 8. Demand-Aware Optical Interconnects

Output Port

Input Port

Circuit
Switches

e.g., Server, ToR switch, Aggregation switch, or Intra-server
GPUs

Demand
Matrix

Circuit Switching Schedule

Control
Plane

(a) The physical topology of a reconfig-
urable network consists of a set of nodes
connected by optical circuit-switches ar-
ranged in a hierarchical Clos topology
(e.g., leaf-spine). The circuit-switches are
time-synchronized and rapidly reconfigure
their circuits providing direct links between
pairs of nodes in a periodic manner. We
assume a control plane that defines the
switching schedule for each switch.

Timeslot 1 Timeslot 2 Timeslot 3

Periodic

All-to-All Permutation Ring

(b) The physical topology establishes a
node-to-node network that evolves over
time periodically, allocating bandwidth be-
tween pairs of nodes in each timeslot.

Timeslot 1 Timeslot 2 Timeslot 3

Periodic

All-to-All Permutation Ring

(c) Examples of topologies that can be em-
ulated over a period using periodic circuit-
switching

Figure 8.2: The periodic circuit-switched network (8.2a) rapidly reconfigures its
circuits, forming a dynamic node-to-node topology that evolves over time (8.2b).
Over time, this topology emulates a specific static network (8.2c), for example,
splitting bandwidth evenly across all pairs to create an all-to-all mesh topology
(as in RotorNet [189] and Sirius [60]) or concentrating bandwidth between pairs
with high demand to form a permutation or ring topology. The throughput of the
network is heavily influenced by the choice of switching schedule, the emulated
topology, and the underlying demand matrix: an optimization opportunity.

Chapter 8.1. Motivation 197

advancements showing their practicality and scalability [60, 188]. In the following,
we briefly describe the network architecture that we consider in this work.
Network model: Figure 8.2a illustrates the physical topology. A set of nodes
are interconnected by optical circuit-switches such that at any time instance the
network provides pair-wise direct connections across the nodes. For generality, we
say ‘‘nodes’’ to refer to either servers, or ToR switches, or Aggregation switches, or
intra-server components such as GPUs, that may be interconnected by an optical
circuit-switched network. The optical circuit-switches reconfigure according to a
schedule in a synchronized and periodic manner. Specifically, the circuit-switches
reconfigure at fixed-duration intervals (timeslots) and each reconfiguration takes a
specific amount of time (reconfiguration delay). This aligns with existing periodic
circuit-switching technologies such as RotorNet [186,188,189] (Sirius [60]) with a
reconfiguration delay of 7µs (3.84ns). As a result, the network topology evolves
over time as shown in Figure 8.2b. In each timeslot, the degree of the topology
is limited to the number of physical links. However, as the topology evolves
over time, it can emulate a variety of topologies with high-degree, as shown in
Figure 8.2c. For example, the topology can emulate an all-to-all mesh, a ring,
or a permutation topology, depending on the periodic circuit-switching schedule.
So far, in the literature, periodic reconfigurable networks were only studied in a
demand-oblivious setup i.e., the switching schedule is independent of the underlying
traffic patterns, emulating an all-to-all mesh topology [60,187,189] or a d-regular
topology [18,40,42] over time.

We first discuss our formal approach to optimizing the throughput of reconfig-
urable networks (§8.1.1), followed by the drawbacks of existing demand-oblivious
designs (§8.1.2), and later, we make a case for demand-aware networks (§8.1.3).
We conclude by summarizing the design challenges (§8.1.5).

8.1.1 Throughput of Periodic Networks
Throughput offered by an interconnect is a crucial metric for assessing the sustain-
able load a network can handle, especially under highly concurrent communication
patterns. Chapter 7 provides a detailed formal model on the throughput of periodic
networks. In this section, we refresh the definitions introduced in Chapter 7 as
they are crucial to our design and analysis of Vermilion.

In order to quantify the throughput, we first define the communication pattern
i.e., the demand matrix (Definition 20). The demand matrix specifies the demand
in bits per second between each pair of nodes i.e., the total demand originating
from a source towards a destination. Following prior work [204], we consider the
hose model [94] such that the total demand originating from (and destined to)
each node is less than its corresponding capacity limits.

Definition 20 (Demand matrix). Given a set of nodesN , each with d outgoing and
incoming links of capacity c, a demand matrix specifies the demand rate between
every pair of nodes in bits per second defined as M = {mu,v | u ∈ N , v ∈ N}
where mu,v is the demand between the pair u, v. The demand matrix is such that
the total demand originating at a source s is less than its outgoing capacity and
the total demand terminating at a destination t is less than its incoming capacity
i.e., ∑︁u∈N ms,u ≤ c · d and ∑︁u∈N mu,t ≤ c · d.

For a given communication pattern and the corresponding demand matrix

198 Chapter 8. Demand-Aware Optical Interconnects

(Definition 20), we define throughput as the maximum scaling factor such that
there exists a feasible flow that can satisfy the scaled demand subject to flow
conservation and capacity constraints. We denote flow by F : P ↦→ R+, a map from
the set of all paths P (static or temporal) to the set of non-negative real numbers.
This mapping naturally ensures that the flow transmitted from a source eventually
reaches the destination along a path p ∈ P . To obey capacity constraints, a feasible
mapping is such that the sum of all flows traversing a link do not exceed the link
capacity. We are now ready to define throughput formally.

Definition 21 (Throughput). Given a demand matrix M and a reconfigurable
network, throughput denoted by θ(M) is the highest scaling factor such that there
exists a feasible flow for the scaled demand matrix θ(M) ·M. Throughput θ∗ is
the highest scaling factor for a worst-case demand matrix i.e., θ∗ = min

M∈M̂
θ(M),

where M̂ is the set of all demand matrices.

Intuitively, throughput for a specific communication pattern captures the
maximum sustainable load by the underlying topology. Based on Definition 21,
similar to prior works [18,114,145,204], throughput of a topology is the minimum
throughput across the set of all saturated demand matrices i.e., if a topology has
throughput θ∗, then it can achieve at least throughput θ∗ for any demand matrix
and at most throughput θ∗ for a worst-case demand matrix.

Several variants of the throughput problem have been studied over the last
decades, especially in the context of the maximum concurrent flow problem [238].
However, in contrast to static networks, the fundamental challenge to study
throughput in the context of reconfigurable networks is that the topology changes
over time and can even be a function of the demand matrix in the case of demand-
aware networks.

In the specific case of periodic networks, our recent work (Chapter 7) establishes
an equivalence between the throughput of any periodic network and a corresponding
emulated topology (as static graph), allowing the study of throughput in periodic
networks using existing techniques [18]. We refer the reader to Chapter 7 for
a formal definition of the emulated graph. Essentially, the emulated graph is a
time-collapsed view over an entire period of the periodic network as shown in
Figure 8.2c.

For example, in RotorNet, the length of the period is Γ = n
d

timeslots. If a
link appears once between every pair of nodes over a period, then the emulated
graph has one link between every pair of nodes (complete graph), where each link
has a capacity of c · 1

Γ = c · d
n
. As we will discuss later, emulating a complete

graph results in a drop in throughput by a factor 2 under any permutation (e.g.,
ring) communication patterns. Intuitively, in order to maximize throughput, the
emulated graph must provide high bandwidth between specific pairs of nodes with
high-demand i.e., by emulating a topology that closely matches the underlying
communication pattern.

■ Takeaway. Optimizing periodic networks entails finding the best static graph
that can be emulated over a period, that provides the highest throughput for an
(any) underlying communication pattern.

Chapter 8.1. Motivation 199

.25 .5 .25

.25 .25 .5

.25.25.5

.25 .5 .25

Equivalent

Demand matrix

Demand graph

Emulated topology
(over time)

0.25
0.5

0.25

0.5

(a) Example de-
mand matrix for
a topology with 4
nodes, each with
1 physical link.

Demand-aware
(Emulated topology)

0.25

0.5

0.33

0.33

Demand-oblivious
(Emulated topology)

(b) Target emulated
topology for demand-
aware vs oblivious pe-
riodic networks.

Timeslot 2Timeslot 1 Timeslot 3

1
1

1
1

1

1

1

1

1

1

Demand-oblivious schedule

Repeat
Timeslot 1, 2, 3

Timeslot 2Timeslot 1 Timeslot 3 Timeslot 4

Demand-aware schedule

1
1

1
1

1

1

1

1

1

1
1

1

(c) Derived periodic schedule for a demand-
aware vs oblivious periodic network.

Figure 8.3: Interpreting the demand matrix (Figure 8.3a) as a target emulated
graph (Figure 8.3b) allows deriving a periodic schedule (Figure 8.3c) that can
achieve full throughput for demand-aware periodic networks, even with single-hop
routing. In contrast, the schedule for an oblivious periodic network often does
not match the underlying demand matrix, necessitating multi-hop routing and
resulting in reduced throughput.

8.1.2 Drawbacks of Oblivious Periodic Networks
Oblivious periodic circuit-switching has an obvious advantage of simplicity without
any control plane involvement for optimizing the topology. However, this leads to
certain drawbacks that we elaborate in the following.
Factor of 2 reduction in throughput: Recent works have established a tight
bound of 1

2 on the throughput of periodic networks [18, 42, 114]. We emphasize
that this reduction in throughput is not solely attributed to the use of valiant
load-balancing; rather, the network fundamentally cannot sustain beyond 50% load,
even with an ideal routing scheme, under a worst-case communication pattern such
as a ring. Specifically, in ring communication, only specific node pairs exchange
data, but emulating a complete graph only offers a capacity of c · d

n
(as discussed

above), falling short of the ideal bandwidth provisioning of c · d (leveraging all
available links) for these pairs. Even an optimal routing scheme is thus forced
to route traffic over 2-hop paths, in order to fully utilize the network capacity,
leading to a throughput of 1

2 .
Multi-hop routing: The use of indirect paths is a necessity to improve utilization
in oblivious periodic networks. However, since the network is evolving over
time, this implies that intermediate nodes need to buffer (hold) traffic until the
next link along the path becomes available. This results in additional latency
and buffer requirements. In addition, the use of multi-hop routing requires the
use of in-network congestion control mechanisms to prevent packet loss due to
buffer overflows [40]. This further complicates the network stack and can lead
to performance degradation under high load. In fact, recent works even suggest
sacrificing throughput further in order to satisfy buffer constraints [18].
Packet reordering: Not only do existing oblivious networks require multi-hop
routing, but they also require multi-path transmission in order to fully utilize the
network. This results in packets arriving out-of-order at the destination, necessi-
tating additional support such as reorder buffers [188]. This can be particularly
challenging in the context of RDMA since RoCE implementations typically react

200 Chapter 8. Demand-Aware Optical Interconnects

to packet reordering at the receiver with NACK that triggers retransmissions
immediately at the sender.
■ Takeaway. While oblivious periodic networks simplify switching schedule
selection, they rely on complex protocols such as multi-hop routing, multi-path
transmission, and reorder buffers, which can significantly reduce the maximum
achievable throughput.

8.1.3 A Case for Demand-Aware Networks
In contrast to oblivious reconfigurable networks, demand-aware networks can
potentially achieve higher throughput by optimizing the network topology for the
underlying communication pattern. Demand-aware networks have been studied
in the literature [98,109,221] and have been empirically shown to achieve better
performance compared to oblivious networks. In fact, demand-aware networks
can satisfy any demand within the hose model, if the reconfiguration delay is
hypothetically near-zero or negligible. This result has been intuitively known
in the literature [176,221], which relies on Birkhoff-von-Neumann (BvN) matrix
decomposition technique [66]. For completeness, we formally state it here.

Theorem 20 (Ideal throughput of demand-aware network). The throughput of
an ideal demand-aware reconfigurable network is 1 i.e., full-throughput for any
demand matrix if the reconfiguration delay is negligible.

Proof. Within the hose model set of demand matrices, we consider saturated
demand matrices i.e., the sum of every row (column) equals the outgoing (incoming)
capacity of each node. If a topology can achieve throughput θ for all saturated
demand matrices, then the topology can achieve throughput θ for any demand
matrix [204]. Given that saturated demand matrices are doubly stochastic, we
first decompose the matrix using Birkhoff–von Neumann (BvN) decomposition
technique [66] into k permutation matrices, where k can be up to n2. Let M
be any saturated demand matrix, where the sum of every row and column is
c · u (total capacity of each node). Let the corresponding BvN decomposition be
M = λ1 ·P1 +λ2 ·P2...+λkPk, where Pi is a permutation matrix and the coefficients
λ are such that ∑︁k

i=1 λ = c ·u. Using this decomposition, we configure the topology
such that each permutation Pi is executed using full node capacity c · u for λi

c·u ·∆
units of time over a period of one unit of time ∆. Over ∆ amount of time, λi · Pi

portion of the demand matrix generates λi · Pi ·∆ demand in volume. As a result,
during λi

c·u · ∆ amount of time, by executing the corresponding permutation Pi

using full capacity c · u, the topology can fully satisfy λi ·Pi portion of the demand
matrix. As a result, the topology can fully satisfy the demand matrixM over each
period of one unit of time ∆ and achieves full throughput.

The core intuition behind BvN-based demand-aware network design is to
allocate bandwidth between node-pairs as a convex combination (over time) of
permutations derived from BvN matrix decomposition. However, this approach
suffers from two key limitations: (i), the durations between reconfigurations in the
switching schedule are variable, and (ii), the time between reconfigurations can be
shorter than the reconfiguration delay, leading to a significant drop in throughput.
Consequently, BvN-based designs are incompatible with current technologies that
rely on fixed-duration periodic reconfigurations.

Chapter 8.1. Motivation 201

Interestingly, it is possible to design periodic reconfigurable networks that
achieve full throughput for specific types of communication patterns. For instance,
consider a ring demand matrix. Even with fixed-duration periodic reconfigurations,
a simple switching schedule with a period of one timeslot --- where the direct
links between communicating nodes in the ring are maintained --- can achieve full
throughput. In contrast, oblivious periodic networks can only achieve a throughput
of 1

2 for the same communication pattern. Similarly, if the demand matrix consists
of integer multiples of link capacity, it is straightforward to design a switching
schedule that achieves almost full throughput. Simply establishing direct links
between communicating nodes is sufficient to achieve full throughput for such
demand matrices.

Our key insight is that when the periodic schedule is constrained to Γ timeslots,
any demand matrix M with non-zero demand represented as an integer multiple
of c

Γ can be satisfied with full throughput. For such communication patterns, a
feasible periodic schedule with fixed-duration reconfigurations always exists and
achieves full throughput. Intuitively, the demand matrix can be visualized as an
edge-weighted graph, where the weights represent the demand between node pairs.
This graph corresponds to the target emulated topology for the periodic schedule,
with weights now representing link capacities. A periodic schedule can then be
derived to allocate bandwidth between source-destination pairs according to the
demand matrix, ensuring full throughput.

Theorem 21 (Throughput under integer demand matrices). There exists a periodic
reconfigurable network with a period of Γ timeslots with ∆r fraction of time spent
in reconfiguration, that can achieve nearly full throughput of 1−∆r using only
single-hop routing for demand matrices where any non-zero demand is an integer
multiple of c · 1

Γ , where c is the link capacity in the physical topology.

Proof. A demand matrix M in the hose model has the property that the sum of
every row and column is at most d̂, where d̂ is the degree (physical links). Further,
we have that every entry in the matrix is an integer multiple of c · 1

Γ , where c is the
link capacity and Γ is the period of the periodic schedule. We assume, without loss
of generality, that the capacity of each physical link is 1. The emulated multigraph
G has a degree of Γ · d̂, and each link has capacity 1

Γ . We now upscale both the
demand matrixM and each link capacity of the emulated multigraph by Γ. Thus,
it is equivalent to find the throughput of the emulated multigraph G with degree
Γ · d̂ and each link having capacity 1, under the scaled demand matrixM′ = Γ ·M,
where the sum of each row and column is at most Γ · d̂. Since every entry in the
matrix M is an integer multiple of 1

Γ , the scaled demand matrix M′ is an integer
matrix with sum of every row and column at most Γ · d̂. Further, we have a degree
of Γ · d̂ with link capacity of 1. It is now straight-forward that constructing a
graph by adding links between each pair based on the value of the demand in the
scaled matrix M′ can fully satisfy the demand, and this requires only single-hop
routing.

Figure 8.3 illustrates a demand matrix for which a demand-aware periodic
schedule can be trivially derived. The demand matrix consists of integer multiples
of 1

4 , and the corresponding switching schedule, with a length of 4 timeslots, is
depicted in Figure 8.3. This schedule enables the network to fully satisfy the
demand matrix within each period, achieving full throughput. In contrast, the

202 Chapter 8. Demand-Aware Optical Interconnects

schedule of an oblivious network contains only 3 timeslots, omitting the additional
4th timeslot used in the demand-aware schedule. The oblivious schedule distributes
uniform bandwidth across all node-pairs but mismatches the underlying demand
matrix, as demonstrated in Figure 8.3. Notably, the inclusion of just a few extra
timeslots in a demand-aware manner can significantly enhance the network’s
throughput.
Single-hop routing: Notice that the demand-aware schedule in Figure 8.3
achieves high throughput even with single-hop routing. This is because the emu-
lated topology provides capacity between each node pair that precisely matches
the demand matrix specifications. Generally, any schedule derived from Theo-
rem 21 maintains this single-hop routing advantage, simplifying the protocol stack
by eliminating the need for multi-hop routing, congestion control, and packet
reordering.

However, a caveat is that increasing the period Γ can lead to an excessively long
periodic schedule to achieve full throughput for any demand matrix, as indicated
by Theorem 21. This can result in unacceptable delays. Theorem 21 suggests
potential throughput gains by deriving periodic schedules tailored to the underlying
communication patterns. The challenge remains in deriving short schedules while
still achieving high throughput.
■ Takeaway. Specific communication patterns showcase the substantial through-
put gains that demand-aware periodic networks can achieve over oblivious designs.
The main challenge — and opportunity — lies in deriving compact schedules that
can achieve high throughput for any communication pattern.

8.1.4 Linear Program Formulation
Throughput maximization is a variant of multi-commodity maximum flow problem,
commonly referred as maximum concurrent flow problem [238]. In the case of
demand-aware periodic networks, our goal is to find the best emulated graph. In
the following we present an integer linear program formulation. Given a network
of n nodes, each with d̂ physical links (incoming and outgoing), the LP takes
demand matrixM and the length of the desired schedule Γ as input. The capacity
of the physical links is denoted by c. The LP has to find the number of links
ĉi,j between each node pair (i, j). We set the link capacities to 1 and interpret
ĉi,j as the capacity between i, j. We use f s,d

i,j to refer to the flow on edge (i, j)
corresponding to (s, d) demand. Our objective is to maximize throughput θ such
that the scaled demand matrix θ · M satisfies source-destination demands, flow
conservation and capacity constraints. We consider a degree constraint d̂ for each
node. Consequently, the demand matrices of interest are those with the sum of
each row and column limited to d̂.
Input:

Demand matrix M = {ms,d | s ∈ V, d ∈ V }
In-out degree d̂

Objective Function:

Maximize θ

Chapter 8.1. Motivation 203

Subject to the constraints:

Source demand:
∑︂

i∈V \{s}
f s,d

s,i ≥ θ ·ms,d

∀s ∈ V, ∀d ∈ V

Destination demand:
∑︂

i∈V \{d}
f s,d

i,d ≥ θ ·ms,d

∀s ∈ V, ∀d ∈ V

Flow conservation:
∑︂

i∈V \{j}
f s,d

i,j −
∑︂

k∈V \{j}
f s,d

j,k = 0

∀j ∈ V \{s, d}
∀s ∈ V, ∀d ∈ V

Capacity constraints:
∑︂
s∈V

∑︂
d∈V

f s,d
i,j ≤ ĉi,j

∀i ∈ V, ∀j ∈ V

In-degree constraints:
∑︂
s∈V

cs,d ≤ d̂

∀d ∈ V

Out-degree constraints:
∑︂
s∈V

cs,d ≤ d̂

∀d ∈ V

Variables:

Flow: f s,d
i,j ≥ 0 , f s,d

i,j ∈ R
∀i ∈ V, j ∈ V, s ∈ V, ∀d ∈ V

Throughput: θ ≥ 0 , θ ∈ R
Number of links: ĉi,j ≥ 0 , ĉi,j ∈ Z

8.1.5 Design Challenges & Roadmap
Our vision to leverage fixed-duration periodic circuit-switching in a demand-aware
manner requires tackling several fundamental questions that remain open and
unanswered in the literature. We outline the key challenges and our roadmap to
address them in the following.
(Q1) Is it computationally feasible to derive optimal demand-aware periodic
schedules for large topologies?

As mentioned before, the underlying problem is to construct an optimal em-
ulated topology within a degree constraint. § 8.1.4 presents the linear program
formulation. However, in our initial experiments, the solver (Gurobi [117]) did not
terminate after 30 minutes even for a 16 node topology. Our roadmap to address
this challenge is to develop an algorithm that can quickly derive near-optimal
schedules for large topologies and demand matrices. ▷ §8.2.1

(Q2) Given a degree constraint, what is the best topology that maximizes throughput
for a given demand matrix?

204 Chapter 8. Demand-Aware Optical Interconnects

Answering this question not only allows us to then derive a periodic schedule
that emulates an optimal topology but also provides insights into more constrained
networks with slow reconfigurations such as those with patch-panels [266]. While
some recent works focus on specific communication patterns in distributed training
under a domain-specific cost model [285], the throughput-optimization problem
largely remains open for general communication patterns. Our roadmap to solve
this problem builds upon our observations in §8.1.3. Specifically, building upon
Theorem 21, our main intuition is to serve the bulk portion of the demand matrix
in a demand-aware manner using a subset of the available links within the degree
constraints and tackle the residual demand with a demand-oblivious topology,
while guaranteeing high throughput. We address this question for specific degree
constraints relevant for periodic networks but under general demand matrices
within the hose model, providing a first step towards a general solution. ▷ §8.2.2
(Q3) Is it fundamentally feasible to achieve high throughput for any demand matrix
using only single-hop routing?

Under constrained length of the schedule (and degree), answering this question
not only requires finding optimal topology under an ‘‘ideal routing’’ obtained
from solving the concurrent flow problem, we further need to restrict the paths
to direct communication. Our roadmap is to construct short periodic schedules
that provide bandwidth between communicating pairs such that the gap between
bandwidth and demand between any pair is bounded by a certain ratio, ensuring
high throughput with single-hop routing. ▷ §8.2.2

8.2 Towards Demand-Aware Periodic Networks
Based on our observations in §8.1, we seek to design a simple demand-aware periodic
network, within the practical capabilities of existing optical circuit-switching
technologies [60, 186, 188] and the end-host networking stack. Our goal is to
achieve high throughput for any demand matrix using only single-hop routing i.e.,
direct communication. We first present our network design (§8.2.1), followed by
the throughput guarantees of our design (§8.2.2) and its practicality (§8.2.3).

8.2.1 Vermilion
We present Vermilion, a first demand-aware periodic network design that can
probably achieve high throughput compared to existing oblivious designs. We
walk through each component of Vermilion in the following.
Physical topology: Our network model remains the same as described in §8.1,
with a set of nodes interconnected by optical circuit-switches in a hierarchical
CLOS topology. The circuit-switches are synchronized in time and reconfigure at
fixed-duration intervals, forming a dynamic node-to-node topology that evolves
over time. Each node in the topology has d̂ physical links that connect to the
optical interconnect, hence at any time instance, each node can connect to at most
d̂ other nodes. The physical links have a capacity of c.
Parameters: Vermilion has one parameter k, that controls the degree of the target
emulated topology. A higher k leads to higher throughput but also increases the
schedule length. The resulting schedule can achieve at least k−1

k
throughput for a

given demand matrix M. For example, even with k = 3, Vermilion can achieve a

Chapter 8.2. Towards Demand-Aware Periodic Networks 205

Algorithm 6: Vermilion
Input : Demand matrix M, number of nodes n,

degree d̂, link capacity c, parameter k
1 procedure generateSchedule(M):
2 G = emulatedTopology(M)
3 ▷ Sequence of matchings for the periodic schedule
4 for i = 1 to k · n do
5 remove one perfect matching Mi in G
6 add Mi to schedule
7 end for
8 return M

9 procedure emulatedTopology(M):
10 ▷ Initialize a multigraph
11 G = (V, E), V = {1, ..., n}, E : V × V → N
12 Normalize the demand matrix M
13 M← (k − 1) · n · M
14 R = Round(M) ▷ Matrix rounding
15 for each node pair (u, v) do
16 ▷ Allocate bandwidth for bulk demand
17 E((u, v))← R(u, v) ▷ # Edges between u, v
18 ▷ Allocate bandwidth for residual demand
19 E((u, v))← E((u, v)) + 1
20 end for
21 ▷ Ensure that the final graph is regular
22 xin ← k · n− xin ▷ Remaining in-degree
23 xout ← k · n− xout ▷ Remaining out-degree
24 G′ = (V, E ′) = ConfigurationModel(xin, xout)
25 E ← E ⊎ E ′

26 return G

throughput of 2
3 , breaking the throughput bounds of oblivious periodic networks.

We discuss the choice of k in §8.2.2.
Periodic schedule: The key innovation in Vermilion is its demand-aware periodic
schedule. Algorithm 6 outlines the steps to derive the periodic schedule. Figure 8.4
shows an example workflow of Vermilion for k = 3. Given a demand matrix M,
we first generate an emulated topology that can achieve high throughput for the
given demand matrix. Our emulated topology is always regular and allows us to
then decompose it into a periodic schedule. We construct the emulated topology
as follows:

■ Matrix rounding: We first normalize the demand matrix such that the
maximum sum of any row and column is at most 1. We then upscale the
demand matrix by (k − 1) · n, where k is a parameter to Vermilion and n is
the number of nodes. We round entries of the scaled matrix such that the
sum of each row and column remains the same, a technique known as matrix
rounding [57].

