
Augmenting Datacenter Switch Buffer Sharing with
ML Predictions

Vamsi Addanki, Maciej Pacut, Stefan Schmid

Let’s Play a Game

Event venue

2

Let’s Play a Game

A B C D
Entry

Event venue

3

Let’s Play a Game

A B C D

1 2 3 4Exit

Entry

Event venue

4

Let’s Play a Game

A B C D

1 2 3 4Exit

Entry

Event venue

5

Capacity: 6

Let’s Play a Game

A B C D

1 2 3 4

Entry

Exit

Event venue
Bouncer

6

Capacity: 6

Let’s Play a Game

1 2 3 4

A B C D

7

Arrivals: 4

Capacity: 6

Let’s Play a Game

1 2 3 4

A B C D

8

Arrivals: 4

Capacity: 6

Let’s Play a Game

1 2 3 4

A B C D

9

Score: 1

Arrivals: 4

Capacity: 6

Let’s Play a Game

1 2 3 4

A B C D

10

Score: 1

Arrivals: 8

Capacity: 6

Let’s Play a Game

1 2 3 4

A B C D

11

Score: 1

Arrivals: 8

Capacity: 6

Let’s Play a Game

1 2 3 4

A B C D

12

Score: 2

Arrivals: 8

Capacity: 6

Let’s Play a Game

1 2 3 4

A B C D

13

Score: 2

Arrivals: 12

Capacity: 6

Let’s Play a Game

1 2 3 4

A B C D

14

Score: 2

Arrivals: 12

Capacity: 6

Let’s Play a Game

1 2 3 4

A B C D

15

Score: 3

Arrivals: 12

Capacity: 6

Let’s Play a Game

1 2 3 4

A B C D

16

Score: 3

Arrivals: 16

Capacity: 6

Let’s Play a Game

1 2 3 4

A B C D

17

Score: 3

Arrivals: 16

Capacity: 6

Let’s Play a Game

1 2 3 4

A B C D

18

Score: 4

Arrivals: 16

Capacity: 6

Let’s Play a Game

1 2 3 4

A B C D

19

Score: 4

Arrivals: 20

Capacity: 6

Let’s Play a Game

1 2 3 4

A B C D

20

Score: 4

Arrivals: 20

Capacity: 6

Let’s Play a Game

1 2 3 4

A B C D

21

Score: 5

Arrivals: 20

Capacity: 6

Let’s Play a Game

1 2 3 4

A B C D

22

Capacity: 6

Score: 5
Arrivals: 20
Previous Game

Let’s Play a Game

1 2 3 4

A B C D

23

Arrivals: 4

Capacity: 6

Score: 5
Arrivals: 20
Previous Game

Let’s Play a Game

1 2 3 4

A B C D

24

Arrivals: 4

Capacity: 6

Score: 5
Arrivals: 20
Previous Game

Let’s Play a Game

1 2 3 4

A B C D

25

Score: 1

Arrivals: 4

Capacity: 6

Score: 5
Arrivals: 20
Previous Game

Let’s Play a Game

1 2 3 4

A B C D

26

Score: 1

Arrivals: 8

Capacity: 6

Score: 5
Arrivals: 20
Previous Game

Let’s Play a Game

1 2 3 4

A B C D

27

Score: 1

Arrivals: 8

Capacity: 6

Score: 5
Arrivals: 20
Previous Game

Let’s Play a Game

1 2 3 4

A B C D

28

Score: 3

Arrivals: 8

Capacity: 6

Score: 5
Arrivals: 20
Previous Game

Let’s Play a Game

1 2 3 4

A B C D

29

Score: 3

Arrivals: 12

Capacity: 6

Score: 5
Arrivals: 20
Previous Game

Let’s Play a Game

1 2 3 4

A B C D

30

Score: 3

Arrivals: 12

Capacity: 6

Score: 5
Arrivals: 20
Previous Game

Let’s Play a Game

1 2 3 4

A B C D

31

Score: 7

Arrivals: 12

Capacity: 6

Score: 5
Arrivals: 20
Previous Game

Let’s Play a Game

1 2 3 4

A B C D

32

Score: 7

Arrivals: 16

Capacity: 6

Score: 5
Arrivals: 20
Previous Game

Let’s Play a Game

1 2 3 4

A B C D

33

Score: 7 Capacity: 6

Arrivals: 16
Score: 5
Arrivals: 20
Previous Game

Let’s Play a Game

1 2 3 4

A B C D

34

Score: 11 Capacity: 6

Arrivals: 16
Score: 5
Arrivals: 20
Previous Game

Let’s Play a Game

1 2 3 4

A B C D

35

Score: 11

Arrivals: 20

Capacity: 6

Score: 5