■ Demand-aware multigraph: Based on the rounded matrix, we construct
a multigraph by adding edges between each node pair based on the rounded

206 Chapter 8. Demand-Aware Optical Interconnects

0 4 8 12

0

4

8

12

1MB

10 MB

100 MB

1 GB

(a) DLRM data parallelism
demand matrix

0 4 8 12

0

4

8

12

4Gbps

6Gbps

10Gbps

15Gbps

20Gbps
25Gbps

(b) Capacity provided by
Oblivious network

0 4 8 12

0

4

8

12

4Gbps

6Gbps

10Gbps

15Gbps

20Gbps
25Gbps

(c) Capacity provided by Ver-
milion

0 4 8 12

0

4

8

12 0.001

0.01

0.1

1

(d) Normalized
matrix

0 4 8 12

0

4

8

12
0.001

0.01

0.1

1

48

(e) Scaled by
(k − 1) · n

0 4 8 12

0

4

8

12
0.001

0.01

0.1

1

48

(f) Rounded ma-
trix

0 4 8 12

0

4

8

12
0.001

0.01

0.1

1

48

(g) ⊎ complete
graph

0 4 8 12

0

4

8

12
0.001

0.01

0.1

1

48

(h) ⊎ configura-
tion model

Figure 8.4: An example workflow of Vermilion with (8.4a) DLRM data parallel
demand matrix. An oblivious periodic network (8.4b) provides uniform capacity
between all node pairs irrespective of the demand matrix. Vermilion (8.4c) provides
capacity between node pairs based on the underlying demand matrix. Vermilion
first (8.4d) normalizes the given demand matrix, upscales it by (k − 1) · n (8.4e),
rounds it (8.4f), augments it with a complete graph (8.4g) for any-to-any connec-
tivity, and finally augments it with additional links to ensure regularity (8.4h).
The resulting matrix (a multigraph) is the target emulated topology (8.4c), which
is then decomposed into a sequence of matchings for the periodic schedule.

matrix. For instance if the rounded matrix specifies 2 between s-t node pair,
then we add 2 edges between s and t. This ensures that majority of the
demand matrix is served efficiently in a demand-aware manner.

■ Demand-oblivious residual graph: Matrix rounding may not exactly
match the original demand matrix and can leave some residual demand. To
address this, we ensure that any residual demand can be routed by adding
one additional edge between each node pair in the multigraph. This step
guarantees any-to-any connectivity and is demand-oblivious, meaning it is
independent of the specific demand matrix.

■ Augmenting the regularity of the graph: At this point, say each node
has in-degree xin

i and out-degree xout
i , we then take the degree sequences

⟨k ·n−xin
1 , ..., k ·n−xin

n ⟩ and ⟨k ·n−xout
1 , ..., k ·n−xout

n ⟩, and add additional
links to our graph based on configuration model using the above degree
sequence.

The resulting graph is our target emulated topology. The above construction
always leads to a multigraph with degree k · n, a directed regular graph, that can
be decomposed into k · n number of perfect matchings. These perfect matchings
are then executed in round-robin periodically, using optical circuit switching.
Routing: Vermilion relies solely on single-hop routing, as the topology provides
sufficient direct links between communicating nodes over time, ensuring high
throughput even with direct communication.
Congestion control: Vermilion does not explicitly require any congestion control
algorithm in the network. If the network is all-optical i.e., when servers connect

Chapter 8.2. Towards Demand-Aware Periodic Networks 207

directly to circuit switches, then Vermilion does not require even end-host congestion
control (except for reliability) since every packet is transmitted directly to the
destination. The direct communication paths ensure that the network is not
congested.
Flow scheduling: Given that packets reach destinations directly, flow scheduling
dominates in determining per-flow performance. We consider that the packets of
all active flows at the end-host are scheduled in a round-robin manner and all
transmissions are paused during the synchronized reconfiguration events, similar to
prior work [188]. Scheduling algorithms such as shortest remaining processing time
(SRPT) based on remaining flow size could potentially improve flow completion
times. We leave the design of tailored scheduling algorithms for future work.

8.2.2 Throughput Guarantees of Vermilion
Vermilion offers attractive theoretical guarantees on throughput and consequently
completion time for a given demand matrix. We discuss the key properties of
Vermilion in the following.

Theorem 22 (Throughput lower bound). Vermilion achieves a throughput of at
least k−1

k
· (1−∆r) using single-hop routing for any given demand matrix within

the hose model, where ∆r is the fraction of time spent in reconfiguration and k is
a parameter to Vermilion.

Proof. We assume, without loss of generality, that the capacity of each physical
link is 1 and the degree of the physical topology is d̂. A demand matrix M in the
hose model has the property that the sum of every row and column is at most
d̂. Let the period (number of timeslots) of the periodic schedule be k · n

d̂
, i.e., k

times the period of an oblivious periodic schedule. The emulated multigraph G

has a degree of k · n, and each link has capacity 1
k·n

d̂

= d̂
k·n . We now upscale both

the demand matrix M and each link capacity of the emulated multigraph by k·n
d̂

.
Thus, it is equivalent to find the throughput of the emulated multigraph G with
degree k · n and each link having capacity 1, under the scaled demand matrix
M′ = k·n

d̂
·M, where the sum of each row and column is at most k · n. We seek to

find the edge multiset of the emulated multigraph G that maximizes throughput.
In order to show that Vermilion achieves a throughput of at least k−1

k
, it suffices to

show that Vermilion can satisfy k−1
k
·M′ within the capacity constraints. According

to Vermilion, edges are added based on matrix rounding using (k−1)·n
d̂
M = k−1

k
·M′.

These edges satisfy all the demand in the demand matrix k−1
k
· M′ except for

entries that were rounded down during the rounding process. This is because, the
sum of every row and column in the demand matrix (and the rounded matrix) is
at most (k− 1) · n, entries are either rounder up or down, and links are added only
to non-zero entries. The rounding process utilizes at most (k− 1) · n incoming and
outgoing links from each node. We are left with at least n incoming and outgoing
links for each node. The residual demand is then served by adding additional edges
between each node pair. The residual demand between any node pair is strictly less
than 1 (due to rounding), and a single additional link between the pair can fully
satisfy the residual demand. Finally, each link loses (1−∆r) fraction of capacity
due to reconfigurations and hence the overall throughput is k−1

k
· (1−∆r).

208 Chapter 8. Demand-Aware Optical Interconnects

Theorem 22 suggests that a throughput of k−1
k

is achievable for any given
demand matrix, with k acting as a control parameter for throughput. Essentially,
k represents the factor by which the schedule of Vermilion is elongated compared to
an oblivious schedule that provides periodic any-to-any connectivity. For instance,
with k = 3, Vermilion guarantees a throughput of 2

3 , and this can be further increased
by increasing k, resulting in higher throughput. However, this comes at the cost of
longer schedules and increased delay. As a result, the throughput guarantee can
only be achieved over extended periods of time, making higher k values potentially
unsuitable for workloads with stringent latency requirements. In our evaluations,
we use k = 3 by default, as it strikes a good balance between throughput and
schedule length.

8.2.3 Practicality of Vermilion

We discuss the practicality of Vermilion in the context of modern datacenter infras-
tructure and optical circuit-switching technologies.
Scalability: Periodic circuit-switched networks in general exhibit excellent scala-
bility properties [40, 60, 186, 189]. The required switch size is arguably the most
important scalability concern in these networks. A simple leaf-spine topology may
quickly become limited in terms of the required switch size. Vermilion can scale
to large topologies with thousands of nodes interconnected by circuit switches
arranged in a non-oversubscribed k-ary fattree topology [31]. Fattree allows any
permutation to be executed. For example, even a greedy algorithm can find
edge-disjoint paths corresponding to a required matching. These edge-disjoint
paths then reveal the required circuits at each switch in the network, consequently,
the sequence of matchings for each switch can be obtained. Further, Vermilion is
much more scalable than oblivious periodic networks in terms of protocol stack
as it only requires single-hop routing and does not rely on complex in-network
congestion control algorithms.
Complexity: Deriving a schedule based on Vermilion is solvable in polynomial
time. Specifically, matrix rounding is polynomial time solvable [57], and all other
transformations have a complexity of O(n2), which is inherent to any demand-
aware approach due to the need to traverse the demand matrix at least once.
In contrast, approaches that rely on Birkhoff decomposition not only produce
schedules with variable reconfiguration durations but also face the challenge that
finding a schedule of minimum length using Birkhoff decomposition is known to
be NP-hard [162].
Updating the schedule: Vermilion being a demand-aware design, it requires that
the switches can be updated with a new periodic schedule when the communication
patterns change. Efficiently updating the circuit-switching schedule is an active area
of research, particularly for fast-reconfigurable periodic circuit switches operating on
microsecond (µs) or nanosecond (ns) timescales [188,190]. Commercially available
optical switches that can reconfigure at millisecond scale already allow for updating
the switch with arbitrary matchings via control plane [220].
Demand estimation: Modern datacenters are capable of accurately estimating
the demand matrix at scale [222]. Further, more recent distributed training
workloads in GPU clusters have a predictable demand matrix that is also periodic
in nature [172,265,266].

Chapter 8.3. Evaluation 209

RotorNet Opera VLB (Sirius) Vermilion

10KB
100KB

1MB
10MB

Flow size (Bytes)

0.01

1

100

99
-p

ct
 F

CT
 (m

s)

(a) Load=5%

10KB
100KB

1MB
10MB

Flow size (Bytes)

0.01

1

100

99
-p

ct
 F

CT
 (m

s)

(b) Load=10%

10KB
100KB

1MB
10MB

Flow size (Bytes)

0.01

1

100

99
-p

ct
 F

CT
 (m

s)

(c) Load=20%

10KB
100KB

1MB
10MB

Flow size (Bytes)

0.01

1

100

99
-p

ct
 F

CT
 (m

s)

(d) Load=40%

10KB
100KB

1MB
10MB

Flow size (Bytes)

0.01

1

100

99
-p

ct
 F

CT
 (m

s)

(e) Load=60%
Figure 8.5: Flow completion times for the websearch workload. Vermilion signifi-
cantly improves the 99-percentile FCTs compared to existing designs, both for
short flows and long flows.

20 40 60
Load (%)

0

10

20

30

40

50

60

70

Lin
k

ut
iliz

at
io

n
(%

)

RotorNet
Opera
VLB (Sirius)
Vermilion

(a) Link utilization

1 2 3 4
Number of hops

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Opera
Vermilion

(b) Path lengths

Figure 8.6: Opera uses k-shortest paths for short flows, leading to longer path
lengths and loss in link utilization, whereas Vermilion uses exclusively direct paths
and achieves higher link utilization compared to other designs.

Overall, we believe Vermilion does not fundamentally require novel hardware
components, and is well within the practical capabilities of existing technologies.

8.3 Evaluation

We evaluate the performance of Vermilion in terms of flow completion times and
link utilization using real-world datacenter workloads (§8.3.1), and in terms of
throughput with commonly observed demand patterns in datacenters (§8.3.2). We
compare Vermilion with existing periodic network designs, namely, RotorNet [186],
Opera [187] and Sirius [60].

8.3.1 Flow Completion Times & Link Utilization
Our evaluation in this section is based on packet-level simulations using htsim [11].
Topology: We consider a datacenter consisting of 512 servers arranged across 64
top-of-rack (ToR) switches. These ToR switches are interconnected by a layer of
8 optical circuit switches, with all link capacities set to 25 Gbps. For all systems
compared, including Vermilion, the circuit switches have a reconfiguration delay of

210 Chapter 8. Demand-Aware Optical Interconnects

Oblivious (single-hop) Oblivious (multi-hop) Vermilion k=3 Vermilion k=6

Chessboard
All-to-All Ring

skew-0.1
skew-0.2

skew-0.3
skew-0.4

skew-0.5
skew-0.6

skew-0.7
skew-0.8

skew-0.9
DLRM-data

DLRM-hybrid

DLRM-permute1

DLRM-permute2
0.0

0.2

0.4

0.6

0.8

1.0
Th

ro
ug

hp
ut

Figure 8.7: Vermilion achieves higher throughput even with single-hop direct commu-
nication compared to oblivious networks with multi-hop routing, across real-world
demand matrices as well as synthetic demands. The throughput of oblivious
periodic networks is severely low when restricted to single-hop routing.

0.5µs, which is well within the practical capabilities of existing technologies [60].
Comparisons & Configurations: We set k = 3 for Vermilion, and compare
it with RotorNet [189], Opera [187] and Sirius [60]. We use the recommended
configurations of these systems as provided in their respective papers. Specifically,
RotorNet uses RotorLB load-balancing algorithm for managing congestion between
the ToRs; Opera uses k-shortest paths for short flows within the same timeslot
to reduce FCTs; Sirius uses valiant load balancing (VLB) [60,257]; and Vermilion
uses single-hop routing without any further congestion control mechanisms. All
systems use NDP [124] as the transport protocol. In the case of Vermilion, we turn
off all actions of NDP and set a constant congestion window size.
Workload: We launch the websearch [35] workload, a widely-used datacenter
benchmark from prior work. We simulate a pair-wise communication pattern
between racks and vary the load between 5% and 60% of the server link capacity.
Flows arrive according to a poisson process such that an average load is achieved
on each server’s outgoing link. We construct a periodic schedule for Vermilion
based on the average load1, while the other systems use an oblivious schedule
(emulating an all-to-all mesh topology) [60,187,189] for all loads. We report the
99-percentile flow completion times (FCTs) and the average link utilization across
server downlinks.
Vermilion significantly improves short flow FCTs: Figure 8.5 shows the flow
completion times for the websearch workload. Vermilion significantly improves the
99-percentile FCTs compared to existing designs, even at low loads. Figure 8.5a, at
5% load, shows that Vermilion improves the 99-percentile FCTs by 99.81% compared
to RotorNet, by 78.8% compared to Opera, and by 97.2% compared to VLB. This
is because Vermilion provides direct communication links between communicating
pairs, reducing the FCTs for short flows. As the load increases, Vermilion improves
the FCTs for short flows on average by 99.88% compared to RotorNet, by 88.01%
compared to Opera, and by 90.55% compared to VLB.
Vermilion does not compromise long flow FCTs: While Vermilion significantly
reduces short flow FCTs, it also improves the FCTs for long flows. Figure 8.5

1The instantaneous demand matrix is in fact variable but we optimize based on the average
load.

Chapter 8.3. Evaluation 211

2 4 6
Parameter k

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Th
ro

ug
hp

ut

Ring
Skew-0.5

(a) Impact of parameter k

8 16 32 48 64 12
8

25
6

Nodes

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Th
ro

ug
hp

ut

Ring (k=3)
Ring (k=6)
Skew (k=3)
Skew (k=6)

(b) Variation with network size

Figure 8.8: Vermilion’s throughput follows its theoretical lower bound with increasing
k and converges to the bound as the network size increases.

shows that Vermilion outperforms alternative approaches in terms of long flow
FCTs. This is primarily due to Vermilion’s demand-aware schedule, which provides
direct links between communicating pairs. At 5% load (Figure 8.5a), Vermilion
achieves comparable FCTs to other systems. At 10% load (Figure 8.5b), Vermilion
improves long flow FCTs by 17.68% compared to RotorNet, 18% compared to
Opera, and 91.5% compared to VLB. On average, as the load increases, Vermilion
achieves a 43% improvement in long flow FCTs compared to existing methods.
Vermilion’s high-throughput capability is especially beneficial for long flows, as they
are bandwidth-intensive and require a robust interconnect to improve FCTs.
Vermilion improves average link utilization: We sample the link utilization
of each server at 1ms intervals and report the average link utilization across all
downlinks in the network. Figure 8.6 highlights significant improvements in link
utilization with Vermilion. Up to 10% load, Vermilion achieves similar link utilization
to RotorNet and Opera. However, as the load increases, Opera’s utilization declines
beyond 20%. At 40% load, Vermilion improves average link utilization by 1.11×
compared to RotorNet, 2.04× compared to Opera, and 1.77× compared to VLB.
Figure 8.6b presents the CDF of the number of hops taken by Opera in the ToR-
to-ToR optical interconnect. Opera employs k-shortest paths to opportunistically
reduce FCTs for short flows, but this results in longer paths, lower throughput, and
consequently, reduced link utilization. In contrast, Vermilion provides direct single-
hop communication between ToR pairs, significantly enhancing link utilization.

8.3.2 Throughput
We now evaluate the throughput capabilities of Vermilion in comparison to existing
approaches by directly analyzing throughput using a linear programming approach,
eliminating protocol-level interference. We use Gurobi [117] to solve the linear
program for throughput maximization.
Topology: We consider a 16 node topology with degree 4 (incoming and outgoing
links), interconnected by a layer of optical circuit switches. We set the link capacity
to 25Gbps and the reconfiguration delay to 0.5µs as before. We obtain similar
results even for a larger network with 48 nodes (Figure 8.9).

212 Chapter 8. Demand-Aware Optical Interconnects

Oblivious (single-hop) Oblivious (multi-hop) Vermilion k=3 Vermilion k=6

Chessboard
All-to-All Ring

skew-0.1
skew-0.2

skew-0.3
skew-0.4

skew-0.5
skew-0.6

skew-0.7
skew-0.8

skew-0.9
0.0

0.2

0.4

0.6

0.8

1.0
Th

ro
ug

hp
ut

Figure 8.9: Throughput of oblivious periodic network and Vermilion for a 48 node
topology. Vermilion achieves higher throughput compared to oblivious networks,
even with single-hop direct communication.

Demand matrices: We evaluate across a variety of demand matrices gathered
from a 16 node GPU cluster running distributed training workload of a deep
learning recommendation model, under data-parallelism, hybrid parallelism and
permutations of the data-parallel workload. We further consider synthetic demand
matrices to stress the throughput capabilities of each system; parametrized by a
skew parameter that combines a permutation matrix with an all-to-all uniform
matrix. For instance, skew-0.1 indicates a 10% skew towards a permutation matrix.
Comparisons: We compare Vermilion with an ideal oblivious periodic network
that emulates an all-to-all mesh topology, using an ideal routing algorithm that
maximizes throughput. We call this system Oblivious (multi-hop). We also compare
Vermilion with oblivious systems restricted to single-hop. Vermilion explicitly uses
single-hop routing and we compare k = 3 and k = 6.
Vermilion consistently achieves high throughput: From Figure 8.7, we see
that Vermilion achieves high throughput across a wide range of communication
patterns. Specifically for distributed training workloads, we see that Vermilion
achieves 6.64% better throughput compared to oblivious periodic networks using
an ideal multi-hop routing. Figure 8.7 shows the clear advantage (and the need)
for multi-hop routing in the case of oblivious networks, with significantly lower
throughput under single-hop routing. Vermilion, on the other hand, achieves high
throughput with single-hop routing. Oblivious networks with an ideal routing
scheme, however, outperform Vermilion when the demand matrix is close to uniform.
This is expected since with k = 3, Vermilion’s lower bound is 2

3 . As the skew
increase, oblivious network design drops to a throughput of 1

2 as discussed in §8.1.2.
In contrast, Vermilion maintains a throughput greater than 2

3 even with skewed
demand matrices.
Vermilion’s throughput converges to the lower bound: Figure 8.8 confirms
our theoretical bounds established in §8.2.2. With increasing k, Figure 8.8a shows
that Vermilion’s throughput closely tracks its lower bound of k−1

k
. Further, even

with increasing size of the network, Figure 8.8b shows that Vermilion’s throughput
gradually converges to the theoretical lower bound of 2

3 for k = 3 and 5
6 for k = 6,

respectively. This demonstrates the robustness of Vermilion’s throughput guarantees
across different network sizes and demand matrices.

Chapter 8.4. Limitations and Future Work 213

8.4 Limitations and Future Work
Vermilion represents an initial step toward demand-aware periodic networks capable
of achieving high throughput for any demand matrix using only single-hop routing.
However, several challenges remain and open avenues for future research.
Temporal dependencies in communication patterns: Vermilion assumes
that the demand matrix, whether defined by rate (bits per second) or volume
(bits), is available and that the demands between source-destination pairs are
independent. However, certain workloads, such as distributed training, exhibit
temporal dependencies in their communication patterns. For example, while the
demand matrix may accurately represent traffic, specific portions of the demand
(e.g., from the backward pass) may only become available after the completion
of other parts (e.g., from the forward pass) [172,265]. Addressing these temporal
dependencies presents a significant research challenge and offers opportunities to
further optimize topologies like Vermilion for such workloads.
Structured communication patterns: Vermilion is designed to achieve high
throughput for any arbitrary demand matrix. However, some communication
patterns have inherent structure that could be exploited for further optimiza-
tion. For example, the ring-allReduce collective communication, commonly used
in distributed training, can be efficiently supported by a simple ring-emulated
topology with periodic schedules. Optimizing for specific communication patterns
is complementary to our approach. In principle, Vermilion could be extended to
recognize and leverage these structured communication patterns using existing
solutions [285], potentially achieving even higher throughput and faster completion
times. Exploring these optimizations is an avenue for future work.
Fault-tolerance and resilience: Vermilion does not explicitly address fault-
tolerance or resilience. While the periodic nature of the network may offer some
inherent resilience to failures, designing fault-tolerant periodic schedules remains
an open challenge. Failures in optical networks can be particularly difficult to
detect, as they often manifest as packet corruption due to optical collisions. Recent
work discusses techniques to mitigate link-layer and physical-layer errors [188].
Future work could explore the design of fault-tolerant schedules that can quickly
adapt to failures while still maintaining high throughput.
Heterogeneous link capacities: In this work, we assume that all physical links
in the topology have uniform capacity. However, datacenter topologies often
include links with heterogeneous capacities. For example, faulty auto-negotiation
between two NICs can result in a link operating at a lower capacity than expected.
In practice, these capacities are often multiples of a base rate. We believe Vermilion
can be generalized to accommodate heterogeneous link capacities by selecting an
appropriate base capacity and adjusting the topology to handle varying multiples
of that capacity. We leave the generalization of Vermilion for heterogeneous link
capacities to future work.

8.5 Related Work
Datacenter topologies have been widely studied in the literature both in the context
of traditional packet-switched networks [31, 65,113,115,179,246,248,256,281] and
emerging reconfigurable optically circuit-switched networks [60,68,79,81,98,104,

214 Chapter 8. Demand-Aware Optical Interconnects

109,114,121,148,182,187,189,234,249,261,264,279,286]. In the design of topologies,
various metrics of interest have been considered. For instance, uniformly high
bandwidth availability [31,115], expansion [248,256], fault-tolerance [179], and even
the life cycle management of a datacenter [281]. In the context of reconfigurable
networks, typically, the goal has been either to minimize the reconfiguration
overhead [60,189] or to minimize the bandwidth tax [98,109,266,279].

Recent works argue for a new measure i.e., ‘‘throughput’’, to understand the
maximum load supported by a topology [18,114,145,204,247]. In fact, the max-flow
that relates to the throughput of a topology, can be O(log n) factor lower than
the sparsest cut [145,168,169]. Namyar et al. study the throughput upper bound
for static datacenter topologies and show a separation between Clos (i.e., fat-trees)
and expander-based networks in terms of throughput [204]. In the context of
reconfigurable networks, only recently have the throughput bounds of demand-
oblivious networks been established [18, 42, 114]. In this chapter, we show the
first separation result between demand-aware and demand-oblivious networks and
present Vermilion that breaks the throughput bounds of existing demand-oblivious
periodic networks.

While throughput of a datacenter topology is interesting from a theory stand-
point, a vast majority of the literature focuses on practically achieving the ideal
throughput of a topology. For instance, congestion control [21, 35, 112, 164, 173,
193, 232, 269], buffer management [16, 19, 24, 38, 46, 133], scheduling [32, 37, 225],
load-balancing [34,110,152]. In fact, the underlying protocols can turn out to be
the key enablers (or limiters) of system performance in the datacenter [164]. Only
recently, congestion control [41,82,201] and routing [171] algorithms tailored for
reconfigurable networks have been considered. Interestingly, if Vermilion is deployed
in an all-optical setting, it does not require any additional congestion control,
buffer management and load-balancing mechanisms, since it relies solely on direct
communication.

8.6 Summary
We introduced Vermilion, a simple demand-aware optical interconnect that achieves
high throughput using only periodic circuit-switching and direct communication.
Through formal analysis, we established throughput bounds for Vermilion, marking
the first formal separation result that demonstrates demand-aware reconfigurable
networks’ superiority over oblivious counterparts in terms of throughput. We
believe that Vermilion offers a practical solution for datacenter networks with
predictable communication patterns. In the future, we plan to explore the temporal
dependencies in communication patterns that arise in distributed training workloads
and investigate how Vermilion can be further optimized for such scenarios.

9
Augmenting Demand-Aware Inter-
connects with Predictions
The rapid growth of datacenter traffic, accompanied with a slowdown in Moore’s
law for the capacity scaling of electrical switches has led to a surge in research
on reconfigurable optical interconnects, which offer high bandwidth and low
latency [60]. The diverse applications hosted by datacenters and their changing
communication patterns further necessitate a reconfigurable network architecture
that satisfies the network demands of the applications [222]. Prior work shows
the feasibility of such a network architecture: It has been established that optical
circuit-switching is practical [40, 60, 109, 188, 189, 221, 266]. Moreover, adapting
the network topology to the underlying communication patterns can improve the
performance of datacenter workloads [68, 98, 163, 176, 221, 266]. Optical circuit
switches are already commercially available that can reconfigure at millisecond
scale [220]. Recently, optical circuit switches have also been deployed in Google’s
Jupiter network [222]. Significant research efforts have been made to reduce the
reconfiguration time to a few microseconds [186,188,189] or nanoseconds [60].

Notably, periodic and fixed-duration reconfigurable optical circuit-switching
technologies have emerged as viable solutions for datacenter networks [60, 188].
In these networks, circuits are established periodically and remain active for a
fixed duration, enabling fast reconfigurations. Given their practicality, recent
work has focused on the theoretical throughput guarantees of such interconnects.
Demand-oblivious periodic networks have been shown to be tightly bounded by 1

2
in terms of throughput i.e., irrespective of the underlying communication pattern, a
demand-oblivious periodic network can guarantee a throughput of at least 1

2 and in
the worst case (a ring communication pattern), the throughput is at most 1

2 [18,42].
Although demand-oblivious approaches simplify the schedule and ideally achieve
a throughput of 1

2 , they require highly complex protocols, often non-standard,
in order to achieve this throughput. For instance, RotorNet [189], Sirius [60],
Opera [187], Mars [18], Shale [40], all require non-standard multi-hop routing and
congestion control with additional support from the network switches (ToRs).
Furthermore, due to the periodic nature of the topology, multi-hop routing results
in packet reordering that may have undesirable performance issues with modern
RDMA network cards.

In contrast, Vermilion breaks this bound, achieving a throughput of 2
3 by lever-

aging a demand-aware approach, while relying solely on single-hop routing and
fixed-duration reconfigurations. However, the demand-aware approach of Vermilion
is based on the assumption that the demand matrix is known in advance. In
practice though, the demand matrix is not known a priori, and the network must
adapt to evolving traffic patterns. This begs the question:

215

216 Chapter 9. Augmenting Demand-Aware Interconnects with Predictions

0.0 0.1 0.2 0.3 0.4 0.5
Robustness

(Arbitrarily bad predictions)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
ns

ist
en

cy
(P

er
fe

ct
 p

re
di

ct
io

ns
)

Low trust (= 1)

High trust (= 10)
Better

Vermilion Oblivious Vermilion Randomized

Figure 9.1: We present the first throughput analysis of demand-aware networks
from an online perspective by augmenting Vermilion with machine-learned predic-
tions of the underlying demand matrix. Our analysis demonstrates that Vermilion
achieves γ−1

γ
-consistency under perfect predictions and 1

2·γ -robustness under arbi-
trarily inaccurate predictions, where k serves as a trust factor. Our results reveal
a tradeoff between consistency and robustness, highlighting the cost of prediction
(estimation) errors when employing a demand-aware approach. The grey shaded
region indicates the convex hull of the consistency-robustness tradeoff curve with
our randomized algorithm.

How does the accuracy of demand estimation impact the potential throughput
gains in demand-aware networks?

Unfortunately, little is known in the literature about the throughput of demand-
aware networks when adding demand uncertainty to the mix. The majority of
works [98, 109, 176, 221, 266] assume that the demand matrix is known a priori
and derive the circuit-switching schedule in a demand-aware manner, often using
Birkhoff-von-Neumann (BvN) [66] or matrix rounding [57] techniques. However,
optimizing the network topology based on an estimated matrix is susceptible to
prediction errors, which can result in significantly lower throughput than even
a simple demand-oblivious topology. For instance, if the estimated demand
matrix resembles a ring, the throughput of a demand-aware network can reach
as high as 1 with perfect predictions, but drop to as low as O(1

n
) if the actual

communication pattern is all-to-all. In contrast, a demand-oblivious periodic
network guarantees a throughput of at least 1

2 in both cases. Given the practical
challenges of accurately predicting or estimating the demand matrix, it is crucial to
understand the performance of demand-aware networks under demand uncertainty.

In this work, we initiate the study of demand-aware networks under demand
uncertainty, focusing on the design of periodic and fixed-duration reconfigurable
optical interconnects. We develop an analytical framework from an online per-
spective, where an algorithm only has access to an estimated demand matrix from
a prediction oracle, without foresight into the actual demand matrix or future
traffic. Building upon existing work, we augment Vermilion with predictions and
analyze its performance using competitive analysis, comparing our online algorithm
with an offline optimal algorithm that has full visibility of the underlying demand
matrix. Consistent with prior work, we focus on two metrics: consistency, which
measures the performance under perfect predictions, and robustness, which assesses
performance under arbitrarily poor predictions. Additionally, we define an error

217

function to capture the differences between the estimated and actual demand
matrices, allowing us to parameterize the competitive ratio based on prediction
errors.

We present the first throughput analysis of demand-aware networks from an
online perspective by augmenting Vermilion with machine-learned predictions of
the underlying demand matrix, as illustrated in Figure 9.1. Our analysis shows
that Vermilion achieves γ−1

γ
-consistency under perfect predictions and 1

2γ
-robustness

under arbitrarily poor predictions, where γ ≥ 1 is a user-specified trust factor
which can be chosen depending on how much one trusts the prediction. Our
results reveal a tradeoff between consistency and robustness, emphasizing the
cost of prediction (estimation) errors when adopting a demand-aware approach.
We further present a randomized algorithm building upon Vermilion, revealing an
entire spectrum of consistency-robustness tradeoff curves depending on the trust
factor. For instance, with high trust, our randomized algorithm has a consistency
of 1 + 1

2·γ −
Hγ

γ
and an improved robustness of Hγ

2·γ , where Hγ denotes the γth

harmonic number. In contrast, demand-aware networks based on the Birkhoff-
von Neumann decomposition (e.g., Helios [98]) exhibit a competitive ratio of 1
under perfect predictions but have unbounded robustness (∞) under arbitrarily
poor predictions. These results highlight the practical challenges of applying
demand-aware techniques to periodic networks in the presence of prediction errors.

We evaluate the performance of Vermilion with predictions through extensive
simulations on both real-world and synthetic traffic matrices under varying pre-
diction accuracies. Our results demonstrate the potential of machine-learned
predictions to improve the throughput of reconfigurable optical interconnects,
while also highlighting the challenges posed by prediction inaccuracies. We believe
this work presents several opportunities for future research in both systems and
theory, which we discuss at the end of this chapter. Notably, improving robustness
and identifying the Pareto-optimal frontier of the consistency-robustness tradeoff
remain open challenges for future investigation.

In summary, our main contributions are as follows:

■ We formalize demand-aware network design in an online setting with the
aim to maximize throughput.

■ We take Vermilion into the online setting with predictions and analyze its per-
formance through competitive analysis. We demonstrate that the augmented
Vermilion achieves γ−1

γ
-consistency under perfect predictions and exhibits

1
2γ

-robustness under arbitrarily poor predictions. Here, γ serves as a trust
factor.

■ We present a randomized algorithm building upon Vermilion, revealing an
entire spectrum of consistency-robustness tradeoff curves depending on the
trust factor γ.

■ We evaluate the performance of Vermilion with predictions through extensive
simulations on both real-world and synthetic traffic matrices under varying
prediction accuracies, empirically confirming our theoretical results.

218 Chapter 9. Augmenting Demand-Aware Interconnects with Predictions

9.1 Background & Motivation

To motivate our work, we first describe the physical network architecture and the
demand-aware network design problem for throughput maximization. We then
discuss the limitations of demand-aware networks under demand uncertainty and
the challenges of integrating predictions into the design of demand-aware networks.
Physical network architecture. This chapter focuses on periodic, fixed-duration
reconfigurable networks, which have gained significant practical relevance in recent
years [60,188]. Following previous work [40,60,186,189], we consider a network
consisting of n nodes, each connected by d directed physical links with capacity c.
The network is interconnected via optical circuit switches, which execute a sequence
of matchings in a periodic manner. As a result, the node-to-node connectivity
can be represented as a periodic graph that evolves over time. Figure 9.2 shows
an example of a periodic network with 6 nodes and degree 1 in each timeslot.
Specifically, a periodic graph consists of a sequence of Γ directed graphs (with
degree bound d), where Γ represents the period of the graph. Each graph is active
for transmission over a fixed duration of 1 time unit, after which the network
topology is reconfigured. The reconfiguration process requires ∆r time units, during
which transmissions are paused. This implies that the network spends a fraction ∆r

of its time in reconfiguration. Here, (1−∆r) can be interpreted as the duty cycle
of the network. Additionally, we assume that the network operates synchronously,
with all nodes synchronized to a common clock [188]. Recent technologies are
capable of reconfiguration delays as low as 3.84ns, allowing the timeslot durations
to be chosen such that a duty cycle of (1−∆r) = 0.99 can be achieved [60].

Timeslot 1 Timeslot 2 Timeslot 3

Periodic

Timeslot 4 Timeslot 5

Figure 9.2: A periodic fixed-duration reconfigurable network operates by switching
between different configurations (graphs) over time. Each configuration remains
active for a fixed duration (timeslot), during which data transmission occurs.
After each active timeslot, the network undergoes a reconfiguration phase, which
consumes a fraction ∆r of time, during which transmissions are paused. The entire
network is defined by a repeating sequence of these configurations, forming the
periodic network.

Demand-aware network design. Two primary types of network designs have
been explored using the architecture described above. The first type, demand-
oblivious networks, selects a sequence of graphs that effectively emulates a com-
plete graph over time. This type guarantees a throughput of 1

2 regardless of the
communication pattern [18, 42]. The second type, demand-aware periodic net-
works, optimizes the topology by selecting graphs based on an estimated demand
matrix, aiming to enhance throughput. However, this demand-aware design is

Chapter 9.2. Preliminaries and Problem Formulation 219

typically addressed from an offline perspective, assuming a perfect demand ma-
trix [98,109,176,221]. In practice, networks operate in an online manner, where
demand matrices are subject to prediction errors, which can result in a significantly
lower throughput than demand-oblivious networks. For instance, if the estimated
demand matrix represents a permutation matrix (ring communication pattern),
similar to the graph of timeslot t1 in Figure 9.2, a demand-aware periodic network
will aim to maximize throughput by selecting only the graph depicted in timeslot
t1 in its periodic schedule. This would yield a throughput of 1, provided that
there are no estimation errors. However, if the actual demand matrix resembles a
different pattern, like the graph in timeslot t5, then the chosen schedule (which
only includes t1) would result in a throughput of 1

5 since it requires transmitting
over paths of length 5, which is significantly worse than the throughput of 1

2
guaranteed by an oblivious periodic network that emulates a complete graph using
all five timeslots shown in Figure 9.2. This work focuses on the design and analy-
sis of demand-aware periodic networks in an online setting, aiming to maximize
throughput while accounting for imperfect demand predictions.
Challenges. Integrating predictions into demand-aware network design presents
several key challenges. First, the network must perform (as close as possible to)
optimally when the demand predictions are accurate. Second, it must be robust
to prediction errors, i.e., maintain reasonable performance even when predictions
deviate significantly from actual demands. Lastly, the network’s performance
should degrade gracefully as prediction errors increase. These challenges raise a
critical question: To what extent can demand-aware networks outperform demand-
oblivious networks under demand uncertainty? Understanding these tradeoffs
requires a formal analysis of demand-aware networks in an online setting, which
we initiate in this work.

9.2 Preliminaries and Problem Formulation
We begin by defining the throughput of periodic networks and then introduce the
online periodic network design problem.

9.2.1 Throughput of Periodic Networks
The throughput serves as an essential metric for the assessment of the sustainable
load a network can handle. We rely on the definitions introduced in the previous
chapters. We briefly discuss the demand matrix, throughput and the emulated
graph concepts here for completeness.

The demand matrix specifies the demand in bits per second for each source--
destination pair of nodes in the network. As established in prior work [204], we
consider the hose model [94], in which one assumes that the total demand arriving
and leaving each node is less than its corresponding capacity limits.

Definition 22 (Demand matrix). Given a set V of n nodes, each with d incoming
and outgoing links with capacity c, a demand matrix M has size n× n, wherein
for each pair u, v of nodes, the entry mu,v in M specifies the demand from u to
v in bits per second. Any demand matrix has the property that for every node
u, the incoming and the outgoing demand do not exceed the overall capacity, i.e.,∑︁

v∈V mv,u ≤ c · d and ∑︁v∈V mu,v ≤ c · d.

220 Chapter 9. Augmenting Demand-Aware Interconnects with Predictions

Periodic and static graphs. By default, our graphs are directed and may
have parallel edges. We work both with static and periodic graphs. Herein, a
periodic graph with period length Γ is defined as G = (V, E1, . . . , EΓ), where Ei

is the (directed multi-) edge set of the i-th period. Moreover, each edge e ∈ Ei,
i ∈ {1, . . . , Γ}, has a capacity c(e). Denote by P the set of all (periodic) paths in
G and by Pu,v the set of all paths from u to v in G. A (feasible) flow in a (static
or periodic) G is a function F : P → R+ such that for every edge e ∈ Ei, i ∈ Γ,
the sum of flows traversing that edge does not exceed its capacity c(e).
Throghput. Given a demand matrix M, and a reconfigurable network modeled
as a (static or periodic) directed graph G = (V, E), we define the throughput as
the maximum scaling factor such that, for each pair u, v of nodes, there exists a
feasible flow that satisfies the scaled demand for each node pair u, v.

Definition 23 (Throughput). Let M be a demand matrix and G = (V, E) be
a (static or periodic) graph. For a feasible flow F in G, the throughput is the
greatest number ϑ ∈ R+ such that for each node pair u, v ∈ N , the sum of flows
on paths from u to v is at least ϑ ·mu,v, where mu,v is the demand. We denote by
θ(M, G) the maximum throughput achievable by a feasible flow. We write θ(M)
or θ for θ(M, G) whenever G and/or M are clear from context.

Emulating periodic graphs. Central to our work is a result regarding the
throughput-preserving conversion from static into periodic graphs (see Chapter 7).
Specifically, for a given integer d, we can convert any static regular graph G into
a periodic graph GΓ of period Γ timeslots that satisfies the following properties:

■ The edge set Ei, in a timeslot i ∈ {1, . . . , Γ}, has maximum in- and out-degree
d;

■ there are Γ = ⌈n
d
⌉ timeslots in total; and

■ for any static feasible flow F for G, one can compute a periodic feasible flow
FΓ for GΓ with the same throughput.

Recall from Chapter 7 that the converse holds as well (Lemma 6 and Lemma 7),
i.e., given a periodic graph, one can compute a throughput-preserving static graph.
The emulated graph plays a crucial role in our throughput analysis.

9.2.2 Online Periodic Network Design
In practice, we cannot expect to know the exact demand in advance. Thus, we
need to reconfigure the network before the actual demand matrix is revealed. In
the online periodic network design problem, the algorithm is tasked with designing
a periodic graph that serves the traffic demand while maximizing throughput. The
algorithm can only observe prior demand and does not know the demand to be
expected in advance.

Typically, the problem is intended to repeat over many rounds, and in each
round the algorithm has to return a new periodic network. In this work however,
we focus on the case where the problem lasts only for one round. This is well
motivated in the setting where changing from one to the next periodic network
comes at a fixed cost that does not depend on the amount of change between

Chapter 9.2. Preliminaries and Problem Formulation 221

the last and the new network. In the one-round setting (without predictions) our
algorithm thus has to outpur a periodic network without any prior information.
This exactly resembles the demand-oblivious setting.
Competitive ratio. A rigorous framework for designing algorithm that deal
with uncertainty is the framework of competitive analysis [72]. In this setting,
the performance of such online strategies is typically analyzed using competitive
ratios, which compare the performance of an online algorithm (operating with
uncertainty) to an optimal offline solution (which has full knowledge of the future
demand). The goal is to minimize the worst case ratio between the online and
offline solutions among all input sequences. In competitive analysis of maximization
problems (recall that our objective is to maximize throughput), the goal is to
maximize the competitive ratio, defined as ALG(σ)/OPT (σ) for the worst-case
input σ, where OPT is the performance of an optimal offline algorithm and ALG
is the performance of the (deterministic) online algorithm. This definition can
be extended to randomized algorithms by considering the expected performance
of the algorithm, and the adversary that generates the input sequences cannot
see the random choices made by the algorithm. For the online periodic network
design problem (running for one round), the algorithm receives no input and is
compared to the optimum. Let M̂ be the actual demand matrix, let OPT (M̂) be
the periodic network that achieves the highest throughput for M̂, and let ALGM̂
be the throughput achieved by the algorithm on the demand matrix (recall that
the algorithm does not receive M̂ as input). Then, the algorithm is c-competitive,
if, for any demand matrix M̂,

ALGM̂
OPT (M̂)

≥ c.

As previously mentioned, a throughput of 1/2 can be achieved by simply
outputting a complete graph (Chapter 7). Since the optimal offline solution
(OPT) achieves at most a throughput of 1, this implies that a simple static online
algorithm that always outputs a complete graph is 1/2-competitive. However,
without additional information about the demand matrix, no deterministic online
algorithm can achieve a competitive ratio better than 1/2. This limitation arises
from the inherent uncertainty in online scenarios, where the network configuration
is fixed before the actual traffic demand is revealed, preventing the algorithm from
adapting to the specific traffic needs. Next, we show that online algorithms can
indeed improve over the competitive ratio of 1/2, given that they are augmented
with accurate predictions.

9.2.3 Online Periodic Network Design with Predictions
In practice, the reconfiguration of optical networks must happen without knowing
the exact traffic demand in advance. However, predictions based on historical data
or learned patterns can be used to improve the network’s performance, particularly
its throughput. The challenge then becomes how to design an algorithm that can
leverage these predictions while remaining robust to potential inaccuracies.

In the offline setting, where the traffic matrix is fully known beforehand, it
is possible to design a periodic network that achieves a throughput of 2/3 [18],
which significantly improves upon the throughput 1/2 solution from the fully

222 Chapter 9. Augmenting Demand-Aware Interconnects with Predictions

oblivious online setting. This improvement demonstrates the value of incorporating
additional information, like predictions, into the network design process.
Competitive ratio of prediction-augmented algorithms. Building on this
idea, we explore online algorithms that are augmented with predictions. The
predictions model [198] allows online algorithms to receive advice in the form of
traffic predictions. However, these predictions can be faulty, and the performance
of the algorithm depends on how well it balances reliance on this advice. The key
element of this model is that the errors made by the predictor are quantified by an
error function. The competitive ratio of the algorithm is then analyzed in terms
of this error: when predictions are accurate, the algorithm should approach the
performance of the optimal offline solution (consistency), while for large errors,
it ideally should return a solution that is very close to the guarantees of a non-
augmented online algorithm (robustness).
Robustness. Robustness refers to the ability of an online algorithm to maintain
a satisfactory level of performance even when the predictions about the traffic
demand are significantly flawed or inaccurate. In practical scenarios, the predictions
can deviate substantially from the actual demand due to unforeseen changes in
user behavior, network conditions, or other external factors. A robust algorithm
is designed to handle such discrepancies, ensuring that its performance does not
degrade excessively under adverse prediction scenarios. Ideally, a robust algorithm
will still meet or exceed the performance guarantees provided by standard online
algorithms, thus demonstrating its capability to operate effectively regardless of
the accuracy of the predictions.
Consistency. Consistency, on the other hand, measures how closely the perfor-
mance of the prediction-augmented algorithm can align with that of an optimal
offline solution when the predictions are accurate. When the predicted traffic
matrix closely resembles the actual demand, a consistent algorithm should achieve
throughput that approaches the optimal level, maximizing resource utilization and
minimizing latency. The aim of consistency is to ensure that the algorithm can
leverage accurate predictions effectively, resulting in performance that is competi-
tive with the best possible outcome that could be achieved with complete knowledge
of future demands. High consistency indicates that the algorithm is well-designed
to capitalize on reliable predictions, thus enhancing its overall effectiveness in
network design.

In the context of online periodic network design, the algorithm receives a pre-
dicted traffic matrix before outputting the network configuration. The competitive
analysis in this setting is generalized to account for the prediction error, with the
aim of achieving high throughput when the predictions are accurate while maintain-
ing a robust performance when they are not. Let M̂ be the ground truth demand
matrix and let M be the predicted demand matrix, which our algorithm receives
as input. Moreover, denote by OPT (M̂) the best achievable throughput for the
actual demand matrix, and let ALGM̂(M) be the throughput that the algorithm
achieves for the actual demand matrix M̂, when given the predicted matrix M
as input. Then, we define the competitive ratio c of our prediction-augmented
algorithm is

max
M

ALGM̂(M)
OPT (M̂)

.

Chapter 9.3. Analysis of BvN Decomposition-Based Demand-Aware
Networks 223

9.3 Analysis of BvN Decomposition-Based Demand-
Aware Networks

A vast majority of the literature on demand-aware networks [68,176,221] --- not
strictly limited to periodic fixed-duration architecture --- relies on the Birkhoff-von
Neumann (BvN) decomposition [66] to optimize the network topology based on an
estimated demand matrix. The BvN decomposition is a well-known technique for
decomposing a non-negative doubly-stochastic matrix into a convex combination
of permutation matrices. In the context of demand-aware network design, the
BvN decomposition (or an approximation [68]) is used to define the schedule
for reconfigurations of a demand-aware network. In this section, we analyze the
performance of BvN decomposition-based demand-aware networks under demand
uncertainty, focusing on the robustness of the network to prediction errors.

BvN decomposition-based demand-aware networks are near-optimal under
prefect predictions [68], but unsurprisingly, their performance is in fact arbitrarily
inaccurate even with a small deviation from the estimated matrix.

Theorem 23 (Competitive ratio of BvN-based Demand-Aware Networks). The
competitive ratio of a BvN decomposition-based demand-aware network is un-
bounded under imperfect predictions (robustness) i.e., there exist estimated demand
matrices for which a prediction error ϵ > 0 results in a competitive ratio of ∞.

Proof. We prove our claim using a simple example. Consider the following pre-
dicted demand matrix M and the actual demand matrix M̂. Without loss of
generality, we consider the physical network degree to be d̂ = 1 in this example.

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0 0
1 0 0 0 · · · 0 0
0 0 0 1 · · · 0 0
0 0 1 0 · · · 0 0
...
0 0 0 0 · · · 0 1
0 0 0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1− nϵ ϵ ϵ · · · ϵ ϵ
1− nϵ 0 ϵ ϵ · · · ϵ ϵ

ϵ ϵ 0 1− nϵ · · · ϵ ϵ
ϵ ϵ 1− nϵ 0 · · · ϵ ϵ
...
ϵ ϵ ϵ ϵ · · · 0 1− nϵ
ϵ ϵ ϵ ϵ · · · 1− nϵ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Notice that the predicted demand matrix M is a permutation matrix, and thus,
BvN decomposition results in a single permutation matrix. Approaches that
rely on BvN decomposition (e.g., Eclipse [68]) construct a graph directly from
this decomposition, which, in this case, is a single permutation (matching). The
resulting graph forms pairwise cycles: between node 1 and node 2, between node 3
and node 4, and so on. Consequently, the graph becomes disconnected.

224 Chapter 9. Augmenting Demand-Aware Interconnects with Predictions

0.0 0.1 0.2 0.3 0.4 0.5
Robustness

(Arbitrarily bad predictions)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
ns

ist
en

cy
(P

er
fe

ct
 p

re
di

ct
io

ns
)

Low trust (= 1)

High trust (= 10)

Vermilion Generalized Vermilion

Figure 9.3: The generalization of Vermilion opens several points along the consistency-
robustness tradeoff space, as indicated in blue. Our generalization allows γ to be a
real value, while the original work restricts (necessitates) γ to be an integer value.

While this construction provides optimal throughput for a perfectly predicted
matrix, the actual demand matrix M̂ may differ slightly from the predicted matrix,
as illustrated above. Since the constructed graph is disconnected, any ϵ deviation
in demand specified by M̂ cannot be routed, and the throughput drops to zero.
As a result, the competitive ratio becomes unbounded (i.e., ∞).

We believe that this simple insight provides a strong motivation for exploring
alternative approaches to demand-aware network design that are more robust
to prediction errors. Theorem 23 suggests that optimal BvN decompositions
do not necessarily result in optimal demand-aware network designs and implies
that sacrificing consistency for robustness is inevitable. We analyze alternative
approaches in the subsequent sections.

9.4 Analysis of Vermilion with Predictions
A recent work proposes Vermilion as a simple alternative to BvN-based approaches
for periodic and fixed-duration reconfigurable network architectures (see §9.1). The
authors demonstrate a lower bound of 2

3 for the throughput of Vermilion, surpassing
the throughput bound of demand-oblivious networks. However, this result assumes
perfect knowledge of the demand matrix, which is rarely the case in practice.
Notably, Vermilion includes a parameter that balances throughput and delay, even
in the offline setting. As we will show in this section, this parameter allows
Vermilion to remain throughput-competitive under prediction errors, unlike BvN-
based approaches. In this section, we analyze the performance of Vermilion under
demand uncertainty, focusing on its consistency and robustness in the presence of
prediction errors.

We generalize Vermilion to include a trust factor γ, relevant to the context
of prediction errors. The trust factor γ = k

ℓ
represents the ratio between the

bandwidth used in a demand-aware (k) and demand-oblivious (ℓ) manner; where
k, ℓ are integers and ℓ ≤ k. The previous chapter (§8) sets ℓ = 1, but as we show
later, the choice of ℓ reveals additional points along the consistency-robustness
tradeoff space. We present the generalized Vermilion algorithm in Algorithm 7. For
clarity, we highlight our changes (for generalization) in blue.

Chapter 9.4. Analysis of Vermilion with Predictions 225

Algorithm 7: Generalized Vermilion
Input : Demand matrix M, number of nodes n,

degree d̂, link capacity c, parameter k, and parameter ℓ
(generalization)

γ = k
ℓ

is the trust factor
1 procedure generateSchedule(M, k, ℓ):
2 if γ < 2 then
3 G = completeGraph(n) ▷ No trust
4 else
5 G = emulatedTopology(M, k, ℓ) ▷ Positive trust in predictions
6 end if
7 for i = 1 to k · n do ▷ Sequence of matchings for the periodic schedule
8 remove one perfect matching Mi in G
9 add Mi to schedule

10 end for
11 return M

12 procedure emulatedTopology(M, k, ℓ):
13 G = (V, E), V = {1, ..., n}, E : V × V → N ▷ Initialize a multigraph
14 Normalize the demand matrix M
15 M← (k − ℓ) · n · M
16 R = Round(M) ▷ Matrix rounding
17 for each node pair (u, v) do ▷ # Edges between u, v
18 E((u, v))← R(u, v) ▷ Allocate bandwidth for bulk demand
19 E((u, v))← E((u, v)) + ℓ ▷ Allocate bandwidth for residual

demand
20 end for
21 ▷ Ensure that the final graph is regular
22 xin ← k · n− xin ▷ Remaining in-degree
23 xout ← k · n− xout ▷ Remaining out-degree
24 G′ = (V, E ′) = ConfigurationModel(xin, xout)
25 E ← E ⊎ E ′

26 return G

Theorem 24 (Consistency of Vermilion). Suppose that the predicted input M
perfectly matches the true demand M̂, i.e., M = M̂. Then the competitive ratio
of Vermilion with trust factor γ ≥ 1 is lower-bounded by max

(︂
1
2 , γ−1

γ

)︂
.

Proof. We prove the result by showing that the demand matrix M scaled by a
factor of γ−1

γ
is feasible under the capacity limits of the multigraph G constructed

by Vermilion. Without loss of generality, assume that each physical link has capacity
1 and the physical topology has a maximum degree d̂. The emulated graph G
constructed by Vermilion achieves a degree of k · n, with each link having a capacity
of 1

k·n .
In order to emulate a degree of k · n, Vermilion requires a periodic schedule of

length k · n
d̂

timeslots, as the degree in each timeslot is d̂. Moreover, the demand
matrix M, constrained by the hose model, has the property that the sum of every
row and column is at most d̂.

We now upscale both the demand matrix M and the link capacities of the
emulated multigraph by the factor k·n

d̂
. Consequently, it is equivalent to analyze

226 Chapter 9. Augmenting Demand-Aware Interconnects with Predictions

the throughput of the emulated graph G, in which each node has a degree of
at most k · n and each edge has capacity 1, under the scaled demand matrix
M′ = k·n

d̂
· M. In this scaled matrix, the sum of each row and column is at most

k · n.
Let us analyze the throughput of Vermilion. If γ < 2, Vermilion effectively

constructs a complete graph, which has a throughput of 1
2 · (1−∆r) [18,42]. When

γ ≥ 2, edges are added according to matrix rounding, where the rounding process
uses (k−ℓ)·n

d̂
M = k−ℓ

k
M′. These edges satisfy all demand except for entries that

were rounded down. Since the sum of each row and column in the demand matrix
(and the rounded matrix) is at most (k − ℓ) · n, entries are either rounded up or
down, and links are added to non-zero entries.