Arrivals: 20
Previous Game

Let’s Play a Game

1 2 3 4

A B C D

36

Score: 11 Capacity: 6

Arrivals: 20
Score: 5
Arrivals: 20
Previous Game

Let’s Play a Game

1 2 3 4

A B C D

37

Score: 15 Capacity: 6

Arrivals: 20
Score: 5
Arrivals: 20
Previous Game

Let’s Play a Game

1 2 3 4

A B C D

38

Score: 5
Arrivals: 20
Previous Game

Score: 15
Arrivals: 20

New Game

Admission Control Algorithms
can improve throughput

(or severely impact throughput)

Let’s Play a Game

1 2 3 4

A B C D

39

Score: 5
Arrivals: 20
Previous Game

Score: 15
Arrivals: 20

New Game

1 2 3 4

A B C D

Input Ports

Output Ports

Shared BufferBuffer Sharing
Algorithm

Network
Switch

40

Buffer Sharing

41

● Bursty traffic requires buffers to avoid packet losses
● Stringent performance requirements
● But buffer sizes are unable to scale with capacity increase

Buffer Sharing: An Emerging Critical Problem

42

● Bursty traffic requires buffers to avoid packet losses
● Stringent performance requirements
● But buffer sizes are unable to scale with capacity increase

Buffer Sharing algorithm can severely impact end-to-end
performance e.g., FCTs

Buffer Sharing: An Emerging Critical Problem

Buffer Sharing (An Online Perspective)

● Goal: Maximize the number of transmitted packets
○ Throughput maximization

43

Buffer Sharing (An Online Perspective)

● Goal: Maximize the number of transmitted packets
○ Throughput maximization

● Online algorithm (ALG) takes spontaneous decisions upon
every packet arrival

44

Buffer Sharing (An Online Perspective)

● Goal: Maximize the number of transmitted packets
○ Throughput maximization

● Online algorithm (ALG) takes spontaneous decisions upon
every packet arrival

● Offline optimal algorithm (OPT) has prior knowledge of
the entire arrival sequence and performs optimally

45

Buffer Sharing (An Online Perspective)

● ALG is C competitive if OPT transmits no more than C
times that of ALG
○ OPT ≤ C ᐧ ALG

46

Buffer Sharing (An Online Perspective)

● ALG is C competitive if OPT transmits no more than C
times that of ALG
○ OPT ≤ C ᐧ ALG

47

Competitive Ratio

Online Buffer Sharing Algorithms

48

● Drop-tail: Drop on arrival or accept
○ All commodity switches support drop-tail buffers

● Push-out: Accept all packets and push a packet out when
the buffer is full
○ Not supported in hardware

Lower
Throughput

49

Optimal
Throughput

Competitive ratio1 N

Lower
Throughput

50

Optimal
Throughput

Complete
Sharing

Dynamic
ThresholdsHarmonic

Competitive ratio1 N

Lower
Throughput

51

Optimal
Throughput

Complete
Sharing

Dynamic
ThresholdsHarmonic

Competitive ratio1 N

Longest
Queue
Drop

(Push-out)

1.707

Lower
Throughput

52

Optimal
Throughput

Complete
Sharing

Dynamic
ThresholdsHarmonic

Competitive ratio1 N1.707

Not supported in hardware! All commodity switches
support drop-tail

LQD
(Push-out)

Lower
Throughput

53

Optimal
Throughput

Complete
Sharing

Dynamic
ThresholdsHarmonic

Competitive ratio1 N

LQD
(Push-out)

1.707

Not supported in hardware! All commodity switches
support drop-tail

Can we unlock this space?