The rounding procedure uses at most (k − ℓ) · n incoming and outgoing links
per node, leaving at least ℓ · n links available for each node. The residual demand
is served by adding extra edges between node pairs. Since the residual demand
between any node pair is less than 1, a single additional link can fully satisfy the
demand.

Due to reconfiguration, each link loses a fraction (1 − ∆r) of its capacity,
resulting in an overall throughput of k−ℓ

k
· (1−∆r) = γ−1

γ
· (1−∆r). An optimal

offline algorithm achieves a throughput of at most (1−∆r). Therefore, for γ < 2,
Vermilion achieves a throughput of 1

2 · (1−∆r), yielding a competitive ratio of 1
2 .

For γ ≥ 2, Vermilion achieves a throughput of γ−1
γ
· (1−∆r), with a competitive

ratio of γ−1
γ

.
Thus, the overall competitive ratio is max

(︂
1
2 , γ−1

γ

)︂
.

We next turn to the robustness of Vermilion, which is the main concern under
prediction errors. While Theorem 24 shows that the competitive ratio under perfect
predictions (consistency) can be improved by increasing the trust factor γ, our
next result reveals a tradeoff between consistency and robustness.

Theorem 25 (Robustness of Vermilion). The competitive ratio of Vermilion with
trust factor γ ≥ 1 is at least 1

2·γ , no matter the quality of the prediction.

Proof. We show that Vermilion achieves a throughput of at least 1
2·γ · (1−∆r) for

any predicted demand matrix M and actual demand matrix M̂. Consequently,
the competitive ratio will be at least 1

2·γ . First, recall that the parameter γ = k
ℓ

represents the ratio between the number of links used in a demand-aware (k) and
demand-oblivious (ℓ) manner. For any given demand matrix, Vermilion adds at
least ℓ links between every pair of nodes, ensuring a minimum level of connectivity
regardless of the specific demand pattern. Next, consider the capacity of each
of these links. Since Vermilion operates over a periodic schedule of length k·n

d̂
, the

capacity of each link in the emulated graph is d̂
k·n . This implies that the ℓ links

added between each pair of nodes form a complete graph, where the total capacity
between each pair is ℓ

k
· d̂

n
.

Now, observe that in a complete graph where the capacity between each pair
of nodes is d̂

n
, it is well known that the network achieves a throughput of at least

1
2 · (1−∆r) for any demand matrix [18,42]. In our case, since the capacity between
each pair of nodes is scaled by a factor of ℓ

k
compared to this complete graph, the

throughput achieved by Vermilion is scaled accordingly.

Chapter 9.5. Randomized Algorithm and Tradeoff Curves 227

Thus, using the ℓ links, Vermilion can guarantee a throughput of at least

1
2 ·

ℓ

k
· (1−∆r) = 1

2 · γ · (1−∆r)

As the throughput of an optimal offline algorithm is at most 1 −∆r, Vermilion’s
competitive ratio is

1
2·γ · (1−∆r)

1−∆r

= 1
2 · γ .

Figure 9.3 summarizes our results. In essence, the trust factor γ allows for
various choices along the consistency-robusntess tradeoff space. An open question
is how smoothly the competitive ratio degrades as the prediction error increases.
Devising a suitable error function is particularly challenging due to the non-trivial
objective of maximizing throughput. We leave it for future work to study the
smoothness.

9.5 Randomized Algorithm and Tradeoff Curves
Vermilion is a deterministic algorithm and our analysis so far reveals a specific
curve in the consistency-robustness tradeoff space. We now extend Vermilion to
a randomized algorithm by introducing a probability mass function P (R) that
samples the trust factor r from the set {1, 2, . . . , γ}. Algorithm 8 presents the
randomized Vermilion algorithm. We deliberately set ℓ = 1 in the randomized
version of Vermilion and hence γ = k is restricted to integer values. We show that
the competitive ratio of the randomized Vermilion algorithm is a convex combination
of the competitive ratios of the deterministic Vermilion algorithm with different trust
factors, revealing a entire region of points in the consistency-robustness tradeoff
space.

Algorithm 8: Randomized Vermilion
Input : Demand matrix M, number of nodes n,

degree d̂, link capacity c, parameter γ = k, probability mass
function P (R)

1 procedure generateSchedule(M):
2 Sample r from the probability mass function P (R), where 1 ≤ r ≤ k
3 G = emulatedTopology(M, r, 1)
4 for i = 1 to k · n do ▷ Sequence of matchings for the periodic schedule
5 remove one perfect matching Mi in G
6 add Mi to schedule
7 end for
8 return M

We first analyze the consistency of the randomized Vermilion algorithm i.e., the
competitive ratio under perfect predictions of the demand matrix M = M̂.

Theorem 26 (Consistency of randomized Vermilion). The competitive ratio of the
randomized Vermilion algorithm (RAND) under perfect predictions, for a chosen

228 Chapter 9. Augmenting Demand-Aware Interconnects with Predictions

0.0 0.2 0.4
Robustness

(Arbitrarily bad predictions)

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Co

ns
ist

en
cy

(P
er

fe
ct

 p
re

di
ct

io
ns

)

(a) Convex hull for γ = 3

0.0 0.2 0.4
Robustness

(Arbitrarily bad predictions)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
ns

ist
en

cy
(P

er
fe

ct
 p

re
di

ct
io

ns
)

(b) Convex hull for γ = 5

0.0 0.2 0.4
Robustness

(Arbitrarily bad predictions)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
ns

ist
en

cy
(P

er
fe

ct
 p

re
di

ct
io

ns
)

(c) Convex hull for γ = 100

Figure 9.4: The convex hulls of the competitive ratios for the randomized Vermilion
algorithm, corresponding to various trust factors γ, reveal the entire tradeoff space.
The probability mass function P (R) employed by the randomized algorithm defines
the points within each convex hull.

and fixed parameter γ, a probability mass function P (R), is given by,

min
M=M̂

E(RANDM̂(M))
OPT (M̂)

≥
γ∑︂

r=1
Pr(R = r) ·max

(︃1
2 ,

r − 1
r

)︃
Proof. We refer to the randomized Vermilion (Algorithm 8) as RAND. Our algo-
rithm samples the trust factor r from the probability mass function P (R), where
r ∈ {1, . . . , γ}. Given that the predicted demand matrix is perfect, the throughput
of RAND for a sampled trust factor r would then be at least max(1

2 , r−1
r

) · (1−∆r),
from Theorem 24. The expected throughput of RAND can now be expressed as,

E(RAND(M̂)) ≥ (1−∆r) ·
γ∑︂

r=1
Pr(R = r) ·max

(︃1
2 ,

r − 1
r

)︃
The optimal offline algorithm has a throughput of 1−∆r. The competitive ratio
of RAND i.e., E(RAND)

OP T
follows from the above inequality.

Theorem 26 shows a degradation in the consistency of Vermilion for a chosen
trust factor γ, compared to the deterministic algorithm. However, this degradation
is compensated by an improvement in the robustness of the randomized algorithm,
as we show next.

Theorem 27 (Robustness of randomized Vermilion). The competitive ratio of the
randomized Vermilion algorithm (RAND) under prediction errors, for a chosen and
fixed parameter γ, a probability mass function P (R), is given by,

min
M,M̂

E(RANDM̂(M))
OPT (M)ˆ ≥ 1

2 ·
γ∑︂

r=1
Pr(R = r) · 1

r

Proof. The randomized algorithm RAND samples the trust factor r from the
probability mass function P (R), where r ∈ {1, . . . , γ}. Given that the predicted
demand matrix is imperfect, the throughput of RAND for a sampled trust factor
r would then be at least 1

2·γ · (1−∆r), from Theorem 25. The expected throughput
of RAND can be expressed as,

E(RAND(M̂)) ≥ (1−∆r) ·
γ∑︂

r=1
Pr(R = r) · 1

2 · r

Chapter 9.6. Evaluation 229

The optimal offline algorithm has a throughput of 1−∆r. The competitive ratio
of RAND i.e., E(RAND)

OP T
follows from the above inequality.

Figure 9.4 illustrates our results on the consistency and robustness of the
randomized Vermilion algorithm. For each trust factor γ, the set of all possible
probability mass functions defines a convex hull that represents the tradeoff
space between consistency and robustness. Importantly, the convex hull for any
parameter γ is contained within the convex hull for any larger parameter γ′ > γ.
This indicates that the entire tradeoff space can be accessed by increasing γ and
appropriately selecting the probability mass function P (R). We state without proof
the following corollary that states the consistency and robustness of the randomized
Vermilion algorithm for the special case of uniform probability mass function. The
proof is a direct consequence of Theorem 26 and Theorem 27. Figure 9.1 illustrates
the following result.

Corollary 2. The competitive ratio of the randomized Vermilion algorithm using
uniform probability mass function, i.e., Pr(R = r) = 1

γ
, for a chosen and fixed

parameter γ, is given by,⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + 1

2γ
− Hγ

γ
Perfect predictions (consistency)

Hγ

2·γ Large prediction error (robustness)

where Hγ is the γ-th harmonic number.

Overall, the randomized Vermilion algorithm offers a wide range of points in the
consistency-robustness tradeoff space, providing a flexible solution for demand-
aware networks with prediction errors.

9.6 Evaluation
We evaluate the throughput of the Vermilion algorithm under prediction errors. Our
evaluation aims at answering the following main questions:
(Q1) How does the throughput of Vermilion vary with prediction errors?

We observe that the throughput of Vermilion indeed smoothly degrades as the
error in the predicted demand matrix increases. The throughput of Vermilion is
robust to prediction errors, as the competitive ratio remains bounded by 1

2γ
, as

suggested by Theorem 27.
(Q2) Does the throughput of Vermilion match its theoretical bounds for consistency
and robustness?

We find that the throughput of Vermilion is within the theoretical bounds for
both consistency and robustness. Across various demand matrices and errors, we
find that the throughput of Vermilion is significantly better than the theoretical
lower bounds we obtained in the previous sections, indicating that our bounds can
potentially be improved.
(Q3) What is the impact of the trust factor γ on the throughput of Vermilion?

We observe that the trust factor γ indeed plays a crucial role in determining
the throughput of Vermilion. A higher trust factor γ results in a higher throughput,

230 Chapter 9. Augmenting Demand-Aware Interconnects with Predictions

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(a) Chessboard

2 4 6 8 10
 parameter

0

2

4

6

8
No

ise
 fa

ct
or

0.4

0.6

0.8

1.0

(b) All-to-All

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(c) Ring

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(d) Random Skewed

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(e) Skewed α = 0.2

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(f) Skewed α = 0.4

2 4 6 8 10
 parameter

0

2

4

6

8
No

ise
 fa

ct
or

0.4

0.6

0.8

1.0

(g) Skewed α = 0.6

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(h) Skewed α = 0.8

Figure 9.5: Throughput of deterministic Vermilion under additive noise for the
predicted demand matrix across various demand matrices and trust factors γ.
Additive noise changes the structure as well as the magnitude of demands in the
demand matrix.

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(a) Chessboard

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(b) All-to-All

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(c) Ring

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(d) Random Skewed

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(e) Skewed α = 0.2

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(f) Skewed α = 0.4

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(g) Skewed α = 0.6

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(h) Skewed α = 0.8

Figure 9.6: Throughput of deterministic Vermilion under multiplicative noise for
the predicted demand matrix across various demand matrices and trust factors γ.
Multiplicative noise preserves the sparsity of the real demand matrix.

Chapter 9.6. Evaluation 231

as suggested by Theorem 26. However, the throughput degrades as the error
increases, as indicated by Theorem 27.

(Q4) How does the randomized Vermilion algorithm perform under prediction
errors?

Our results show that the throughput of the randomized Vermilion algorithm is
better than the deterministic algorithm by a small margin, and also more robust
to errors in the predicted demand matrix.

9.6.1 Setup
Our evaluation is based on a linear-programming approach. We use the Gurobi
optimizer [117] to solve the linear program for the throughput of Vermilion. We
consider a topology of 8 nodes with physical degree 4. Our topology matches the
scale of a DGX H100 server, consisting of 8 GPUs interconnected together. We
set link capacities to 400Gbps and a reconfiguration delay of 1µs and a timeslot
value of 9.9µs (a duty cycle of 0.99), within the practical capabilities of existing
technologies [60]. We consider various demand matrices: Ring and All-to-All
demand matrices relevant to collective communication workloads, and Random
and Skewed demand matrices that represent a combination of ring and permutation
communication patterns. Specifically, we parametrize the skewed matrices with a
skew factor α, where α = 0 corresponds to a ring matrix and α = 1 corresponds
to a permutation matrix. Additionally, we consider chessboard demand matrix
that specifies alternating 1.5 and 0.5 units of demand between pairs of nodes, that
stresses the demand-awareness of the algorithm due to degree constraints. We
consider two types of errors: additive and multiplicative errors sampled from a
normal distribution. We indicate the standard deviation of the noise by ‘‘Noise
factor’’ in our evaluation, ranging from 0 (no error) to 10 (maximum demand).
We vary the trust factor γ from 1 to 10 for both the deterministic and randomized
algorithms. We consider a uniform probability mass function for the randomized
Vermilion algorithm. We set the number of samples to 100 for each demand matrix
and error type.

9.6.2 Results

Throughput under perfect predictions. Figure 9.5, 9.6 show the throughput
of the deterministic Vermilion algorithm under additive and multiplicative noise,
respectively. Particularly at noise factor 0, the predicted matrix matches the real
demand matrix. We observe that the throughput of Vermilion is within (better than)
the theoretical bounds for consistency. Further, we observe that the throughput
gradually increases with the trust factor γ, as expected. Our results show an
interesting trend; as the skew in the demand matrix increases (from skew α = 0.2
to Ring), the throughput of Vermilion decreases close to the lower bound of γ−1

γ
for

each γ, even with zero error in the predicted demand matrix. This indicates that
the structure of the demand matrix plays a significant role in the throughput of
Vermilion, beyond its lower bound guarantee.
Throughput under prediction errors. As the prediction error increases,
indicated by the noise factor, we observe that the throughput of Vermilion gradually
decreases. From Figure 9.5, 9.6, we observe that the throughput of Vermilion is

232 Chapter 9. Augmenting Demand-Aware Interconnects with Predictions

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(a) Chessboard

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(b) All-to-All

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(c) Ring

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(d) Random Skewed

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(e) Skewed α = 0.2

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(f) Skewed α = 0.4

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(g) Skewed α = 0.6

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(h) Skewed α = 0.8

Figure 9.7: Throughput of randomized Vermilion under additive noise for the
predicted demand matrix across various demand matrices and trust factors γ,
using uniform probability mass function. Additive noise changes the structure as
well as the magnitude of demands in the demand matrix.

robust to prediction errors, as the throughput is at least 0.47 — significantly better
than the lower bound of 1

2·γ — across various demand matrices, as suggested by
Theorem 27. Figure 9.5, 9.6 highlight that structural changes in the demand
matrix caused by additive noise has a greater impact on throughput compared to
multiplicative noise that remains structurally close to the real demand matrix. In
particular, We observe a similar trend for the randomized Vermilion algorithm, as
shown in Figure 9.7, 9.8.
Impact of the trust factor γ. We observe that the throughput of Vermilion
increases with the trust factor γ, as expected. Even when the noise increases, we
observe from Figure 9.5, 9.6 that the throughput of Vermilion does not degrade
drastically. Further, the throughput with increasing noise rather smoothly degrades
even for high trust factors. Although our theoretical analysis does not include
smoothness of Vermilion, our empirical results provide evidence for smoothness in the
competitive ratio of Vermilion as the prediction error increases. Across various noise
factors and demand matrices, the throughput of Vermilion is within the theoretical
bounds for robustness, a minimum of 0.47 under additive noise and a minimum of
0.51 under multiplicative noise, as shown in Figure 9.5, 9.6.
Randomized Vermilion algorithm. Compared to the deterministic algorithm
(Figure 9.5, 9.6), the randomized algorithm (Figure 9.7, 9.8) performs better under
prediction errors. We observe that the throughput of the randomized algorithm is
more robust to errors in the predicted demand matrix, balancing the throughput
between zero error and large error scenarios. The highest throughput (zero noise)
achieved by the randomized algorithm under Ring demand matrix is 0.91 (compared
to 0.95 for deterministic), whereas the minimum throughput (large noise) is 0.49
(compared to 0.47 for deterministic).

Overall, our empirical results corroborate our theoretical results on the through-
put of Vermilion under prediction errors. Unlike BvN decomposition-based ap-
proaches (see §9.3), Vermilion is robust to prediction errors and provides a flexible
solution for demand-aware networks. In the design of demand-aware networks,

Chapter 9.7. Related Work 233

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(a) Chessboard

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(b) All-to-All

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(c) Ring

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(d) Random Skewed

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(e) Skewed α = 0.2

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(f) Skewed α = 0.4

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(g) Skewed α = 0.6

2 4 6 8 10
 parameter

0

2

4

6

8

No
ise

 fa
ct

or

0.4

0.6

0.8

1.0

(h) Skewed α = 0.8

Figure 9.8: Throughput of randomized Vermilion under multiplicative noise for the
predicted demand matrix across various demand matrices and trust factors γ, using
uniform probability mass function. Multiplicative noise preserves the sparsity of
the real demand matrix.

balancing the throughput between zero error and large error scenarios by allocat-
ing a fraction of bandwidth in a demand-oblivious manner is the key to ensure
robustness to prediction errors.

9.7 Related Work
This work is situated at the intersection of network topologies, optical circuit-
switched networks, online algorithms with predictions, and network flow problems.
We provide a brief overview of related work in each of these areas, especially in
the context of datacenter and reconfigurable networks.
Topologies. The study of datacenter topologies has received significant attention
in the literature [31, 65, 113, 115, 179, 246, 248, 256, 281]. Various key metrics
have been explored in the design and evaluation of these topologies, such as
ensuring high and uniform bandwidth availability [31, 115], network expansion
properties [248, 256], fault tolerance [179], life cycle management [281]. More
recently, topologies tailored for collective communication [266, 285], rail-optimized
topologies [265], topologies tailored for large-scale distributed training [29, 128]
have also been studied.
Optical circuit-switched networks. The near-end of Moore’s law led to major
research efforts on optical circuit-switched network in the recent past [60, 68,
79, 81, 98, 104, 109, 114, 121, 148, 182, 187, 189, 234, 249, 261, 264, 279, 286]. These
networks are reconfigurable, allowing for dynamic allocation of bandwidth between
nodes. The design of these networks has focused on minimizing the reconfiguration
overhead [60,188,189], minimizing the bandwidth tax [98,109,266,279], maximizing
throughput [18,40,42], minimizing demand completion time [68,176,221], expected
path lengths [54,214]. More recently, reconfigurable networks have been shown to
improve the performance of distributed training workloads [266].
Network flow problems. Multicommodity flow [106, 168, 169] is a classic
problem in graph theory with various applications in real-world networks, even

234 Chapter 9. Augmenting Demand-Aware Interconnects with Predictions

in the context of emerging distributed training workloads in datacenters [180].
Throughput is a variant of the multicommodity flow problem, referred as maximum
concurrent flow problem in the literature [238]. Recent works on topologies have
focused on throughput in order to understand the maximum load supported
by a topology [18, 114, 145, 204, 247]. Understanding the throughput bounds of
network topologies has been an active research area in the recent past, not only
for static datacenter topologies [145, 204, 247], but also in the context of optical
reconfigurable networks [18,42,114]. Majority of works in the literature on demand-
aware reconfigurable networks, including Vermilion, analyze throughput in an offline
setting i.e., the demand is known in advance. Our work is the first to study the
throughput of a demand-aware network under prediction errors.
Online algorithms with predictions. The predictions model, introduced by
Mitzenmacher and Vassilvitskii [198], enhances traditional online algorithms by
incorporating advice that may not always be accurate. The literature on this predic-
tions model covers a wide range of online problems, such as paging [62,142,184,226],
metrical task systems [43], and online set cover [61], among others, as aggregated
in [39]. More recently, the predictions model has also been applied to network-
ing problems such as buffer sharing [24], and dynamic acknowledgement [135].
The competitive analysis framework for these prediction-augmented algorithms
builds on the traditional competitive analysis for online algorithms [72], but is
generalized to parameterize the competitive ratio based on the predictor’s error.
Mitzenmacher and Vassilvitskii [198] formalized the competitive ratio for such
prediction-augmented algorithms, specifically for minimization problems. Our
work builds on this framework and introduces the demand-aware network design
problem under prediction errors, with throughput as the objective, a maximization
problem.

9.8 Discussion

This work initiates the study of demand-aware network design under demand
uncertainty, focusing on throughput as the key performance metric. We briefly
discuss the limitations of our initial results and outline future research directions.

9.8.1 Limitations

Various parts of our model can be further refined to better capture the real-world
scenario. Certain well-known limitations are inherent to our model and analysis
framework.
Throughput objective. Several works in the past have considered throughput
as a metric for network topologies [51, 106,238]. Implicitly, the throughput maxi-
mization problem takes a demand matrix as input that specifies constant demands
between node pairs. This model is a simplification of the real-world scenario, where
the demands are dynamic and may change over time. Further, demands between
node pairs is comprised of multiple flows, each with different size and priorities.
Our model does not capture these aspects of the real-world scenario. Despite these
limitations, throughput objective provides the worst-case performance guarantee
of a topology under an ideal protocol stack and provides a way to quantitatively

Chapter 9.8. Discussion 235

compare different network topology designs.
Competitive ratio. By definition, the competitive ratio is the worst-case per-
formance guarantee of an online algorithm compared to an offline algorithm [72].
Competitive analysis is a standard approach to evaluate online algorithms, but
worst-case scenarios may not necessarily be of concern in real-world networks. For
instance, in datacenter networks, the demand patterns are often predictable and
can be learned from historical data. Moreover, the communication patterns are
typically not the worst-case ones, making the average-case performance [229, Ch.
8-12] more relevant to the operators. Our model and analysis incorporate predic-
tions (which may be imperfect) [198], taking a step forward in addressing these
limitations and providing a more realistic evaluation of network design under both
predictable and uncertain communication patterns.
Latency and Buffers. Particularly in the context of dynamic reconfigurable
topologies, latency and buffer requirements are crucial aspects that are not consid-
ered in our model. Recent works shows the inherent tradeoffs in demand-oblivious
periodic networks in terms of throughput, latency and buffer requirements [18].
We leave it for future work to study these tradeoffs in demand-aware periodic
networks.
Routing and congestion control. Our throughput analysis assumes ideal routing
and congestion control, a typical assumption in network flow problems [145,169,
204,247]. In practice, the achievable throughput of a topology critically depends
on routing and congestion control algorithms that are not ideal e.g., Equal Cost
Multipath Routing (ECMP), TCP congestion control. We leave it for future
work to empirically study the impact of routing and congestion control on the
performance of demand-aware networks in terms of more practical metrics such as
link utilization, flow completion times, buffer requirements and packet loss rates.

9.8.2 Open Questions
Our work opens up several interesting research directions that can be explored in
future work. We briefly describe the key open questions below.
Smoothness. We focused primarily on the competitive ratio under perfect
predictions (consistency) and arbitrarily inaccurate prediction errors (robustness).
Analyzing the smoothness of the competitive ratio with respect to the prediction
error is an important open question. However, expressing the competitive ratio as
a function of the prediction error is a challenging task in our model, particularly
with the complex objective of throughput maximization. Devising a suitable error
function that captures the prediction error and quantifies the competitive ratio is
a key research direction.
Worst-case demand matrix. While our analysis provides lower bounds on the
throughput of Vermilion, it remains an open question whether these bounds are tight.
Our empirical results indicate that Vermilion achieves significantly higher throughput
than the theoretical lower bounds suggest. In this context, characterizing the
worst-case demand matrix could lead to improved upper bounds on throughput
and help determine the tightness of the lower bounds. Recent studies have
shown that a permutation demand matrix is the worst-case for demand-oblivious
networks [18, 42, 114]. However, in demand-aware networks, the permutation
demand matrix does not serve as the worst-case scenario, as constructing a ring

236 Chapter 9. Augmenting Demand-Aware Interconnects with Predictions

topology that aligns with the permutation demand matrix results in optimal
throughput. Characterizing the worst-case demand matrices for demand-aware
networks is an interesting research direction that could yield better performance
bounds.
Switching costs. Updating the switching schedule in a reconfigurable network
may incur a cost, which is not considered in our model. In fact, our model boils
down to comparing the performance of an algorithm with a single predicted demand
matrix and corresponding real demand matrix, mainly because we do not consider
switching costs. The cost of reconfiguration is a crucial aspect that can significantly
impact the performance of demand-aware networks. In particular, the optimal
offline algorithm may also be non-trivial with switching costs, unlike our setting
where the optimal offline solution achieves an ideal throughput of close to 1. We
leave it for future work to study the impact of the costs incurred in updating the
periodic schedule on the competitive ratio of demand-aware networks.
Pareto-optimal solutions. Our analysis of a generalization of Vermilion and its
randomized version reveal several points in the consistency-robustness tradeoff
space. However, it remains an open question whether Vermilion is already pareto-
optimal in this tradeoff space. In other words, are there other feasible points in the
tradeoff space that can outperform Vermilion in both consistency and robustness?
We leave it for future work to explore this question.

9.9 Summary
We analyzed Vermilion, a recent demand-aware optical interconnect that delivers
high throughput using periodic circuit-switching and direct communication. Our
study is the first to consider the demand-aware network design problem under
demand uncertainty with throughput maximization objective — specifically, when
the network’s demands are based on machine-learned predictions that may be
erroneous compared to actual demands.

Our theoretical analysis shows that Vermilion performs exceptionally well when
the predictions align with actual demands, reaching close to the optimal throughput.
Even when predictions are imperfect, Vermilion stays within a constant factor of the
best possible performance. We complement our theoretical results with empirical
evidence, suggesting that Vermilion is a practical design for optically circuit-switched
datacenter networks with predictable traffic patterns.

Looking ahead, we see exciting directions for future research. First, we aim
to study how Vermilion’s competitive ratio changes as prediction errors increase,
and how smoothly performance degrades. Second, we plan to explore how Vermilion
can adapt dynamically when new demand predictions arrive over time. This is
particularly challenging, as frequent changes to the switching schedule can be
costly, but addressing these challenges could unlock the throughput potential of
demand-aware optical networks.

10
Future Research Directions
The various techniques and methodologies developed in this thesis lay the foun-
dation and strengthen the problem-solving skills required to address some of the
most challenging problems emerging in the field of networking, particularly in new
use cases such as large-scale distributed training and inference clusters.

The massive scale of investment and the growing economic value of datacenters
in recent times demand a paradigm shift in the design of network protocols
and algorithms. The traditional best-effort paradigm is no longer sufficient to
meet the stringent requirements of this critical infrastructure, especially in the
case of dedicated GPU clusters. Traditional datacenters with general-purpose
processors served a variety of workloads, often in a best-effort manner, as traffic
patterns largely remained unpredictable. Consequently, much of the research —
spanning congestion control, topologies, load balancing, and routing — has focused
on designing protocols and algorithms to handle this unpredictability, often at
the expense of performance. However, two key shifts are now underway. First,
emerging GPU clusters are designed for specific purposes, such as AI/ML training
workloads, which generate predictable traffic patterns and therefore require a
fundamentally different approach. Second, new technologies such as optical circuit
switches enable not only traffic engineering but also topology engineering, allowing
the network topology itself to be optimized for specific traffic patterns. As a result,
network infrastructure is evolving into a collection of specialized clusters, each
tailored to the demands of specific workloads.

In the following, we outline the future research directions building upon the
material presented in this thesis.

10.1 Systems and Infrastructure for AI/ML Work-
loads

Leveraging Predictability (and Mutability) of Traffic Patterns to De-
sign Network Protocols
In contrast to traditional datacenters, large-scale GPU clusters exhibit predictable
traffic patterns. Workloads are pre-determined, and the traffic patterns are
explicit due to the nature of collective communication in distributed training. The
traffic matrices generated by common collectives are mutable. For example, an
allReduce operation results in a uniform traffic matrix when using an all-to-all
algorithm, or a permutation matrix with a ring algorithm. This mutability can
be exploited to optimize network performance. Recent research has proposed
alternative collective communication algorithms that adapt the traffic matrix

237

238 Chapter 10. Future Research Directions

based on various objectives, often without considering the underlying topology or
assuming ideal network conditions.

However, the state-of-the-art protocol suite, designed with a best-effort philoso-
phy for commodity hardware, does not provide ideal network conditions; network
performance is influenced by topology, routing, and congestion control. For in-
stance, a decade of research on optimizing congestion control, load-balancing,
scheduling, buffer-sharing, still leave surprising and unique problems under collec-
tive communication in GPU clusters: while some communication patterns (e.g.,
point-to-point) perform well under specific protocols, others suffer (e.g., all-to-all)
i.e., the best-effort philosophy of designing ‘‘one ring to rule them all’’ does not
hold anymore.

Future research work is needed to bridge this gap by co-optimizing collective
communication algorithms with underlying network protocols, particularly routing,
load balancing, and congestion control, to maximize performance. This thesis takes
the first steps in this direction. Credence (Chapter 6) exploits the predictability
of traffic patterns and improves throughput when multiple congestion hotspots
contend for commonly shared buffer space. Ethereal (Chapter 3) challenges the need
for packet spraying in GPU clusters and shows that the properties of the underlying
traffic matrices can be exploited to optimize network performance. Several open
questions remain, such as: How can we design network protocols that exploit the
mutability of traffic matrices? How can we co-optimize collective communication
algorithms with underlying network protocols to maximize performance?

Self-Adjusting Optical Interconnects for GPU Clusters
Emerging technologies using optical circuit switches enable network infrastructures
to adapt their topology and capacity provisioning based on observed traffic pat-
terns, marking a shift from traditional datacenter network designs. Conventional
topologies like the fat-tree are built to offer high bisection bandwidth and low
latency for unpredictable traffic patterns. In contrast, today’s GPU clusters gener-
ate predictable and often structured traffic, which opens opportunities to optimize
network topology and capacity provisioning for performance and cost efficiency.
In the context of the post-Moore’s law era, developing high-performance optical
interconnects is essential, supporting a transition toward optical computing.

Chapters 7, 8, and 9 on reconfigurable networks are foundational steps in
understanding the trade-offs between reconfigurability and performance. Several
interesting questions remain open: How can we co-optimize dynamic network
topologies and collective communication algorithms to maximize performance?
What are the strategies for building failure-resilient optical interconnects? How can
we achieve fully automated control plane management for optical interconnects,
minimizing manual intervention?

Transport Protocol for GPU clusters
Congestion control and load balancing are increasingly critical in the context
of AI/ML workloads, as underscored by the focus from hyperscale datacenter
operators, including the Ultra Ethernet Consortium [13].

Building upon Chapters 2, 3, future research could develop a transport protocol
that can adapt dynamically to AI/ML traffic patterns, without necessitating costly
new hardware, enabling high-performance solutions for both hyperscale datacenters
and emerging HPC clusters at universities. Further, adaptive routing algorithms

Chapter 10.2. Learning-Augmented Systems 239

is an interesting direction in order to tackle the challenges of load balancing under
link failures.

10.2 Learning-Augmented Systems
Learning-augmented algorithms [39] are a hot-topic within the theory community,
demonstrating promising results across various fields. These algorithms offer a
hybrid approach: they provide near-optimal performance when predictions are
accurate, while still ensuring robust performance even when predictions are far
from perfect. This duality is particularly appealing for networked systems, where
reliability and explainable performance are essential. However, integrating learning-
augmented algorithms into networked systems remains nascent, with current models
often requiring high prediction accuracy to deliver strong performance.

Future research work could advance this area by designing learning-augmented
networked systems capable of delivering formal guarantees, not only under high
prediction accuracy but also when faced with inaccuracies. Chapter 6 represents
a foundational step, showing that learning-augmented buffer-sharing algorithms
can maintain throughput guarantees despite imperfect predictions. Building upon
similar concepts, learning-augmented packet classification, scheduling, and load
balancing, are some of the interesting future research directions in the context of
networked systems.

240 Chapter 10. Future Research Directions

11
Conclusion
In this thesis, we explored the design of high-performance protocols and algorithms
for datacenter networks, focusing on three key challenges: (i) transport protocols,
(ii) switch buffer sharing, and (iii) reconfigurable optical interconnects. For each
area, we proposed novel solutions and answered the core research questions raised
in Chapter 1.

We addressed the design of congestion control and load balancing schemes
for datacenter transport. In response to Question 1, we presented PowerTCP, a
congestion control algorithm that leverages in-band network telemetry to react in-
stantaneously to network conditions. PowerTCP maintains near-zero queue lengths
while sustaining high throughput, even under bursty workloads and dynamic topolo-
gies. To address Question 2, we proposed Ethereal, a load balancing algorithm
tailored to distributed training workloads in GPU clusters. Ethereal achieves
near-optimal load distribution without requiring hardware changes, by exploiting
the structured and predictable nature of collective communication patterns.

We studied how to manage limited buffer resources in shallow-buffered data-
center switches. In response to Question 3, we proposed ABM and Reverie, buffer
management schemes that provide fairness, isolation, and predictable burst ab-
sorption while remaining compatible with current hardware. To address the more
fundamental Question 4, we introduced Credence, a drop-tail buffer sharing algo-
rithm augmented with machine-learned predictions. Credence approximates the
performance of an ideal buffer sharing algorithm with full foresight and gracefully
degrades under imperfect predictions, thereby bridging the gap between theory
and practice.

We examined the design of reconfigurable topologies for optical datacenter net-
works. In response to Question 5, we introduced Mars, a periodic demand-oblivious
topology that explicitly accounts for delay and buffer constraints. Mars uncovers a
rich design space beyond complete graph emulation and reveals inherent tradeoffs
between throughput, delay, and buffer requirements. To answer Question 6, we
developed Vermilion, a demand-aware reconfigurable interconnect that breaks the
throughput limitations of traditional periodic designs, achieving higher worst-case
throughput while simplifying routing to direct, single-hop communication. Finally,
in response to Question 7, we extended Vermilion with predictive capabilities using
machine-learned traffic forecasts. We formally characterized its robustness under
demand uncertainty and demonstrated empirically that it maintains significant
throughput gains even in the presence of prediction errors.

Overall, this thesis shows that key limitations in modern datacenter networks
can be addressed by combining systems insights with carefully designed algorithms
and, where appropriate, learning-based techniques. Across transport protocols,
switch buffer management, and reconfigurable topologies, we presented practical

241

242 Chapter 11. Conclusion

solutions grounded in theoretical analysis — paving the way for the design of more
adaptive, scalable, and high-performance datacenter networks.

References
[1] Arista 7060CX-32 and 7260CX-64. https://people.ucsc.edu/~warner/

Bufs/7060CX.html.

[2] Arista lanz overview. https://www.arista.com/assets/data/pdf/
Whitepapers/Arista_LANZ_Overview_TechBulletin_0213.pdf.

[3] Braodcom Tomahawk. https://people.ucsc.edu/~warner/Bufs/
tomahawk.

[4] Broadcom. 2020. 25.6 tb/s strataxgs tomahawk 4 ethernet switch series.
URL: https://www.broadcom.com/products/ethernet-connectivity/
switching/strataxgs/bcm56990-series.

[5] Cisco nexus 9000 series switches. https://www.cisco.com/c/en/us/
products/collateral/switches/nexus-9000-series-switches/white-
paper-c11-739134.html.

[6] Gpt-4. https://openai.com/index/gpt-4/.

[7] Introduction to spectrum, the 100gbe switch silicon. https:
//www.cisco.com/c/en/us/support/docs/switches/nexus-3500-
series-switches/118904-technote-nexus-00.html.

[8] Nccl environment variables. https://docs.nvidia.com/deeplearning/
nccl/user-guide/docs/env.html.

[9] Nexus 3500 output drops and buffer qos. https://community.mellanox.com/
s/article/introduction-to-spectrum--the-100gbe-switch-silicon.

[10] Nvidia collective communications library (nccl). https://
developer.nvidia.com/nccl.

[11] opera-Sim. https://github.com/TritonNetworking/opera-sim.

[12] Trident2 / BCM56850 Series, High-Capacity StrataXGS® Trident II
Ethernet Switch Series. https://www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56850-series.

[13] Ultra ethernet consortium. https://ultraethernet.org/.

[14] Advanced Congestion and Flow Control with Programmable Switches,
2011. https://opennetworking.org/wp-content/uploads/2020/04/JK-
Lee-Slide-Deck.pdf.

[15] Broadcom. 2020. 25.6 tb/s strataxgs tomahawk 4 ethernet switch
series. https://www.broadcom.com/products/ethernet-connectivity/
switching/strataxgs/bcm56990-series.

243

https://people.ucsc.edu/~warner/Bufs/7060CX.html
https://people.ucsc.edu/~warner/Bufs/7060CX.html
https://www.arista.com/assets/data/pdf/Whitepapers/Arista_LANZ_Overview_TechBulletin_0213.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Arista_LANZ_Overview_TechBulletin_0213.pdf
https://people.ucsc.edu/~warner/Bufs/tomahawk
https://people.ucsc.edu/~warner/Bufs/tomahawk
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-739134.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-739134.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-739134.html
https://openai.com/index/gpt-4/
https://www.cisco.com/c/en/us/support/docs/switches/nexus-3500-series-switches/118904-technote-nexus-00.html
https://www.cisco.com/c/en/us/support/docs/switches/nexus-3500-series-switches/118904-technote-nexus-00.html
https://www.cisco.com/c/en/us/support/docs/switches/nexus-3500-series-switches/118904-technote-nexus-00.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html
https://community.mellanox.com/s/article/introduction-to-spectrum--the-100gbe-switch-silicon
https://community.mellanox.com/s/article/introduction-to-spectrum--the-100gbe-switch-silicon
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://github.com/TritonNetworking/opera-sim
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56850-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56850-series
https://ultraethernet.org/
https://opennetworking.org/wp-content/uploads/2020/04/JK-Lee-Slide-Deck.pdf
https://opennetworking.org/wp-content/uploads/2020/04/JK-Lee-Slide-Deck.pdf
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series

244 REFERENCES

[16] Vamsi Addanki, Maria Apostolaki, Manya Ghobadi, Stefan Schmid, and
Laurent Vanbever. Abm: Active buffer management in datacenters. In
Proceedings of the ACM SIGCOMM 2022 Conference, SIGCOMM ’22, page
36–52, New York, NY, USA, 2022. Association for Computing Machinery.
doi:10.1145/3544216.3544252.

[17] Vamsi Addanki, Chen Avin, Goran Dario Knabe, Giannis Patronas, Dimitris
Syrivelis, Nikos Terzenidis, Paraskevas Bakopoulos, Ilias Marinos, and Stefan
Schmid. Vermilion: A traffic-aware reconfigurable optical interconnect with
formal throughput guarantees. arXiv preprint arXiv:2504.09892, 2025. URL:
https://arxiv.org/abs/2504.09892.

[18] Vamsi Addanki, Chen Avin, and Stefan Schmid. Mars: Near-optimal through-
put with shallow buffers in reconfigurable datacenter networks. Proc. ACM
Meas. Anal. Comput. Syst., 7(1), mar 2023. doi:10.1145/3579312.

[19] Vamsi Addanki, Wei Bai, Stefan Schmid, and Maria Apostolaki. Reverie:
Low pass Filter-Based switch buffer sharing for datacenters with RDMA
and TCP traffic. In 21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24), pages 651--668, Santa Clara, CA, April
2024. USENIX Association. URL: https://www.usenix.org/conference/
nsdi24/presentation/addanki-reverie.

[20] Vamsi Addanki, Prateesh Goyal, Ilias Marinos, and Stefan Schmid. Ethereal:
Divide and conquer network load balancing in large-scale distributed training.
arXiv preprint arXiv:2407.00550, 2025. URL: https://arxiv.org/abs/
2407.00550.

[21] Vamsi Addanki, Oliver Michel, and Stefan Schmid. PowerTCP: Push-
ing the performance limits of datacenter networks. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22), pages 51--70, Renton, WA, April 2022. USENIX Association. URL:
https://www.usenix.org/conference/nsdi22/presentation/addanki.

[22] Vamsi Addanki, Maciej Pacut, Leon Kellerhals, Goran Dario Knabe, and Ste-
fan Schmid. Vermilion, pt. 2: Tradeoffs between throughput and prediction
accuracy in reconfigurable optical interconnects. 2025.

[23] Vamsi Addanki, Maciej Pacut, Arash Pourdamghani, Gabor Rétvári, Stefan
Schmid, and Juan Vanerio. Self-adjusting partially ordered lists. In IEEE
INFOCOM 2023 - IEEE Conference on Computer Communications, pages
1--10, 2023. doi:10.1109/INFOCOM53939.2023.10228937.

[24] Vamsi Addanki, Maciej Pacut, and Stefan Schmid. Credence: Augmenting
datacenter switch buffer sharing with ML predictions. In 21st USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 24), pages
613--634, Santa Clara, CA, April 2024. USENIX Association. URL: https://
www.usenix.org/conference/nsdi24/presentation/addanki-credence.

[25] Saksham Agarwal, Rachit Agarwal, Behnam Montazeri, Masoud Moshref,
Khaled Elmeleegy, Luigi Rizzo, Marc Asher de Kruijf, Gautam Kumar,
Sylvia Ratnasamy, David Culler, and Amin Vahdat. Understanding host

https://doi.org/10.1145/3544216.3544252
https://arxiv.org/abs/2504.09892
https://doi.org/10.1145/3579312
https://www.usenix.org/conference/nsdi24/presentation/addanki-reverie
https://www.usenix.org/conference/nsdi24/presentation/addanki-reverie
https://arxiv.org/abs/2407.00550
https://arxiv.org/abs/2407.00550
https://www.usenix.org/conference/nsdi22/presentation/addanki
https://doi.org/10.1109/INFOCOM53939.2023.10228937
https://www.usenix.org/conference/nsdi24/presentation/addanki-credence
https://www.usenix.org/conference/nsdi24/presentation/addanki-credence

REFERENCES 245

interconnect congestion. In Proceedings of the 21st ACM Workshop on Hot
Topics in Networks, HotNets ’22, page 198–204, New York, NY, USA, 2022.
Association for Computing Machinery. doi:10.1145/3563766.3564110.

[26] Saksham Agarwal, Qizhe Cai, Rachit Agarwal, David Shmoys, and Amin
Vahdat. Harmony: A congestion-free datacenter architecture. In 21st
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 24), pages 329--343, Santa Clara, CA, April 2024. USENIX Associa-
tion. URL: https://www.usenix.org/conference/nsdi24/presentation/
agarwal-saksham.

[27] Saksham Agarwal, Arvind Krishnamurthy, and Rachit Agarwal. Host con-
gestion control. In Proceedings of the ACM SIGCOMM 2023 Conference,
ACM SIGCOMM ’23, page 275–287, New York, NY, USA, 2023. Association
for Computing Machinery. doi:10.1145/3603269.3604878.

[28] Krishna Agrawal, Vamsi Addanki, and Habib Mostafaei. Dequeue rate-
agnostic switch buffer sharing through packet queueing delay. In Proceedings
of the CoNEXT on Student Workshop 2024, CoNEXT-SW ’24, page 1–2,
New York, NY, USA, 2024. Association for Computing Machinery. doi:
10.1145/3694812.3699924.

[29] Yuichiro Ajima, Takahiro Kawashima, Takayuki Okamoto, Naoyuki Shida,
Kouichi Hirai, Toshiyuki Shimizu, Shinya Hiramoto, Yoshiro Ikeda, Takahide
Yoshikawa, Kenji Uchida, and Tomohiro Inoue. The tofu interconnect d. In
2018 IEEE International Conference on Cluster Computing (CLUSTER),
pages 646--654, 2018. doi:10.1109/CLUSTER.2018.00090.

[30] Aristide Tanyi-Jong Akem, Michele Gucciardo, and Marco Fiore. Flowrest:
Practical flow-level inference in programmable switches with random forests.
In IEEE INFOCOM 2023 - IEEE Conference on Computer Communications,
pages 1--10, 2023. doi:10.1109/INFOCOM53939.2023.10229100.

[31] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable,
commodity data center network architecture. In Proceedings of the ACM
SIGCOMM 2008 Conference on Data Communication, SIGCOMM ’08, page
63–74, New York, NY, USA, 2008. Association for Computing Machinery.
doi:10.1145/1402958.1402967.

[32] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nel-
son Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling for data
center networks. In 7th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 10), San Jose, CA, April 2010. USENIX As-
sociation. URL: https://www.usenix.org/conference/nsdi10-0/hedera-
dynamic-flow-scheduling-data-center-networks.

[33] Mohammad Alizadeh and Tom Edsall. On the data path performance of
leaf-spine datacenter fabrics. In 2013 IEEE 21st Annual Symposium on High-
Performance Interconnects, pages 71--74, 2013. doi:10.1109/HOTI.2013.23.

[34] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan,

https://doi.org/10.1145/3563766.3564110
https://www.usenix.org/conference/nsdi24/presentation/agarwal-saksham
https://www.usenix.org/conference/nsdi24/presentation/agarwal-saksham
https://doi.org/10.1145/3603269.3604878
https://doi.org/10.1145/3694812.3699924
https://doi.org/10.1145/3694812.3699924
https://doi.org/10.1109/CLUSTER.2018.00090
https://doi.org/10.1109/INFOCOM53939.2023.10229100
https://doi.org/10.1145/1402958.1402967
https://www.usenix.org/conference/nsdi10-0/hedera-dynamic-flow-scheduling-data-center-networks
https://www.usenix.org/conference/nsdi10-0/hedera-dynamic-flow-scheduling-data-center-networks
https://doi.org/10.1109/HOTI.2013.23

246 REFERENCES

Navindra Yadav, George Varghese, et al. Conga: Distributed congestion-
aware load balancing for datacenters. In ACM SIGCOMM Computer Com-
munication Review, volume 44, pages 503--514. ACM, 2014.

[35] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan.
Data center tcp (dctcp). In Proceedings of the ACM SIGCOMM 2010 Con-
ference, SIGCOMM ’10, page 63–74, New York, NY, USA, 2010. Association
for Computing Machinery. doi:10.1145/1851182.1851192.

[36] Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar. Analysis of
dctcp: stability, convergence, and fairness. SIGMETRICS Perform. Eval.
Rev., 39(1):73–84, June 2011. doi:10.1145/2007116.2007125.

[37] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKe-
own, Balaji Prabhakar, and Scott Shenker. pfabric: minimal near-optimal dat-
acenter transport. In Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, SIGCOMM ’13, page 435–446, New York, NY, USA, 2013.
Association for Computing Machinery. doi:10.1145/2486001.2486031.

[38] Hamidreza Almasi, Rohan Vardekar, and Balajee Vamanan. Protean: Adap-
tive management of shared-memory in datacenter switches. In IEEE INFO-
COM 2023 - IEEE Conference on Computer Communications, pages 1--10,
2023. doi:10.1109/INFOCOM53939.2023.10229046.

[39] Algorithms with predictions. https://algorithms-with-
predictions.github.io/.

[40] Daniel Amir, Nitika Saran, Tegan Wilson, Robert Kleinberg, Vishal Shri-
vastav, and Hakim Weatherspoon. Shale: A practical, scalable oblivious
reconfigurable network. In Proceedings of the ACM SIGCOMM 2024 Con-
ference, ACM SIGCOMM ’24, page 449–464, New York, NY, USA, 2024.
Association for Computing Machinery. doi:10.1145/3651890.3672248.

[41] Daniel Amir, Tegan Wilson, Vishal Shrivastav, Hakim Weatherspoon, and
Robert Kleinberg. Poster: Scalability and congestion control in oblivious
reconfigurable networks. In Proceedings of the ACM SIGCOMM 2023 Con-
ference, ACM SIGCOMM ’23, page 1138–1140, New York, NY, USA, 2023.
Association for Computing Machinery. doi:10.1145/3603269.3610862.

[42] Daniel Amir, Tegan Wilson, Vishal Shrivastav, Hakim Weatherspoon, Robert
Kleinberg, and Rachit Agarwal. Optimal oblivious reconfigurable networks.
In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2022, page 1339–1352, New York, NY, USA, 2022.
Association for Computing Machinery. doi:10.1145/3519935.3520020.

[43] Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and
Bertrand Simon. Online metric algorithms with untrusted predictions. In
Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pages 345--355. PMLR, 2020.

https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/2007116.2007125
https://doi.org/10.1145/2486001.2486031
https://doi.org/10.1109/INFOCOM53939.2023.10229046
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://doi.org/10.1145/3651890.3672248
https://doi.org/10.1145/3603269.3610862
https://doi.org/10.1145/3519935.3520020

REFERENCES 247

[44] Antonios Antoniadis, Matthias Englert, Nicolaos Matsakis, and Pavel Veselý.
Breaking the Barrier Of 2 for the Competitiveness of Longest Queue Drop. In
Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP
2021), volume 198 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 17:1--17:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl --
Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/
volltexte/2021/14086, doi:10.4230/LIPIcs.ICALP.2021.17.

[45] Maria Apostolaki, Vamsi Addanki, Manya Ghobadi, and Laurent Van-
bever. Fb: A flexible buffer management scheme for data center switches.
arXiv preprint arXiv:2105.10553, 2021. URL: https://arxiv.org/abs/
2105.10553.

[46] Maria Apostolaki, Laurent Vanbever, and Manya Ghobadi. Fab: To-
ward flow-aware buffer sharing on programmable switches. BS ’19, New
York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/
3375235.3375237.

[47] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford,
and David Walker. SNAP: Stateful network-wide abstractions for packet
processing. In SIGCOMM ’16. ACM, 2016.

[48] Jay E Aronson. A survey of dynamic network flows. Annals of Operations
Research, 20(1):1--66, 1989.

[49] M. Arpaci and J. A. Copeland. Buffer management for shared-memory atm
switches. IEEE Communications Surveys Tutorials, 3(1):2--10, First 2000.
doi:10.1109/COMST.2000.5340716.

[50] Serhat Arslan, Yuliang Li, Gautam Kumar, and Nandita Dukkipati. Bolt:
Sub-RTT congestion control for Ultra-Low latency. In 20th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 23),
pages 219--236, Boston, MA, April 2023. USENIX Association. URL:
https://www.usenix.org/conference/nsdi23/presentation/arslan.

[51] Yonatan Aumann and Yuval Rabani. An O(log k) approximate min-cut max-
flow theorem and approximation algorithm. SIAM J. Comput., 27(1):291--301,
1998.

[52] Yonatan Aumann and Yuval Rabani. An o(log k) approximate min-cut max-
flow theorem and approximation algorithm. SIAM Journal on Computing,
27(1):291--301, 1998. doi:10.1137/S0097539794285983.

[53] Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. On the
complexity of traffic traces and implications. Proc. ACM Meas. Anal.
Comput. Syst., 4(1), May 2020. doi:10.1145/3379486.

[54] Chen Avin, Kaushik Mondal, and Stefan Schmid. Demand-aware network
design with minimal congestion and route lengths. IEEE/ACM Transactions
on Networking, 30(4):1838--1848, 2022. doi:10.1109/TNET.2022.3153586.

https://drops.dagstuhl.de/opus/volltexte/2021/14086
https://drops.dagstuhl.de/opus/volltexte/2021/14086
https://doi.org/10.4230/LIPIcs.ICALP.2021.17
https://arxiv.org/abs/2105.10553
https://arxiv.org/abs/2105.10553
https://doi.org/10.1145/3375235.3375237
https://doi.org/10.1145/3375235.3375237
https://doi.org/10.1109/COMST.2000.5340716
https://www.usenix.org/conference/nsdi23/presentation/arslan
https://doi.org/10.1137/S0097539794285983
https://doi.org/10.1145/3379486
https://doi.org/10.1109/TNET.2022.3153586

248 REFERENCES

[55] Chen Avin and Stefan Schmid. ReNets: Statically-Optimal Demand-Aware
Networks, pages 25--39. URL: https://epubs.siam.org/doi/abs/10.1137/
1.9781611976489.3, arXiv:https://epubs.siam.org/doi/pdf/10.1137/
1.9781611976489.3, doi:10.1137/1.9781611976489.3.

[56] James Aweya, Michel Ouellette, and Delfin Y Montuno. Buffer manage-
ment scheme employing dynamic thresholds, September 7 2004. US Patent
6,788,697.

[57] Michael Bacharach. Matrix rounding problems. Management Science,
12(9):732--742, 1966. URL: https://doi.org/10.1287/mnsc.12.9.732.

[58] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre,
Paramvir Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman, Lei Cao,
Ahmad Cheema, Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad, Vivek Ette,
Igal Figlin, Daniel Firestone, Mathew George, Ilya German, Lakhmeet Ghai,
Eric Green, Albert Greenberg, Manish Gupta, Randy Haagens, Matthew
Hendel, Ridwan Howlader, Neetha John, Julia Johnstone, Tom Jolly, Greg
Kramer, David Kruse, Ankit Kumar, Erica Lan, Ivan Lee, Avi Levy, Marina
Lipshteyn, Xin Liu, Chen Liu, Guohan Lu, Yuemin Lu, Xiakun Lu, Vadim
Makhervaks, Ulad Malashanka, David A. Maltz, Ilias Marinos, Rohan Mehta,
Sharda Murthi, Anup Namdhari, Aaron Ogus, Jitendra Padhye, Madhav
Pandya, Douglas Phillips, Adrian Power, Suraj Puri, Shachar Raindel, Jordan
Rhee, Anthony Russo, Maneesh Sah, Ali Sheriff, Chris Sparacino, Ashutosh
Srivastava, Weixiang Sun, Nick Swanson, Fuhou Tian, Lukasz Tomczyk,
Vamsi Vadlamuri, Alec Wolman, Ying Xie, Joyce Yom, Lihua Yuan, Yanzhao
Zhang, and Brian Zill. Empowering azure storage with RDMA. In 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), pages 49--67, Boston, MA, April 2023. USENIX Association.
URL: https://www.usenix.org/conference/nsdi23/presentation/bai.

[59] Wei Bai, Shuihai Hu, Kai Chen, Kun Tan, and Yongqiang Xiong. One more
config is enough: Saving (dc)tcp for high-speed extremely shallow-buffered
datacenters. IEEE/ACM Transactions on Networking, 29(2):489--502, 2021.
doi:10.1109/TNET.2020.3032999.

[60] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, Istvan
Haller, Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn
Thomsen, and Hugh Williams. Sirius: A flat datacenter network with
nanosecond optical switching. In Proceedings of the Annual Conference of
the ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication,
SIGCOMM ’20, page 782–797, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3387514.3406221.

[61] Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual
method for learning augmented algorithms. In Advances in Neural Infor-
mation Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, 2020.

https://epubs.siam.org/doi/abs/10.1137/1.9781611976489.3
https://epubs.siam.org/doi/abs/10.1137/1.9781611976489.3
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611976489.3
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611976489.3
https://doi.org/10.1137/1.9781611976489.3
https://doi.org/10.1287/mnsc.12.9.732
https://www.usenix.org/conference/nsdi23/presentation/bai
https://doi.org/10.1109/TNET.2020.3032999
https://doi.org/10.1145/3387514.3406221

REFERENCES 249

[62] Nikhil Bansal, Christian Coester, Ravi Kumar, Manish Purohit, and Erik
Vee. Learning-augmented weighted paging. In Proceedings of the 2022 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference
/ Alexandria, VA, USA, January 9 - 12, 2022, pages 67--89. SIAM, 2022.

[63] Sébastien Barré, Christoph Paasch, and Olivier Bonaventure. Multipath tcp:
From theory to practice. In Jordi Domingo-Pascual, Pietro Manzoni, Sergio
Palazzo, Ana Pont, and Caterina Scoglio, editors, NETWORKING 2011,
pages 444--457, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[64] Andreas V Bechtolsheim and David R Cheriton. Per-flow dynamic buffer
management, February 4 2003. US Patent 6,515,963.

[65] Maciej Besta and Torsten Hoefler. Slim fly: A cost effective low-diameter
network topology. In SC ’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pages
348--359, 2014. doi:10.1109/SC.2014.34.

[66] Garrett Birkhoff. Tres observaciones sobre el algebra lineal. Univ. Nac.
Tucuman, Ser. A, 5:147--154, 1946.

[67] Ivan A. Bochkov, Alex Davydow, Nikita Gaevoy, and Sergey I. Nikolenko.
New competitiveness bounds for the shared memory switch. CoRR,
abs/1907.04399, 2019. URL: http://arxiv.org/abs/1907.04399.

[68] Shaileshh Bojja Venkatakrishnan, Mohammad Alizadeh, and Pramod
Viswanath. Costly circuits, submodular schedules and approximate
carathéodory theorems. In Proceedings of the 2016 ACM SIGMETRICS In-
ternational Conference on Measurement and Modeling of Computer Science,
SIGMETRICS ’16, page 75–88, New York, NY, USA, 2016. Association for
Computing Machinery. doi:10.1145/2896377.2901479.

[69] Shaileshh Bojja Venkatakrishnan, Mohammad Alizadeh, and Pramod
Viswanath. Costly circuits, submodular schedules and approximate
carathéodory theorems. Queueing Systems, 88(3):311--347, 2018.

[70] Béla Bollobás and W Fernandez de la Vega. The diameter of random regular
graphs. Combinatorica, 2(2):125--134, 1982.

[71] Tommaso Bonato, Abdul Kabbani, Daniele De Sensi, Rong Pan, Yanfang Le,
Costin Raiciu, Mark Handley, Timo Schneider, Nils Blach, Ahmad Ghalayini,
et al. Smartt-reps: Sender-based marked rapidly-adapting trimmed & timed
transport with recycled entropies. arXiv preprint arXiv:2404.01630, 2024.

[72] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive
Analysis. 1998.

[73] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: Programming protocol-independent packet processors.
ACM SIGCOMM CCR’14, 2014.

https://doi.org/10.1109/SC.2014.34
http://arxiv.org/abs/1907.04399
https://doi.org/10.1145/2896377.2901479

250 REFERENCES

[74] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. Tcp vegas:
new techniques for congestion detection and avoidance. In Proceedings of the
Conference on Communications Architectures, Protocols and Applications,
SIGCOMM ’94, page 24–35, New York, NY, USA, 1994. Association for
Computing Machinery. doi:10.1145/190314.190317.

[75] Broadcom. 12.8 tb/s strataxgs tomahawk 3 ethernet switch se-
ries. https://www.broadcom.com/products/ethernet-connectivity/
switching/strataxgs/bcm56980-series.

[76] Coralie Busse-Grawitz, Roland Meier, Alexander Dietmüller, Tobias Büh-
ler, and Laurent Vanbever. pforest: In-network inference with random
forests. arXiv preprint arXiv:1909.05680, 2019. URL: http://arxiv.org/
abs/1909.05680.

[77] Qizhe Cai, Mina Tahmasbi Arashloo, and Rachit Agarwal. Dcpim: Near-
optimal proactive datacenter transport. In Proceedings of the ACM
SIGCOMM 2022 Conference, SIGCOMM ’22, page 53–65, New York,
NY, USA, 2022. Association for Computing Machinery. doi:10.1145/
3544216.3544235.

[78] J.W. Causey and H.S. Kim. Comparison of buffer allocation schemes in atm
switches: complete sharing, partial sharing, and dedicated allocation. In Pro-
ceedings of ICC/SUPERCOMM’94 - 1994 International Conference on Com-
munications, pages 1164--1168 vol.2, 1994. doi:10.1109/ICC.1994.368919.

[79] Kai Chen, Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu, Yueping
Zhang, Xitao Wen, and Yan Chen. Osa: An optical switching architecture for
data center networks with unprecedented flexibility. IEEE/ACM Transac-
tions on Networking, 22(2):498--511, 2014. doi:10.1109/TNET.2013.2253120.

[80] Li Chen, Kai Chen, Zhonghua Zhu, Minlan Yu, George Porter, Chunming
Qiao, and Shan Zhong. Enabling Wide-Spread communications on optical
fabric with MegaSwitch. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 577--593, Boston, MA, March
2017. USENIX Association. URL: https://www.usenix.org/conference/
nsdi17/technical-sessions/presentation/chen.

[81] Li Chen, Kai Chen, Zhonghua Zhu, Minlan Yu, George Porter, Chunming
Qiao, and Shan Zhong. Enabling Wide-Spread communications on optical
fabric with MegaSwitch. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 577--593, Boston, MA, March
2017. USENIX Association. URL: https://www.usenix.org/conference/
nsdi17/technical-sessions/presentation/chen.

[82] Shawn Shuoshuo Chen, Weiyang Wang, Christopher Canel, Srinivasan
Seshan, Alex C. Snoeren, and Peter Steenkiste. Time-division tcp for re-
configurable data center networks. In Proceedings of the ACM SIGCOMM
2022 Conference, SIGCOMM ’22, page 19–35, New York, NY, USA, 2022.
Association for Computing Machinery. doi:10.1145/3544216.3544254.

https://doi.org/10.1145/190314.190317
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56980-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56980-series
http://arxiv.org/abs/1909.05680
http://arxiv.org/abs/1909.05680
https://doi.org/10.1145/3544216.3544235
https://doi.org/10.1145/3544216.3544235
https://doi.org/10.1109/ICC.1994.368919
https://doi.org/10.1109/TNET.2013.2253120
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/chen
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/chen
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/chen
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/chen
https://doi.org/10.1145/3544216.3544254

REFERENCES 251

[83] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz, and Anthony D.
Joseph. Understanding tcp incast throughput collapse in datacenter net-
works. In Proceedings of the 1st ACM Workshop on Research on Enterprise
Networking, WREN ’09, page 73–82, New York, NY, USA, 2009. Association
for Computing Machinery. doi:10.1145/1592681.1592693.

[84] Stanley Cheung, Tiehui Su, Katsunari Okamoto, and SJB Yoo. Ultra-
compact silicon photonic 512× 512 25 ghz arrayed waveguide grating router.
IEEE Journal of Selected Topics in Quantum Electronics, 20(4):310--316,
2013.

[85] Marco Chiesa, Guy Kindler, and Michael Schapira. Traffic engineering with
equal-cost-multipath: An algorithmic perspective. IEEE/ACM Transactions
on Networking, 25(2):779--792, 2017. doi:10.1109/TNET.2016.2614247.

[86] A.K. Choudhury and E.L. Hahne. Dynamic queue length thresholds for
shared-memory packet switches. IEEE/ACM Transactions on Networking,
6(2):130--140, 1998. doi:10.1109/90.664262.

[87] Cisco. Nexus 9000 series switches. https://www.cisco.com/c/en/us/
products/collateral/switches/nexus-9000-series-switches/white-
paper-c11-738488.html.

[88] Larry A Coldren, Gregory Alan Fish, Y Akulova, JS Barton, L Johansson,
and CW Coldren. Tunable semiconductor lasers: A tutorial. Journal of
Lightwave Technology, 22(1):193, 2004.

[89] Robert M Corless, Gaston H Gonnet, David EG Hare, David J Jeffrey, and
Donald E Knuth. On the lambertw function. Advances in Computational
mathematics, 5(1):329--359, 1996.

[90] Intel Corporation. Intel Tofino, 2020. Retrieved Dec. 29, 2020 from
https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-series/tofino.html.

[91] Fred Douglis, Seth Robertson, Eric van den Berg, Josephine Micallef,
Marc Pucci, Alex Aiken, Keren Bergman, Maarten Hattink, and Min-
goo Seok. Fleet—fast lanes for expedited execution at 10 terabits: Pro-
gram overview. IEEE Internet Computing, 25(3):79--87, 2021. doi:
10.1109/MIC.2021.3075326.

[92] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion
Hodson. FaRM: Fast remote memory. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14), pages 401--414, Seat-
tle, WA, April 2014. USENIX Association. URL: https://www.usenix.org/
conference/nsdi14/technical-sessions/dragojevi%C4%87.

[93] D. Z. Du and F. K. Hwang. Generalized de bruijn digraphs. Networks,
18(1):27--38, 1988. URL: https://onlinelibrary.wiley.com/doi/abs/
10.1002/net.3230180105, arXiv:https://onlinelibrary.wiley.com/
doi/pdf/10.1002/net.3230180105, doi:10.1002/net.3230180105.

https://doi.org/10.1145/1592681.1592693
https://doi.org/10.1109/TNET.2016.2614247
https://doi.org/10.1109/90.664262
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-738488.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-738488.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-738488.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://doi.org/10.1109/MIC.2021.3075326
https://doi.org/10.1109/MIC.2021.3075326
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%C4%87
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%C4%87
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230180105
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230180105
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230180105
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230180105
https://doi.org/10.1002/net.3230180105

252 REFERENCES

[94] Nick G Duffield, Pawan Goyal, Albert Greenberg, Partho Mishra, Kadan-
gode K Ramakrishnan, and Jacobus E van der Merive. A flexible model
for resource management in virtual private networks. In Proceedings of the
conference on Applications, technologies, architectures, and protocols for
computer communication, pages 95--108, 1999.

[95] Nandita Dukkipati and Nick McKeown. Why flow-completion time is the
right metric for congestion control. SIGCOMM Comput. Commun. Rev.,
36(1):59–62, January 2006. doi:10.1145/1111322.1111336.

[96] Tomer Eliyahu, Yafim Kazak, Guy Katz, and Michael Schapira. Verifying
learning-augmented systems. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, SIGCOMM ’21, page 305–318, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3452296.3472936.

[97] F. Ertemalp. Using dynamic buffer limiting to protect against belligerent
flows in high-speed networks. In Proceedings of the Ninth International Con-
ference on Network Protocols, ICNP ’01, pages 230--, Washington, DC, USA,
2001. IEEE Computer Society. URL: http://dl.acm.org/citation.cfm?id=
876907.881596.

[98] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Ha-
jabdolali Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen,
and Amin Vahdat. Helios: A hybrid electrical/optical switch architecture
for modular data centers. In Proceedings of the ACM SIGCOMM 2010
Conference, page 339–350, 2010. doi:10.1145/1851182.1851223.

[99] Anja Feldmann, Balakrishnan Chandrasekaran, Seifeddine Fathalli, and
Emilia N. Weyulu. P4-enabled network-assisted congestion feedback: A
case for nacks. In Proceedings of the 2019 Workshop on Buffer Sizing,
BS ’19, New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3375235.3375238.

[100] Lisa Fleischer and Martin Skutella. Minimum cost flows over time without
intermediate storage. In SODA, volume 3, pages 66--75, 2003.

[101] Lisa Fleischer and Martin Skutella. Quickest flows over time. SIAM Journal
on Computing, 36(6):1600--1630, 2007. arXiv:https://doi.org/10.1137/
S0097539703427215, doi:10.1137/S0097539703427215.

[102] S. Floyd and V. Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on Networking, 1(4):397--413, Aug
1993. doi:10.1109/90.251892.

[103] Sally Floyd, Ramakrishna Gummadi, Scott Shenker, et al. Adaptive red: An
algorithm for increasing the robustness of red’s active queue management,
2001.

[104] Klaus-Tycho Foerster and Stefan Schmid. Survey of reconfigurable data
center networks: Enablers, algorithms, complexity. In SIGACT News, 2019.

https://doi.org/10.1145/1111322.1111336
https://doi.org/10.1145/3452296.3472936
http://dl.acm.org/citation.cfm?id=876907.881596
http://dl.acm.org/citation.cfm?id=876907.881596
https://doi.org/10.1145/1851182.1851223
https://doi.org/10.1145/3375235.3375238
https://arxiv.org/abs/https://doi.org/10.1137/S0097539703427215
https://arxiv.org/abs/https://doi.org/10.1137/S0097539703427215
https://doi.org/10.1137/S0097539703427215
https://doi.org/10.1109/90.251892

REFERENCES 253

[105] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang, Wenwen
Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang,
Fan Liu, Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng Cao,
Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang, Dennis Cai, and Jiesheng
Wu. When cloud storage meets RDMA. In 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 21), pages 519-
-533. USENIX Association, April 2021. URL: https://www.usenix.org/
conference/nsdi21/presentation/gao.

[106] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Approximate
max-flow min-(multi)cut theorems and their applications. SIAM Journal on
Computing, 25(2):235--251, 1996. doi:10.1137/S0097539793243016.

[107] Jim Gettys. Bufferbloat: Dark buffers in the internet. IEEE Internet
Computing, 15(3):96--96, 2011.

[108] Ehab Ghabashneh, Yimeng Zhao, Cristian Lumezanu, Neil Spring, Srikanth
Sundaresan, and Sanjay Rao. A microscopic view of bursts, buffer contention,
and loss in data centers. In Proceedings of the 22nd ACM Internet Mea-
surement Conference, IMC ’22, page 567–580, New York, NY, USA, 2022.
Association for Computing Machinery. doi:10.1145/3517745.3561430.

[109] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janard-
han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegar-
far, Madeleine Glick, and Daniel Kilper. Projector: Agile reconfigurable data
center interconnect. In Proceedings of the 2016 ACM SIGCOMM Confer-
ence, SIGCOMM ’16, page 216–229, New York, NY, USA, 2016. Association
for Computing Machinery. doi:10.1145/2934872.2934911.

[110] Soudeh Ghorbani, Zibin Yang, P. Brighten Godfrey, Yashar Ganjali, and
Amin Firoozshahian. Drill: Micro load balancing for low-latency data
center networks. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’17, page 225–238,
New York, NY, USA, 2017. Association for Computing Machinery. doi:
10.1145/3098822.3098839.

[111] Michael H. Goldwasser. A survey of buffer management policies for
packet switches. SIGACT News, 41(1):100–128, mar 2010. doi:10.1145/
1753171.1753195.

[112] Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Nikolaidis, Mohammad Al-
izadeh, and Thomas E. Anderson. Backpressure flow control. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22),
pages 779--805, Renton, WA, April 2022. USENIX Association. URL:
https://www.usenix.org/conference/nsdi22/presentation/goyal.

[113] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and
Sudipta Sengupta. Vl2: a scalable and flexible data center network. In ACM
SIGCOMM computer communication review, volume 39, pages 51--62. ACM,
2009.

https://www.usenix.org/conference/nsdi21/presentation/gao
https://www.usenix.org/conference/nsdi21/presentation/gao
https://doi.org/10.1137/S0097539793243016
https://doi.org/10.1145/3517745.3561430
https://doi.org/10.1145/2934872.2934911
https://doi.org/10.1145/3098822.3098839
https://doi.org/10.1145/3098822.3098839
https://doi.org/10.1145/1753171.1753195
https://doi.org/10.1145/1753171.1753195
https://www.usenix.org/conference/nsdi22/presentation/goyal

254 REFERENCES

[114] Chen Griner, Johannes Zerwas, Andreas Blenk, Manya Ghobadi, Stefan
Schmid, and Chen Avin. Cerberus: The power of choices in datacenter
topology design - a throughput perspective. Proc. ACM Meas. Anal. Comput.
Syst., 5(3), dec 2021. doi:10.1145/3491050.

[115] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,
Chen Tian, Yongguang Zhang, and Songwu Lu. Bcube: A high performance,
server-centric network architecture for modular data centers. In Proceedings
of the ACM SIGCOMM 2009 Conference, page 63–74, 2009. doi:10.1145/
1592568.1592577.

[116] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu
Padhye, and Marina Lipshteyn. Rdma over commodity ethernet at scale. In
Proceedings of the 2016 ACM SIGCOMM Conference, pages 202--215, 2016.

[117] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL:
https://www.gurobi.com.

[118] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new tcp-friendly high-
speed tcp variant. 42(5):64–74, July 2008. doi:10.1145/1400097.1400105.

[119] Ellen L. Hahne, Alexander Kesselman, and Yishay Mansour. Competitve
buffer management for shared-memory switches. In Proceedings of the
Thirteenth Annual ACM Symposium on Parallel Algorithms and Architec-
tures, SPAA ’01, page 53–58, New York, NY, USA, 2001. Association for
Computing Machinery. doi:10.1145/378580.378589.

[120] Alex Hall, Steffen Hippler, and Martin Skutella. Multicommodity flows
over time: Efficient algorithms and complexity. Theoretical Com-
puter Science, 379(3):387--404, 2007. Automata, Languages and Pro-
gramming. URL: https://www.sciencedirect.com/science/article/
pii/S0304397507001508, doi:10.1016/j.tcs.2007.02.046.

[121] Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R.
Das, Jon P. Longtin, Himanshu Shah, and Ashish Tanwer. Firefly: A
reconfigurable wireless data center fabric using free-space optics. In Pro-
ceedings of the ACM SIGCOMM 2014 Conference, page 319–330, 2014.
doi:10.1145/2619239.2626328.

[122] Sarah-Michelle Hammer, Vamsi Addanki, Max Franke, and Stefan Schmid.
Starlink performance through the edge router lens. In Proceedings of the 2nd
International Workshop on LEO Networking and Communication, LEO-NET
’24, page 67–72, New York, NY, USA, 2024. Association for Computing
Machinery. doi:10.1145/3697253.3697273.

[123] Michelle Hampson. Reconfigurable optical networks will move supercomput-
erdata 100x faster,". IEEE Spectrum, 2021.

[124] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, An-
drew W. Moore, Gianni Antichi, and Marcin Wójcik. Re-architecting dat-
acenter networks and stacks for low latency and high performance. In
Proceedings of the Conference of the ACM Special Interest Group on Data

https://doi.org/10.1145/3491050
https://doi.org/10.1145/1592568.1592577
https://doi.org/10.1145/1592568.1592577
https://www.gurobi.com
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1145/378580.378589
https://www.sciencedirect.com/science/article/pii/S0304397507001508
https://www.sciencedirect.com/science/article/pii/S0304397507001508
https://doi.org/10.1016/j.tcs.2007.02.046
https://doi.org/10.1145/2619239.2626328
https://doi.org/10.1145/3697253.3697273

REFERENCES 255

Communication, SIGCOMM ’17, page 29–42, New York, NY, USA, 2017.
Association for Computing Machinery. doi:10.1145/3098822.3098825.

[125] David A. Hayes and Grenville Armitage. Revisiting tcp congestion control
using delay gradients. In Jordi Domingo-Pascual, Pietro Manzoni, Sergio
Palazzo, Ana Pont, and Caterina Scoglio, editors, NETWORKING 2011,
pages 328--341, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[126] Yihua He, Nitin Batta, and Igor Gashinsky. Understanding switch buffer
utilization in clos data center fabric.

[127] Jörn-Thorben Hinz, Vamsi Addanki, Csaba Györgyi, Theo Jepsen, and
Stefan Schmid. Tcp’s third eye: Leveraging ebpf for telemetry-powered
congestion control. In Proceedings of the 1st Workshop on EBPF and Kernel
Extensions, eBPF ’23, page 1–7, New York, NY, USA, 2023. Association for
Computing Machinery. doi:10.1145/3609021.3609295.

[128] Torsten Hoefler, Tommaso Bonato, Daniele De Sensi, Salvatore Di Giro-
lamo, Shigang Li, Marco Heddes, Jon Belk, Deepak Goel, Miguel Cas-
tro, and Steve Scott. Hammingmesh: A network topology for large-
scale deep learning. In SC22: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages 1--18, 2022.
doi:10.1109/SC41404.2022.00016.

[129] C.V. Hollot, V. Misra, D. Towsley, and Wei-Bo Gong. A control theoretic
analysis of red. In Proceedings IEEE INFOCOM 2001. Conference on
Computer Communications. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Society (Cat. No.01CH37213), volume 3,
pages 1510--1519 vol.3, 2001. doi:10.1109/INFCOM.2001.916647.

[130] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. Finishing flows
quickly with preemptive scheduling. SIGCOMM Comput. Commun. Rev.,
42(4):127–138, August 2012. doi:10.1145/2377677.2377710.

[131] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang, Baochen Qiao, Kai
Chen, Kun Tan, and Yi Wang. Aeolus: A building block for proactive
transport in datacenters. In Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication,
SIGCOMM ’20, page 422–434, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3387514.3405878.

[132] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo, Kun Tan, Jitendra
Padhye, and Kai Chen. Tagger: Practical pfc deadlock prevention in data
center networks. CoNEXT ’17, page 451–463, New York, NY, USA, 2017.
Association for Computing Machinery. doi:10.1145/3143361.3143382.

[133] Sijiang Huang, Mowei Wang, and Yong Cui. Traffic-aware buffer manage-
ment in shared memory switches. In IEEE INFOCOM 2021-IEEE Conference
on Computer Communications, pages 1--10. IEEE, 2021.

https://doi.org/10.1145/3098822.3098825
https://doi.org/10.1145/3609021.3609295
https://doi.org/10.1109/SC41404.2022.00016
https://doi.org/10.1109/INFCOM.2001.916647
https://doi.org/10.1145/2377677.2377710
https://doi.org/10.1145/3387514.3405878
https://doi.org/10.1145/3143361.3143382

256 REFERENCES

[134] Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit.
Non-clairvoyant scheduling with predictions. In Proceedings of the 33rd
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
’21, page 285–294, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3409964.3461790.

[135] Sungjin Im, Benjamin Moseley, Chenyang Xu, and Ruilong Zhang. Online
dynamic acknowledgement with learned predictions. pages 1--10, 2023.
doi:10.1109/INFOCOM53939.2023.10228882.

[136] Makoto Imase and Masaki Itoh. A design for directed graphs with minimum
diameter. IEEE Transactions on Computers, 32(08):782--784, 1983.

[137] Makoto Imase, Terunao Soneoka, and Keiji Okada. Connectivity of regular
directed graphs with small diameters. IEEE Transactions on Computers,
34(03):267--273, 1985.

[138] V. Jacobson. Congestion avoidance and control. In Symposium Proceedings
on Communications Architectures and Protocols, SIGCOMM ’88, page
314–329, New York, NY, USA, 1988. Association for Computing Machinery.
doi:10.1145/52324.52356.

[139] V Jacobson and N Kathleen. Controlling queue delay-a modern aqm is
just one piece of the solution to bufferbloat. Asscociation for Computing
Machinery (ACM Queue), 2012.

[140] Syed Usman Jafri, Sanjay Rao, Vishal Shrivastav, and Mohit Tawarmalani.
Leo: Online traffic classification at Multi-Terabit line rate. In 21th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 24),
Santa Clara, CA, 2024. USENIX Association.

[141] Grzegorz Jereczek, Theo Jepsen, Simon Wass, Bimmy Pujari, Jerry Zhen, and
Jeongkeun Lee. Tcp-int: lightweight network telemetry with tcp transport.
In Proceedings of the SIGCOMM ’22 Poster and Demo Sessions, SIGCOMM
’22, page 58–60, New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3546037.3546064.

[142] Zhihao Jiang, Debmalya Panigrahi, and Kevin Sun. Online algorithms
for weighted paging with predictions. In 47th International Colloquium
on Automata, Languages, and Programming, ICALP 2020, volume 168 of
LIPIcs, pages 69:1--69:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.

[143] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi
Zhang, Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, Yulu Jia, Sun He,
Hongmin Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou, Yiyao Sheng,
Zhuo Jiang, Haohan Xu, Haoran Wei, Zhang Zhang, Pengfei Nie, Leqi Zou,
Sida Zhao, Liang Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, Jianxi Ye, Xin Jin,
and Xin Liu. MegaScale: Scaling large language model training to more than
10,000 GPUs. In 21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24), pages 745--760, Santa Clara, CA, April
2024. USENIX Association. URL: https://www.usenix.org/conference/
nsdi24/presentation/jiang-ziheng.

https://doi.org/10.1145/3409964.3461790
https://doi.org/10.1109/INFOCOM53939.2023.10228882
https://doi.org/10.1145/52324.52356
https://doi.org/10.1145/3546037.3546064
https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng
https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng

REFERENCES 257

[144] Cheng Jin, D.X. Wei, and S.H. Low. Fast tcp: motivation, architecture,
algorithms, performance. In IEEE INFOCOM 2004, volume 4, pages 2490--
2501 vol.4, 2004. doi:10.1109/INFCOM.2004.1354670.

[145] Sangeetha Abdu Jyothi, Ankit Singla, P. Brighten Godfrey, and Alexandra
Kolla. Measuring and understanding throughput of network topologies. In
SC ’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 761--772, 2016. doi:
10.1109/SC.2016.64.

[146] Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter rpcs can
be general and fast. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), pages 1--16, Boston, MA, February
2019. USENIX Association. URL: https://www.usenix.org/conference/
nsdi19/presentation/kalia.

[147] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design guidelines
for high performance RDMA systems. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16), pages 437--450, Denver, CO, June 2016.
USENIX Association. URL: https://www.usenix.org/conference/atc16/
technical-sessions/presentation/kalia.

[148] Srikanth Kandula, Jitu Padhye, and Victor Bahl. Flyways to de-congest
data center networks. 2009.

[149] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel,
and Ronnie Chaiken. The nature of data center traffic: measurements
& analysis. In Proceedings of the 9th ACM SIGCOMM Conference on
Internet Measurement, IMC ’09, page 202–208, New York, NY, USA, 2009.
Association for Computing Machinery. doi:10.1145/1644893.1644918.

[150] Simon Kassing, Asaf Valadarsky, Gal Shahaf, Michael Schapira, and Ankit
Singla. Beyond fat-trees without antennae, mirrors, and disco-balls. In
Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, pages 281--294. ACM, 2017.

[151] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion control for high
bandwidth-delay product networks. In Proceedings of the 2002 Conference
on Applications, Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’02, page 89–102, New York, NY, USA, 2002.
Association for Computing Machinery. doi:10.1145/633025.633035.

[152] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and
Jennifer Rexford. Hula: Scalable load balancing using programmable
data planes. In Proceedings of the Symposium on SDN Research, SOSR
’16, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2890955.2890968.

[153] Yafim Kazak, Clark Barrett, Guy Katz, and Michael Schapira. Verifying deep-
rl-driven systems. In Proceedings of the 2019 Workshop on Network Meets
AI & ML, NetAI’19, page 83–89, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3341216.3342218.

https://doi.org/10.1109/INFCOM.2004.1354670
https://doi.org/10.1109/SC.2016.64
https://doi.org/10.1109/SC.2016.64
https://www.usenix.org/conference/nsdi19/presentation/kalia
https://www.usenix.org/conference/nsdi19/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://doi.org/10.1145/1644893.1644918
https://doi.org/10.1145/633025.633035
https://doi.org/10.1145/2890955.2890968
https://doi.org/10.1145/3341216.3342218

258 REFERENCES

[154] Srinivasan Keshav. Mathematical foundations of computer networking.
Addison-Wesley, 2012.

[155] Alexander Kesselman and Yishay Mansour. Harmonic buffer management
policy for shared memory switches. Theoretical Computer Science, 324(2):161-
-182, 2004. Online Algorithms: In Memoriam, Steve Seiden. URL: https://
www.sciencedirect.com/science/article/pii/S0304397504003779, doi:
10.1016/j.tcs.2004.05.014.

[156] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait
Dixit, and Lawrence J Wobker. In-band network telemetry via programmable
dataplanes. In ACM SIGCOMM ’15 Demos, 2015.

[157] John Kim, Wiliam J Dally, Steve Scott, and Dennis Abts. Technology-driven,
highly-scalable dragonfly topology. In 2008 International Symposium on
Computer Architecture, pages 77--88. IEEE, 2008.

[158] Koji Kobayashi, Shuichi Miyazaki, and Yasuo Okabe. A tight bound on
online buffer management for two-port shared-memory switches. In Pro-
ceedings of the Nineteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA ’07, page 358–364, New York, NY, USA, 2007.
Association for Computing Machinery. doi:10.1145/1248377.1248437.

[159] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang, Jianxi Ye, Chuanxiong
Guo, and Danyang Zhuo. Collie: Finding performance anomalies in RDMA
subsystems. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 287--305, Renton, WA, April 2022.
USENIX Association. URL: https://www.usenix.org/conference/nsdi22/
presentation/kong.

[160] Diego Kreutz, Fernando M. V. Ramos, Paulo Esteves Veríssimo, Christian Es-
teve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined
networking: A comprehensive survey. Proceedings of the IEEE, 103(1):14--76,
2015. doi:10.1109/JPROC.2014.2371999.

[161] Santosh Krishnan, Abhijit K Choudhury, and Fabio M Chiussi. Dynamic
partitioning: A mechanism for shared memory management. In IEEE INFO-
COM’99. Conference on Computer Communications. Proceedings. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications Soci-
eties. The Future is Now (Cat. No. 99CH36320), volume 1, pages 144--152.
IEEE, 1999.

[162] Janardhan Kulkarni, Euiwoong Lee, and Mohit Singh. Minimum birkhoff-von
neumann decomposition. In Friedrich Eisenbrand and Jochen Koenemann,
editors, Integer Programming and Combinatorial Optimization, pages 343--
354, Cham, 2017. Springer International Publishing.

[163] Janardhan Kulkarni, Stefan Schmid, and Paweł Schmidt. Scheduling op-
portunistic links in two-tiered reconfigurable datacenters. In Proceedings
of the 33rd ACM Symposium on Parallelism in Algorithms and Architec-
tures, SPAA ’21, page 318–327, New York, NY, USA, 2021. Association for
Computing Machinery. doi:10.1145/3409964.3461786.

https://www.sciencedirect.com/science/article/pii/S0304397504003779
https://www.sciencedirect.com/science/article/pii/S0304397504003779
https://doi.org/10.1016/j.tcs.2004.05.014
https://doi.org/10.1016/j.tcs.2004.05.014
https://doi.org/10.1145/1248377.1248437
https://www.usenix.org/conference/nsdi22/presentation/kong
https://www.usenix.org/conference/nsdi22/presentation/kong
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1145/3409964.3461786

REFERENCES 259

[164] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan MG Wassel, Xian
Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher
Alfeld, Michael Ryan, et al. Swift: Delay is simple and effective for congestion
control in the datacenter. In Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication, pages
514--528, 2020.

[165] Yanfang Le, Jeongkeun Lee, Jeremias Blendin, Jiayi Chen, Georgios Niko-
laidis, Rong Pan, Robert Soule, Aditya Akella, Pedro Yebenes Segura,
Arjun singhvi, Yuliang Li, Qingkai Meng, Changhoon Kim, and Serhat
Arslan. Sfc: Near-source congestion signaling and flow control, 2023. URL:
https://arxiv.org/abs/2305.00538, arXiv:2305.00538.

[166] Changhyun Lee, Chunjong Park, Keon Jang, Sue Moon, and Dongsu Han.
Accurate latency-based congestion feedback for datacenters. In 2015 USENIX
Annual Technical Conference (USENIX ATC 15), pages 403--415, Santa
Clara, CA, July 2015. USENIX Association. URL: https://www.usenix.org/
conference/atc15/technical-session/presentation/lee-changhyun.

[167] Jason Lei and Vishal Shrivastav. Seer: Future-Aware caching system for
network processors. In 21th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 24), Santa Clara, CA, 2024. USENIX
Association.

[168] Tom Leighton and Satish Rao. An approximate max-flow min-cut theorem
for uniform multicommodity flow problems with applications to approxima-
tion algorithms. Technical report, Massachusetts Inst of Tech Cambridge
Microsystems Research Center, 1989.

[169] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms. J. ACM, 46(6):787–832,
nov 1999. doi:10.1145/331524.331526.

[170] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao Zhang. Socksdirect:
Datacenter sockets can be fast and compatible. In Proceedings of the
ACM Special Interest Group on Data Communication, SIGCOMM ’19, page
90–103, New York, NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3341302.3342071.

[171] Jialong Li, Haotian Gong, Federico De Marchi, Aoyu Gong, Yiming Lei, Wei
Bai, and Yiting Xia. Uniform-cost multi-path routing for reconfigurable data
center networks. In Proceedings of the ACM SIGCOMM 2024 Conference,
ACM SIGCOMM ’24, page 433–448, New York, NY, USA, 2024. Association
for Computing Machinery. doi:10.1145/3651890.3672245.

[172] Wenxue Li, Xiangzhou Liu, Yuxuan Li, Yilun Jin, Han Tian, Zhizhen Zhong,
Guyue Liu, Ying Zhang, and Kai Chen. Understanding communication
characteristics of distributed training. In Proceedings of the 8th Asia-Pacific
Workshop on Networking, APNet ’24, page 1–8, New York, NY, USA, 2024.
Association for Computing Machinery. doi:10.1145/3663408.3663409.

https://arxiv.org/abs/2305.00538
https://arxiv.org/abs/2305.00538
https://www.usenix.org/conference/atc15/technical-session/presentation/lee-changhyun
https://www.usenix.org/conference/atc15/technical-session/presentation/lee-changhyun
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/3341302.3342071
https://doi.org/10.1145/3651890.3672245
https://doi.org/10.1145/3663408.3663409

260 REFERENCES

[173] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo
Tang, Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and
Minlan Yu. Hpcc: high precision congestion control. In Proceedings of the
ACM Special Interest Group on Data Communication, SIGCOMM ’19, page
44–58, New York, NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3341302.3342085.

[174] Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark
Barrett, and Mykel J. Kochenderfer. Algorithms for verifying deep neural
networks. Foundations and Trends® in Optimization, 4(3-4):244--404, 2021.
URL: http://dx.doi.org/10.1561/2400000035, doi:10.1561/2400000035.

[175] He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari, Geof-
frey M. Voelker, George Papen, Alex C. Snoeren, and George Porter. Circuit
switching under the radar with REACToR. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14), pages 1--15, Seat-
tle, WA, April 2014. USENIX Association. URL: https://www.usenix.org/
conference/nsdi14/technical-sessions/presentation/liu_he.

[176] He Liu, Matthew K. Mukerjee, Conglong Li, Nicolas Feltman, George Papen,
Stefan Savage, Srinivasan Seshan, Geoffrey M. Voelker, David G. Ander-
sen, Michael Kaminsky, George Porter, and Alex C. Snoeren. Scheduling
techniques for hybrid circuit/packet networks. In Proceedings of the 11th
ACM Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’15, New York, NY, USA, 2015. Association for Computing Ma-
chinery. doi:10.1145/2716281.2836126.

[177] Kexin Liu, Zhaochen Zhang, Chang Liu, Yizhi Wang, Vamsi Addanki, Stefan
Schmid, Qingyue Wang, Wei Chen, Xiaoliang Wang, Jiaqi Zheng, Wenhao
Sun, Tao Wu, Ke Meng, Fei Chen, Weiguang Wang, Bingyang Liu, Wanchun
Dou, Guihai Chen, and Chen Tian. Pyrrha: Congestion-Root-Based flow con-
trol to eliminate Head-of-Line blocking in datacenter. In 22nd USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 25), pages
379--405, Philadelphia, PA, April 2025. USENIX Association. URL: https:
//www.usenix.org/conference/nsdi25/presentation/liu-kexin.

[178] Shiyu Liu, Ahmad Ghalayini, Mohammad Alizadeh, Balaji Prabhakar,
Mendel Rosenblum, and Anirudh Sivaraman. Breaking the transience-
equilibrium nexus: A new approach to datacenter packet transport. In
NSDI, pages 47--63, 2021.

[179] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas
Anderson. F10: A Fault-Tolerant engineered network. In 10th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13), pages 399--412, Lombard, IL, April 2013. USENIX Asso-
ciation. URL: https://www.usenix.org/conference/nsdi13/technical-
sessions/presentation/liu_vincent.

[180] Xuting Liu, Behnaz Arzani, Siva Kesava Reddy Kakarla, Liangyu Zhao,
Vincent Liu, Miguel Castro, Srikanth Kandula, and Luke Marshall. Rethink-
ing machine learning collective communication as a multi-commodity flow

https://doi.org/10.1145/3341302.3342085
http://dx.doi.org/10.1561/2400000035
https://doi.org/10.1561/2400000035
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/liu_he
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/liu_he
https://doi.org/10.1145/2716281.2836126
https://www.usenix.org/conference/nsdi25/presentation/liu-kexin
https://www.usenix.org/conference/nsdi25/presentation/liu-kexin
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_vincent
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_vincent

REFERENCES 261

problem. In Proceedings of the ACM SIGCOMM 2024 Conference, ACM
SIGCOMM ’24, page 16–37, New York, NY, USA, 2024. Association for
Computing Machinery. doi:10.1145/3651890.3672249.

[181] Yi Liu, Jiangping Han, Kaiping Xue, Ruidong Li, and Jian Li. L2bm: Switch
buffer management for hybrid traffic in data center networks. In 2023 IEEE
43rd International Conference on Distributed Computing Systems (ICDCS),
pages 1--11, 2023. doi:10.1109/ICDCS57875.2023.00076.

[182] Yunpeng James Liu, Peter Xiang Gao, Bernard Wong, and Srinivasan Keshav.
Quartz: A new design element for low-latency dcns. ACM SIGCOMM
Computer Communication Review, 44(4):283–294, aug 2014. doi:10.1145/
2740070.2626332.

[183] S.H. Low, F. Paganini, and J.C. Doyle. Internet congestion control. IEEE
Control Systems Magazine, 22(1):28--43, 2002. doi:10.1109/37.980245.

[184] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine
learned advice. J. ACM, 68(4):24:1--24:25, 2021.

[185] Matt Mathis and Andrew McGregor. Buffer sizing: a position paper.

[186] William M. Mellette, Ilya Agurok, Alex Forencich, Spencer Chang, George Pa-
pen, and Joseph E. Ford. A scalable, high-speed optical rotor switch. In Opti-
cal Fiber Communication Conference (OFC) 2024, page Th1A.5. Optica Pub-
lishing Group, 2024. URL: https://opg.optica.org/abstract.cfm?URI=
OFC-2024-Th1A.5, doi:10.1364/OFC.2024.Th1A.5.

[187] William M. Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C.
Snoeren, and George Porter. Expanding across time to deliver bandwidth
efficiency and low latency. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages 1--18, Santa Clara,
CA, February 2020. USENIX Association. URL: https://www.usenix.org/
conference/nsdi20/presentation/mellette.

[188] William M. Mellette, Alex Forencich, Rukshani Athapathu, Alex C. Sno-
eren, George Papen, and George Porter. Realizing rotornet: Toward
practical microsecond scale optical networking. In Proceedings of the
ACM SIGCOMM 2024 Conference, ACM SIGCOMM ’24, page 392–414,
New York, NY, USA, 2024. Association for Computing Machinery. doi:
10.1145/3651890.3672273.

[189] William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George
Papen, Alex C. Snoeren, and George Porter. Rotornet: A scalable, low-
complexity, optical datacenter network. SIGCOMM ’17, page 267–280,
New York, NY, USA, 2017. Association for Computing Machinery. doi:
10.1145/3098822.3098838.

[190] William Maxwell Mellette, Glenn M. Schuster, George Porter, George Papen,
and Joseph E. Ford. A scalable, partially configurable optical switch for
data center networks. Journal of Lightwave Technology, 35(2):136--144, 2017.
doi:10.1109/JLT.2016.2636025.

https://doi.org/10.1145/3651890.3672249
https://doi.org/10.1109/ICDCS57875.2023.00076
https://doi.org/10.1145/2740070.2626332
https://doi.org/10.1145/2740070.2626332
https://doi.org/10.1109/37.980245
https://opg.optica.org/abstract.cfm?URI=OFC-2024-Th1A.5
https://opg.optica.org/abstract.cfm?URI=OFC-2024-Th1A.5
https://doi.org/10.1364/OFC.2024.Th1A.5
https://www.usenix.org/conference/nsdi20/presentation/mellette
https://www.usenix.org/conference/nsdi20/presentation/mellette
https://doi.org/10.1145/3651890.3672273
https://doi.org/10.1145/3651890.3672273
https://doi.org/10.1145/3098822.3098838
https://doi.org/10.1145/3098822.3098838
https://doi.org/10.1109/JLT.2016.2636025

262 REFERENCES

[191] Rui Miao, Bo Li, Hongqiang Harry Liu, and Ming Zhang. Buffer sizing with
hpcc. 2019.

[192] Vishal Misra, Wei-Bo Gong, and Don Towsley. Fluid-based analysis of a
network of aqm routers supporting tcp flows with an application to red. In
Proceedings of the Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, SIGCOMM ’00, page 151–160,
New York, NY, USA, 2000. Association for Computing Machinery. doi:
10.1145/347059.347421.

[193] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan
Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall,
and David Zats. Timely: Rtt-based congestion control for the datacenter. In
Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, page 537–550, New York, NY, USA, 2015.
Association for Computing Machinery. doi:10.1145/2785956.2787510.

[194] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind
Krishnamurthy, Sylvia Ratnasamy, and Scott Shenker. Revisiting network
support for rdma. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’18, page 313–326,
New York, NY, USA, 2018. Association for Computing Machinery. doi:
10.1145/3230543.3230557.

[195] Michael Mitzenmacher. A model for learned bloom filters and optimiz-
ing by sandwiching. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL: https://proceedings.neurips.cc/paper_files/paper/2018/
file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf.

[196] Michael Mitzenmacher. Scheduling with predictions and the price of mispre-
diction. arXiv preprint arXiv:1902.00732, 2019. URL: http://arxiv.org/
abs/1902.00732.

[197] Michael Mitzenmacher. Queues with small advice. In Proceedings of the
2021 SIAM Conference on Applied and Computational Discrete Algorithms
(ACDA21), pages 1--12. SIAM, 2021. doi:10.1137/1.9781611976830.1.

[198] Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions.
Commun. ACM, 65(7):33–35, jun 2022. doi:10.1145/3528087.

[199] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-
hout. Homa: a receiver-driven low-latency transport protocol using net-
work priorities. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM ’18, page
221–235, New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3230543.3230564.

[200] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and Ky-
oungSoo Park. AccelTCP: Accelerating network applications with stateful
TCP offloading. In 17th USENIX Symposium on Networked Systems Design

https://doi.org/10.1145/347059.347421
https://doi.org/10.1145/347059.347421
https://doi.org/10.1145/2785956.2787510
https://doi.org/10.1145/3230543.3230557
https://doi.org/10.1145/3230543.3230557
https://proceedings.neurips.cc/paper_files/paper/2018/file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf
http://arxiv.org/abs/1902.00732
http://arxiv.org/abs/1902.00732
https://doi.org/10.1137/1.9781611976830.1
https://doi.org/10.1145/3528087
https://doi.org/10.1145/3230543.3230564

REFERENCES 263

and Implementation (NSDI 20), pages 77--92, Santa Clara, CA, February
2020. USENIX Association. URL: https://www.usenix.org/conference/
nsdi20/presentation/moon.

[201] Matthew K. Mukerjee, Christopher Canel, Weiyang Wang, Daehyeok
Kim, Srinivasan Seshan, and Alex C. Snoeren. Adapting TCP for re-
configurable datacenter networks. In 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 20), pages 651--666,
Santa Clara, CA, February 2020. USENIX Association. URL: https:
//www.usenix.org/conference/nsdi20/presentation/mukerjee.

[202] Aisha Mushtaq, Asad Khalid Ismail, Abdul Wasay, Bilal Mahmood, Ih-
san Ayyub Qazi, and Zartash Afzal Uzmi. Rethinking buffer management
in data center networks. SIGCOMM Comput. Commun. Rev., 44(4):575-
-576, August 2014. URL: http://doi.acm.org/10.1145/2740070.2631462,
doi:10.1145/2740070.2631462.

[203] D. Naddef and W.R. Pulleyblank. Matchings in regular graphs.
Discrete Mathematics, 34(3):283--291, 1981. URL: https:
//www.sciencedirect.com/science/article/pii/0012365X81900066,
doi:10.1016/0012-365X(81)90006-6.

[204] Pooria Namyar, Sucha Supittayapornpong, Mingyang Zhang, Minlan Yu,
and Ramesh Govindan. A throughput-centric view of the performance of
datacenter topologies. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference, SIGCOMM ’21, page 349–369, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3452296.3472913.

[205] Matthew Nance Hall, Klaus-Tycho Foerster, Stefan Schmid, and Ra-
makrishnan Durairajan. A survey of reconfigurable optical networks.
Optical Switching and Networking, 41:100621, 2021. URL: https://
www.sciencedirect.com/science/article/pii/S1573427721000187, doi:
10.1016/j.osn.2021.100621.

[206] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei
Zaharia. Pipedream: generalized pipeline parallelism for dnn training. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles,
SOSP ’19, page 1–15, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3341301.3359646.

[207] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia. Ef-
ficient large-scale language model training on gpu clusters using megatron-lm.
In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’21, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3458817.3476209.

[208] Mark EJ Newman. Analysis of weighted networks. Physical review E,
70(5):056131, 2004.

https://www.usenix.org/conference/nsdi20/presentation/moon
https://www.usenix.org/conference/nsdi20/presentation/moon
https://www.usenix.org/conference/nsdi20/presentation/mukerjee
https://www.usenix.org/conference/nsdi20/presentation/mukerjee
http://doi.acm.org/10.1145/2740070.2631462
https://doi.org/10.1145/2740070.2631462
https://www.sciencedirect.com/science/article/pii/0012365X81900066
https://www.sciencedirect.com/science/article/pii/0012365X81900066
https://doi.org/10.1016/0012-365X(81)90006-6
https://doi.org/10.1145/3452296.3472913
https://www.sciencedirect.com/science/article/pii/S1573427721000187
https://www.sciencedirect.com/science/article/pii/S1573427721000187
https://doi.org/10.1016/j.osn.2021.100621
https://doi.org/10.1016/j.osn.2021.100621
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3458817.3476209

264 REFERENCES

[209] ns 3. Network simulator. https://www.nsnam.org/.

[210] Vladimir Olteanu, Haggai Eran, Dragos Dumitrescu, Adrian Popa, Cristi
Baciu, Mark Silberstein, Georgios Nikolaidis, Mark Handley, and Costin
Raiciu. An edge-queued datagram service for all datacenter traffic. In 19th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), pages 761--777, Renton, WA, April 2022. USENIX Associa-
tion. URL: https://www.usenix.org/conference/nsdi22/presentation/
olteanu.

[211] Eugene Opsasnick. Buffer management and flow control mechanism including
packet-based dynamic thresholding. US patent US7953002B2. URL: https:
//patents.google.com/patent/US7953002B2/en.

[212] Oracle. Oracle cloud infrastructure blog: First principles: Build-
ing a high-performance network in the public cloud. URL:
https://blogs.oracle.com/cloud-infrastructure/post/building-
high-performance-network-in-the-cloud.

[213] Christoph Paasch and Olivier Bonaventure. Multipath tcp. Commun. ACM,
57(4):51–57, apr 2014. doi:10.1145/2578901.

[214] Maciej Pacut, Wenkai Dai, Alexandre Labbe, Klaus-Tycho Foerster, and
Stefan Schmid. Improved scalability of demand-aware datacenter topologies
with minimal route lengths and congestion. 49(3):35–36, March 2022. doi:
10.1145/3529113.3529125.

[215] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian, F. Baker,
and B. VerSteeg. Pie: A lightweight control scheme to address the bufferbloat
problem. In 2013 IEEE 14th International Conference on High Performance
Switching and Routing (HPSR), pages 148--155, July 2013. doi:10.1109/
HPSR.2013.6602305.

[216] Jonathan Perry, Hari Balakrishnan, and Devavrat Shah. Flowtune: Flowlet
control for datacenter networks. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 421--435, Boston,
MA, March 2017. USENIX Association. URL: https://www.usenix.org/
conference/nsdi17/technical-sessions/presentation/perry.

[217] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and
Hans Fugal. Fastpass: a centralized "zero-queue" datacenter network. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, page
307–318, New York, NY, USA, 2014. Association for Computing Machinery.
doi:10.1145/2619239.2626309.

[218] Julius Petersen. Die theorie der regulären graphs. Acta Mathematica,
15(1):193--220, 1891.

[219] Amar Phanishayee, Elie Krevat, Vijay Vasudevan, David G. Andersen,
Gregory R. Ganger, Garth A. Gibson, and Srinivasan Seshan. Measurement
and analysis of tcp throughput collapse in cluster-based storage systems. In
Proceedings of the 6th USENIX Conference on File and Storage Technologies,
FAST’08, USA, 2008. USENIX Association.

https://www.nsnam.org/
https://www.usenix.org/conference/nsdi22/presentation/olteanu
https://www.usenix.org/conference/nsdi22/presentation/olteanu
https://patents.google.com/patent/US7953002B2/en
https://patents.google.com/patent/US7953002B2/en
https://blogs.oracle.com/cloud-infrastructure/post/building-high-performance-network-in-the-cloud
https://blogs.oracle.com/cloud-infrastructure/post/building-high-performance-network-in-the-cloud
https://doi.org/10.1145/2578901
https://doi.org/10.1145/3529113.3529125
https://doi.org/10.1145/3529113.3529125
https://doi.org/10.1109/HPSR.2013.6602305
https://doi.org/10.1109/HPSR.2013.6602305
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/perry
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/perry
https://doi.org/10.1145/2619239.2626309

REFERENCES 265

[220] Polatis. POLATIS® 7000 Optical Circuit Switch. https:
//www.hubersuhner.com/en/shop/product/other-systems/optical-
switches/rack-mount-circuit-switches/85223159/polatis-7000-
optical-circuit-switch.

[221] George Porter, Richard Strong, Nathan Farrington, Alex Forencich, Pang
Chen-Sun, Tajana Rosing, Yeshaiahu Fainman, George Papen, and Amin
Vahdat. Integrating microsecond circuit switching into the data center.
In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
SIGCOMM ’13, page 447–458, New York, NY, USA, 2013. Association for
Computing Machinery. doi:10.1145/2486001.2486007.

[222] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukarram
Tariq, Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Conner,
Steve Gribble, Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu,
Karthik Nagaraj, Jason Ornstein, Samir Sawhney, Ryohei Urata, Lorenzo
Vicisano, Kevin Yasumura, Shidong Zhang, Junlan Zhou, and Amin Vah-
dat. Jupiter evolving: Transforming google’s datacenter network via op-
tical circuit switches and software-defined networking. In Proceedings of
the ACM SIGCOMM 2022 Conference, SIGCOMM ’22, page 66–85, 2022.
doi:10.1145/3544216.3544265.

[223] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online al-
gorithms via ml predictions. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL: https://proceedings.neurips.cc/paper_files/paper/2018/
file/73a427badebe0e32caa2e1fc7530b7f3-Paper.pdf.

[224] Pybind11. Seamless operability between C++11 and Python. https://
pybind11.readthedocs.io/en/stable/.

[225] Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya Akella. Cassini:
Network-aware job scheduling in machine learning clusters. In 21th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 24),
Santa Clara, CA, 2024. USENIX Association.

[226] Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned
advice. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages
1834--1845. SIAM, 2020.

[227] Benjamin Rothenberger, Konstantin Taranov, Adrian Perrig, and Torsten
Hoefler. ReDMArk: Bypassing RDMA security mechanisms. In 30th USENIX
Security Symposium (USENIX Security 21), pages 4277--4292. USENIX
Association, August 2021. URL: https://www.usenix.org/conference/
usenixsecurity21/presentation/rothenberger.

[228] Noga H. Rotman, Michael Schapira, and Aviv Tamar. Online safety
assurance for learning-augmented systems. In Proceedings of the 19th
ACM Workshop on Hot Topics in Networks, HotNets ’20, page 88–95,

https://www.hubersuhner.com/en/shop/product/other-systems/optical-switches/rack-mount-circuit-switches/85223159/polatis-7000-optical-circuit-switch
https://www.hubersuhner.com/en/shop/product/other-systems/optical-switches/rack-mount-circuit-switches/85223159/polatis-7000-optical-circuit-switch
https://www.hubersuhner.com/en/shop/product/other-systems/optical-switches/rack-mount-circuit-switches/85223159/polatis-7000-optical-circuit-switch
https://www.hubersuhner.com/en/shop/product/other-systems/optical-switches/rack-mount-circuit-switches/85223159/polatis-7000-optical-circuit-switch
https://doi.org/10.1145/2486001.2486007
https://doi.org/10.1145/3544216.3544265
https://proceedings.neurips.cc/paper_files/paper/2018/file/73a427badebe0e32caa2e1fc7530b7f3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/73a427badebe0e32caa2e1fc7530b7f3-Paper.pdf
https://pybind11.readthedocs.io/en/stable/
https://pybind11.readthedocs.io/en/stable/
https://www.usenix.org/conference/usenixsecurity21/presentation/rothenberger
https://www.usenix.org/conference/usenixsecurity21/presentation/rothenberger

266 REFERENCES

New York, NY, USA, 2020. Association for Computing Machinery. doi:
10.1145/3422604.3425940.

[229] Tim Roughgarden. Beyond the worst-case analysis of algorithms. pages
1--24. Cambridge University Press, 2020.

[230] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.
Inside the social network’s (datacenter) network. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication, pages
123--137, 2015.

[231] Ruixue Fan, A. Ishii, B. Mark, G. Ramamurthy, and Qiang Ren. An optimal
buffer management scheme with dynamic thresholds. In Seamless Inter-
connection for Universal Services. Global Telecommunications Conference.
GLOBECOM’99. (Cat. No.99CH37042), volume 1B, pages 631--637 vol. 1b,
Dec 1999. doi:10.1109/GLOCOM.1999.830130.

[232] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad Sharif, Rong Pan,
Mostafa Ammar, Ellen Zegura, Keon Jang, Mohammad Alizadeh, Abdul
Kabbani, and Amin Vahdat. Annulus: A dual congestion control loop
for datacenter and wan traffic aggregates. SIGCOMM ’20, page 735–749,
New York, NY, USA, 2020. Association for Computing Machinery. doi:
10.1145/3387514.3405899.

[233] Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang.
A convex relaxation barrier to tight robustness verification of neural networks.
Advances in Neural Information Processing Systems, 32:9835--9846, 2019.

[234] Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bern-
hard Haeupler, and Zvi Lotker. Splaynet: Towards locally self-adjusting
networks. IEEE/ACM Transactions on Networking, 24(3):1421--1433, 2016.
doi:10.1109/TNET.2015.2410313.

[235] Roy Schwartz, Mohit Singh, and Sina Yazdanbod. Online and offline greedy
algorithms for routing with switching costs. CoRR, abs/1905.02800, 2019.
URL: http://arxiv.org/abs/1905.02800, arXiv:arXiv:1905.02800, doi:
10.48550/arXiv.1905.02800.

[236] scikit-learn. Machine Learning in Python. https://scikit-learn.org/
stable/.

[237] Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki, Madan
Musuvathi, Todd Mytkowicz, Jacob Nelson, Olli Saarikivi, and Rachee
Singh. TACCL: Guiding collective algorithm synthesis using communica-
tion sketches. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 593--612, Boston, MA, April 2023.
USENIX Association. URL: https://www.usenix.org/conference/nsdi23/
presentation/shah.

[238] Farhad Shahrokhi and David W Matula. The maximum concurrent flow
problem. Journal of the ACM (JACM), 37(2):318--334, 1990.

https://doi.org/10.1145/3422604.3425940
https://doi.org/10.1145/3422604.3425940
https://doi.org/10.1109/GLOCOM.1999.830130
https://doi.org/10.1145/3387514.3405899
https://doi.org/10.1145/3387514.3405899
https://doi.org/10.1109/TNET.2015.2410313
http://arxiv.org/abs/1905.02800
https://arxiv.org/abs/arXiv:1905.02800
https://doi.org/10.48550/arXiv.1905.02800
https://doi.org/10.48550/arXiv.1905.02800
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://www.usenix.org/conference/nsdi23/presentation/shah
https://www.usenix.org/conference/nsdi23/presentation/shah

REFERENCES 267

[239] Danfeng Shan, Wanchun Jiang, and Fengyuan Ren. Absorbing micro-burst
traffic by enhancing dynamic threshold policy of data center switches. In
2015 IEEE Conference on Computer Communications (INFOCOM), pages
118--126. IEEE, 2015.

[240] Danfeng Shan, Wanchun Jiang, and Fengyuan Ren. Analyzing and enhancing
dynamic threshold policy of data center switches. IEEE Transactions on
Parallel and Distributed Systems, 28(9):2454--2470, 2017. doi:10.1109/
TPDS.2017.2671429.

[241] Danfeng Shan, Yuqi Liu, Tong Zhang, Yifan Liu, Yazhe Tang, Hao Li, and
Peng Zhang. Less is more: Dynamic and shared headroom allocation in pfc-
enabled datacenter networks. In 2023 IEEE 43rd International Conference
on Distributed Computing Systems (ICDCS), pages 591--602, 2023. doi:
10.1109/ICDCS57875.2023.00019.

[242] Naveen Kr Sharma, Chenxingyu Zhao, Ming Liu, Pravein G Kannan,
Changhoon Kim, Arvind Krishnamurthy, and Anirudh Sivaraman. Pro-
grammable calendar queues for high-speed packet scheduling. In 17th
{USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 20), pages 685--699, 2020.

[243] Zhouxing Shi, Qirui Jin, Zico Kolter, Suman Jana, Cho-Jui Hsieh, and
Huan Zhang. Neural network verification with branch-and-bound for general
nonlinearities. arXiv preprint arXiv:2405.21063, 2024.

[244] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-
billion parameter language models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[245] Vishal Shrivastav. Fast, scalable, and programmable packet scheduler in
hardware. In Proceedings of the ACM Special Interest Group on Data
Communication, SIGCOMM ’19, page 367–379, New York, NY, USA, 2019.
Association for Computing Machinery. doi:10.1145/3341302.3342090.

[246] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead,
Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano,
Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. Jupiter rising: A decade of
clos topologies and centralized control in google’s datacenter network. In
Proceedings of the ACM SIGCOMM 2015 Conference, page 183–197, 2015.
doi:10.1145/2785956.2787508.

[247] Ankit Singla, P. Brighten Godfrey, and Alexandra Kolla. High throughput
data center topology design. In 11th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 14), pages 29--41, Seattle, WA, April
2014. USENIX Association. URL: https://www.usenix.org/conference/
nsdi14/technical-sessions/presentation/singla.

[248] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. Jellyfish:
Networking data centers randomly. In 9th USENIX Symposium on Networked

https://doi.org/10.1109/TPDS.2017.2671429
https://doi.org/10.1109/TPDS.2017.2671429
https://doi.org/10.1109/ICDCS57875.2023.00019
https://doi.org/10.1109/ICDCS57875.2023.00019
https://doi.org/10.1145/3341302.3342090
https://doi.org/10.1145/2785956.2787508
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/singla
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/singla

268 REFERENCES

Systems Design and Implementation (NSDI 12), pages 225--238, San Jose,
CA, April 2012. USENIX Association. URL: https://www.usenix.org/
conference/nsdi12/technical-sessions/presentation/singla.

[249] Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu, and Yueping
Zhang. Proteus: A topology malleable data center network. In Proceedings of
the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX,
2010. doi:10.1145/1868447.1868455.

[250] Martin Skutella. An Introduction to Network Flows over Time, pages 451--
482. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. doi:10.1007/978-
3-540-76796-1_21.

[251] SONiC. Software for Open Networking in the Cloud. URL: https://sonic-
net.github.io/SONiC/.

[252] Tim Stevenson. Nexus 9000 architecture, 2020. URL: https:
//www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKDCN-
3222.pdf.

[253] B. Suter, T.V. Lakshman, D. Stiliadis, and A.K. Choudhury. Buffer manage-
ment schemes for supporting tcp in gigabit routers with per-flow queueing.
IEEE Journal on Selected Areas in Communications, 17(6):1159--1169, 1999.
doi:10.1109/49.772451.

[254] Konstantin Taranov, Benjamin Rothenberger, Adrian Perrig, and Torsten
Hoefler. sRDMA -- efficient NIC-based authentication and encryption for
remote direct memory access. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 691--704. USENIX Association, July 2020. URL:
https://www.usenix.org/conference/atc20/presentation/taranov.

[255] NVIDIA Onyx User Manual v3.10.4302 (LTS). Shared Buffers. URL:
https://docs.nvidia.com/networking/display/Onyxv3104302/Shared+
Buffers.

[256] Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and Michael Schapira. Xpander:
Towards optimal-performance datacenters. In Proceedings of the 12th In-
ternational on Conference on emerging Networking EXperiments and Tech-
nologies, pages 205--219, 2016.

[257] Leslie G. Valiant. A scheme for fast parallel communication. SIAM journal
on computing, 11(2):350--361, 1982.

[258] Leslie G Valiant and Gordon J Brebner. Universal schemes for parallel
communication. In Proceedings of the thirteenth annual ACM symposium
on Theory of computing, pages 263--277, 1981.

[259] Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. Deadline-aware
datacenter tcp (d2tcp). SIGCOMM Comput. Commun. Rev., 42(4):115–126,
August 2012. doi:10.1145/2377677.2377709.

https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/singla
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/singla
https://doi.org/10.1145/1868447.1868455
https://doi.org/10.1007/978-3-540-76796-1_21
https://doi.org/10.1007/978-3-540-76796-1_21
https://sonic-net.github.io/SONiC/
https://sonic-net.github.io/SONiC/
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKDCN-3222.pdf
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKDCN-3222.pdf
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKDCN-3222.pdf
https://doi.org/10.1109/49.772451
https://www.usenix.org/conference/atc20/presentation/taranov
https://docs.nvidia.com/networking/display/Onyxv3104302/Shared+Buffers
https://docs.nvidia.com/networking/display/Onyxv3104302/Shared+Buffers
https://doi.org/10.1145/2377677.2377709

REFERENCES 269

[260] Midhul Vuppalapati, Saksham Agarwal, Henry Schuh, Baris Kasikci, Arvind
Krishnamurthy, and Rachit Agarwal. Understanding the host network. In
Proceedings of the ACM SIGCOMM 2024 Conference, ACM SIGCOMM
’24, page 581–594, New York, NY, USA, 2024. Association for Computing
Machinery. doi:10.1145/3651890.3672271.

[261] Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina Papa-
giannaki, T.S. Eugene Ng, Michael Kozuch, and Michael Ryan. C-through:
Part-time optics in data centers. ACM SIGCOMM Computer Communication
Review, 40(4):327–338, aug 2010. doi:10.1145/1851275.1851222.

[262] Haiyong Wang. OCPUS18 – SONiC Development and Deployment at
Alibaba, 2018. URL: https://www.youtube.com/watch?v=aSd3R3gnQtw.

[263] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh,
and J Zico Kolter. Beta-CROWN: Efficient bound propagation with per-
neuron split constraints for complete and incomplete neural network verifica-
tion. Advances in Neural Information Processing Systems, 34, 2021.

[264] Weitao Wang, Dingming Wu, Sushovan Das, Afsaneh Rahbar, Ang Chen, and
T. S. Eugene Ng. RDC: Energy-Efficient data center network congestion relief
with topological reconfigurability at the edge. In 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22), pages 1267-
-1288, Renton, WA, April 2022. USENIX Association. URL: https://
www.usenix.org/conference/nsdi22/presentation/wang-weitao-rdc.

[265] Weiyang Wang, Manya Ghobadi, Kayvon Shakeri, Ying Zhang, and Naader
Hasani. Rail-only: A low-cost high-performance network for training llms
with trillion parameters. In 2024 IEEE Symposium on High-Performance
Interconnects (HOTI), pages 1--10, Los Alamitos, CA, USA, aug 2024.
IEEE Computer Society. URL: https://doi.ieeecomputersociety.org/
10.1109/HOTI63208.2024.00013, doi:10.1109/HOTI63208.2024.00013.

[266] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi, Zhihao
Jia, Dheevatsa Mudigere, Ying Zhang, and Anthony Kewitsch. TopoOpt:
Co-optimizing network topology and parallelization strategy for distributed
training jobs. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 739--767, Boston, MA, April 2023.
USENIX Association. URL: https://www.usenix.org/conference/nsdi23/
presentation/wang-weiyang.

[267] Cedric Westphal, Kiran Makhijani, and Richard Li. Packet trimming to
reduce buffer sizes and improve round-trip times.

[268] CISCO white paper. Priority flow control: build reliable layer-2 infrastructure.
2009.

[269] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron.
Better never than late: meeting deadlines in datacenter networks. In Pro-
ceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, page
50–61, New York, NY, USA, 2011. Association for Computing Machinery.
doi:10.1145/2018436.2018443.

https://doi.org/10.1145/3651890.3672271
https://doi.org/10.1145/1851275.1851222
https://www.youtube.com/watch?v=aSd3R3gnQtw
https://www.usenix.org/conference/nsdi22/presentation/wang-weitao-rdc
https://www.usenix.org/conference/nsdi22/presentation/wang-weitao-rdc
https://doi.ieeecomputersociety.org/10.1109/HOTI63208.2024.00013
https://doi.ieeecomputersociety.org/10.1109/HOTI63208.2024.00013
https://doi.org/10.1109/HOTI63208.2024.00013
https://www.usenix.org/conference/nsdi23/presentation/wang-weiyang
https://www.usenix.org/conference/nsdi23/presentation/wang-weiyang
https://doi.org/10.1145/2018436.2018443

270 REFERENCES

[270] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley.
Design, implementation and evaluation of congestion control for multipath
TCP. In 8th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 11), Boston, MA, March 2011. USENIX Association. URL:
https://www.usenix.org/conference/nsdi11/design-implementation-
and-evaluation-congestion-control-multipath-tcp.

[271] Jackson Woodruff, Andrew W Moore, and Noa Zilberman. Measuring bursti-
ness in data center applications. In Proceedings of the 2019 Workshop on
Buffer Sizing, BS ’19, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3375235.3375240.

[272] Guo-Liang Wu and J.W. Mark. A buffer allocation scheme for atm networks:
complete sharing based on virtual partition. IEEE/ACM Transactions on
Networking, 3(6):660--670, 1995. doi:10.1109/90.477712.

[273] Jiarong Xing, Kuo-Feng Hsu, Yiming Qiu, Ziyang Yang, Hongyi Liu, and
Ang Chen. Bedrock: Programmable network support for secure RDMA
systems. In 31st USENIX Security Symposium (USENIX Security 22), pages
2585--2600, Boston, MA, August 2022. USENIX Association. URL: https:
//www.usenix.org/conference/usenixsecurity22/presentation/xing.

[274] Zhaoqi Xiong and Noa Zilberman. Do switches dream of machine learning? to-
ward in-network classification. In Proceedings of the 18th ACM Workshop on
Hot Topics in Networks, HotNets ’19, page 25–33, New York, NY, USA, 2019.
Association for Computing Machinery. doi:10.1145/3365609.3365864.

[275] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin,
and Cho-Jui Hsieh. Fast and Complete: Enabling complete neural net-
work verification with rapid and massively parallel incomplete verifiers.
In International Conference on Learning Representations, 2021. URL:
https://openreview.net/forum?id=nVZtXBI6LNn.

[276] Zhenggen Xu. OCPSummit19 - EW: SONiC - LinkedIn Adoption of OCP
SONiC, 2019. URL: https://www.youtube.com/watch?v=skUnjqPOvXs.

[277] Doron Zarchy, Radhika Mittal, Michael Schapira, and Scott Shenker. Ax-
iomatizing congestion control. Proc. ACM Meas. Anal. Comput. Syst., 3(2),
June 2019. doi:10.1145/3341617.3326148.

[278] Kyriakos Zarifis, Rui Miao, Matt Calder, Ethan Katz-Bassett, Minlan Yu,
and Jitendra Padhye. Dibs: Just-in-time congestion mitigation for data
centers. In Proceedings of the Ninth European Conference on Computer
Systems, EuroSys ’14, New York, NY, USA, 2014. Association for Computing
Machinery. doi:10.1145/2592798.2592806.

[279] Johannes Zerwas, Csaba Györgyi, Andreas Blenk, Stefan Schmid, and Chen
Avin. Duo: A high-throughput reconfigurable datacenter network using local
routing and control. volume 7, New York, NY, USA, mar 2023. Association
for Computing Machinery. doi:10.1145/3579449.

https://www.usenix.org/conference/nsdi11/design-implementation-and-evaluation-congestion-control-multipath-tcp
https://www.usenix.org/conference/nsdi11/design-implementation-and-evaluation-congestion-control-multipath-tcp
https://doi.org/10.1145/3375235.3375240
https://doi.org/10.1109/90.477712
https://www.usenix.org/conference/usenixsecurity22/presentation/xing
https://www.usenix.org/conference/usenixsecurity22/presentation/xing
https://doi.org/10.1145/3365609.3365864
https://openreview.net/forum?id=nVZtXBI6LNn
https://www.youtube.com/watch?v=skUnjqPOvXs
https://doi.org/10.1145/3341617.3326148
https://doi.org/10.1145/2592798.2592806
https://doi.org/10.1145/3579449

REFERENCES 271

[280] Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui
Hsieh, and J Zico Kolter. General cutting planes for bound-propagation-based
neural network verification. Advances in Neural Information Processing
Systems, 2022.

[281] Mingyang Zhang, Radhika Niranjan Mysore, Sucha Supittayapornpong, and
Ramesh Govindan. Understanding lifecycle management complexity of data-
center topologies. In 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 235--254, Boston, MA, February 2019.
USENIX Association. URL: https://www.usenix.org/conference/nsdi19/
presentation/zhang.

[282] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. High-
resolution measurement of data center microbursts. In Proceedings of
the 2017 Internet Measurement Conference, IMC ’17, page 78–85, New
York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/
3131365.3131375.

[283] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf Chowdhury. Justi-
tia: Software Multi-Tenancy in hardware Kernel-Bypass networks. In 19th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), pages 1307--1326, Renton, WA, April 2022. USENIX Associa-
tion. URL: https://www.usenix.org/conference/nsdi22/presentation/
zhang-yiwen.

[284] Liangyu Zhao, Siddharth Pal, Tapan Chugh, Weiyang Wang, Prithwish
Basu, Joud Khoury, and Arvind Krishnamurthy. Optimal direct-connect
topologies for collective communications. CoRR, abs/2202.03356, 2022. URL:
https://arxiv.org/abs/2202.03356, arXiv:2202.03356.

[285] Liangyu Zhao, Siddharth Pal, Tapan Chugh, Weiyang Wang, Jason Fantl,
Prithwish Basu, Joud Khoury, and Arvind Krishnamurthy. Efficient direct-
connect topologies for collective communications. CoRR, abs/2202.03356,
2024. URL: https://arxiv.org/abs/2202.03356, arXiv:2202.03356.

[286] Xia Zhou, Zengbin Zhang, Yibo Zhu, Yubo Li, Saipriya Kumar, Amin Vahdat,
Ben Y. Zhao, and Haitao Zheng. Mirror mirror on the ceiling: Flexible wireless
links for data centers. ACM SIGCOMM Computer Communication Review,
42(4):443–454, aug 2012. doi:10.1145/2377677.2377761.

[287] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lip-
shteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj
Yahia, and Ming Zhang. Congestion control for large-scale rdma deployments.
ACM SIGCOMM Computer Communication Review, 45(4):523--536, 2015.

[288] Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra Padhye. Ecn or delay:
Lessons learnt from analysis of dcqcn and timely. In Proceedings of the
12th International on Conference on Emerging Networking EXperiments
and Technologies, CoNEXT ’16, page 313–327, New York, NY, USA, 2016.
Association for Computing Machinery. doi:10.1145/2999572.2999593.

https://www.usenix.org/conference/nsdi19/presentation/zhang
https://www.usenix.org/conference/nsdi19/presentation/zhang
https://doi.org/10.1145/3131365.3131375
https://doi.org/10.1145/3131365.3131375
https://www.usenix.org/conference/nsdi22/presentation/zhang-yiwen
https://www.usenix.org/conference/nsdi22/presentation/zhang-yiwen
https://arxiv.org/abs/2202.03356
https://arxiv.org/abs/2202.03356
https://arxiv.org/abs/2202.03356
https://arxiv.org/abs/2202.03356
https://doi.org/10.1145/2377677.2377761
https://doi.org/10.1145/2999572.2999593

	Adaptive Protocols and Reconfigurable Optical Interconnects for Datacenter Networks
	Acknowledgments
	Abstract
	Zusammenfassung
	Preface
	Problems
	Thesis Outline & Contributions

	I Datacenter Transport
	Congestion Control
	 Motivation
	Desirable Control Law Properties
	A Simplified Analytical Model
	Drawbacks of Existing Control Laws
	Lessons Learned and Design Goals

	Power-Based Congestion Control
	The Notion of Power
	Benefits of Power-Based CC
	The PowerTCP Algorithm
	Properties of PowerTCP
	θ-PowerTCP: Standalone Version
	Deploying PowerTCP

	Evaluation
	Setup
	Results

	Case Study: Reconfigurable DCNs
	Related Work
	Summary

	Load Balancing
	Motivation
	Repetitive Incasts at the Edge
	Non-uniform Load in the Core
	Poor Completion Time

	Singlepath vs Multipath
	Ethereal Transport for AI
	Preliminary Results
	Epilogue

	II Datacenter Switch Buffer Sharing
	Buffer Sharing with Lossy Traffic
	Motivation
	Desirable Properties
	Limitations of Existing Approaches
	Drawbacks of the State-of-the-Art Buffer Management Scheme

	Active Buffer Management
	The ABM Algorithm
	ABM's Properties
	Optimizing for Datacenter Workloads
	ABM's Practical Considerations

	Analysis
	Model
	Formalizing ABM's Allocation
	Steady-State Analysis
	Transient-State Analysis

	Evaluation
	Setup
	ABM's Performance
	ABM's Performance in Shallow Buffers
	ABM's Performance with Periodic & Infrequent α Updates

	Related Work
	Summary

	Buffer Sharing with Lossy & Lossless Traffic
	Motivation
	Buffer Issues in Datacenters
	Buffer Sharing Practices
	Root Causes of the Buffer Issues

	Reverie
	Single Buffer Pool for Isolation
	Low-Pass Filter for Burst Absorption
	 The Workings of Reverie
	The Properties of Reverie
	Implementation Feasibility

	Evaluation
	Setup
	Results

	Related Work
	Summary

	Augmenting Buffer Sharing with ML Predictions
	Motivation
	Buffer Sharing from Online Perspective
	Drawbacks of Traditional Approaches
	Predictions: A Hope for Competitiveness

	Prediction-Augmented Buffer Sharing
	Overview
	Credence
	Properties of Credence
	Practicality of Credence

	Evaluation
	Setup
	Results

	Additional Results
	Related Work
	Future Work
	Systems for In-Network Predictions
	Theory for Performance Guarantees

	Summary

	III Reconfigurable Datacenter Networks
	Oblivious Optical Interconnects
	Preliminaries: Throughput of Static Topologies
	Paths and Flow in Static Graphs
	Throughput of Static Graphs
	TUB and its Limitations

	Background: Periodic Reconfigurable Networks
	Periodic Reconfigurable Topologies
	Graph Theoretic Model of Periodic ToR-to-ToR Connectivity

	Motivation: Fundamental Tradeoffs of Periodic RDCNs
	Throughput of Periodic RDCNs
	Delay of Periodic RDCNs
	Buffer Requirements of Periodic RDCNs
	Remarks and Discussion on Theorems 13-16
	Tradeoffs & Optimization Opportunity

	Mars: Near-Optimal Throughput RDCN with Shallow Buffers
	Overview
	Properties of Mars
	Interconnect
	Example: deBruijn-based Emulated Graph

	Evaluation
	Setup
	Results

	Discussion
	Related Work
	Summary

	Demand-Aware Optical Interconnects
	Motivation
	Throughput of Periodic Networks
	Drawbacks of Oblivious Periodic Networks
	A Case for Demand-Aware Networks
	Linear Program Formulation
	Design Challenges & Roadmap

	Towards Demand-Aware Periodic Networks
	Vermilion
	Throughput Guarantees of Vermilion
	Practicality of Vermilion

	Evaluation
	Flow Completion Times & Link Utilization
	Throughput

	Limitations and Future Work
	Related Work
	Summary

	Augmenting Demand-Aware Interconnects with Predictions
	Background & Motivation
	Preliminaries and Problem Formulation
	Throughput of Periodic Networks
	Online Periodic Network Design
	Online Periodic Network Design with Predictions

	Analysis of BvN Decomposition-Based Demand-Aware Networks
	Analysis of Vermilion with Predictions
	Randomized Algorithm and Tradeoff Curves
	Evaluation
	Setup
	Results

	Related Work
	Discussion
	Limitations
	Open Questions

	Summary

	Future Research Directions
	Systems and Infrastructure for AI/ML Workloads
	Learning-Augmented Systems

	Conclusion
	References