Limitations of Traditional Drop-tail Buffer Sharing

● Proactive unnecessary drops →throughput loss

54

Limitations of Traditional Drop-tail Buffer Sharing

● Proactive unnecessary drops →throughput loss
○ Overprovisioning for the unknown future arrivals
○ Packet drops are unnecessary if the future is known

55

Limitations of Traditional Drop-tail Buffer Sharing

● Proactive unnecessary drops →throughput loss
○ Overprovisioning for the unknown future arrivals
○ Packet drops are unnecessary if the future is known

● Reactive avoidable drops →throughput loss

56

Limitations of Traditional Drop-tail Buffer Sharing

● Proactive unnecessary drops →throughput loss
○ Overprovisioning for the unknown future arrivals
○ Packet drops are unnecessary if the future is known

● Reactive avoidable drops →throughput loss
○ Underprovisioning for the unknown future arrivals
○ Packet drops are avoidable if the future is known

57

Lower
Throughput

58

Optimal
Throughput

Complete
Sharing

Dynamic
ThresholdsHarmonic

Competitive ratio1 N1.707

Drop-tailPush-out
LQD

(Push-out)

● Predict the actions of a push-out algorithm (LQD)
● Augment drop-tail algorithms with predictions

○ Peek into the future

Predictions: A Hope for Competitive Buffer Sharing

59

● Predict the actions of a push-out algorithm (LQD)
● Augment drop-tail algorithms with predictions

○ Peek into the future

Can predictions improve drop-tail’s competitive ratio?

Predictions: A Hope for Competitive Buffer Sharing

60

Naive Approach

● Upon a packet arrival
○ Predict LQD’s action
○ If prediction is to accept, then accept
○ If prediction is to drop, then drop

61

Challenge: Imperfect Predictions

62

Ground Truth: Drop
Prediction: Drop

Ground Truth: Drop
Prediction: Accept

Ground Truth: Accept
Prediction: Accept

Ground Truth: Accept
Prediction: Drop

True Positive False Negative

True NegativeFalse Positive

Challenge: Imperfect Predictions

● Excessive false positives can lead to starvation
○ eg., every prediction is “drop”

63

Challenge: Imperfect Predictions

● Excessive false positives can lead to starvation
○ eg., every prediction is “drop”

● Even a single false negative can hurt throughput forever
○ (discussed in the paper)

64

Goals

● Consistency (under perfect predictions)
○ Competitive ratio close to push-out

● Robustness (with large prediction error)
○ Competitive ratio close to existing algorithms

● Smoothness
○ Competitive ratio smoothly degrades with prediction error

65

Lower
Throughput

66

Optimal
Throughput

Competitive ratio1 N1.707

Not supported in hardware! All commodity switches
support drop-tail

Can we unlock this space?
LQD

(Push-out) CSDTHarmonic

Lower
Throughput

67

Optimal
Throughput

CSDTHarmonic

Competitive ratio1 N1.707

Drop-tailPush-outLQD
(Push-out)

without predictions

Lower
Throughput

68

Optimal
Throughput

CSDTHarmonic

Competitive ratio1 N1.707

Drop-tailPush-outLQD
(Push-out)

Drop-tail with predictions
without predictions

Perfect
predictions

Large
prediction error

Credence

● Drop-tail buffer sharing augmented with predictions
● Threshold-based (similar to existing algorithms)

69

Credence

● Drop-tail buffer sharing augmented with predictions
● Threshold-based (similar to existing algorithms)
● Consistency ✅

○ Close to push-out under perfect predictions

70

Credence

● Drop-tail buffer sharing augmented with predictions
● Threshold-based (similar to existing algorithms)
● Consistency ✅

○ Close to push-out under perfect predictions
● Robustness ✅

○ Close to existing algorithms even with large prediction error

71

Credence

● Drop-tail buffer sharing augmented with predictions
● Threshold-based (similar to existing algorithms)
● Consistency ✅

○ Close to push-out under perfect predictions
● Robustness ✅

○ Close to existing algorithms even with large prediction error
● Smoothness ✅

○ Smoothly degrades with prediction error

72

● Per-queue thresholds
○ Thresholds are incremented and decremented based on Longest

Queue Drop (Push-out) algorithm

Credence’s Thresholds

73

Credence’s Thresholds

● Per-queue thresholds
○ Thresholds are incremented and decremented based on Longest

Queue Drop (Push-out) algorithm
● A packet is rejected immediately if the queue length is

greater than its corresponding threshold

74

Credence’s Thresholds

● Per-queue thresholds
○ Thresholds are incremented and decremented based on Longest

Queue Drop (Push-out) algorithm
● A packet is rejected immediately if the queue length is

greater than its corresponding threshold
● A prediction is obtained only if the queue length is lower

than its corresponding threshold

75

Credence’s Thresholds

● Thresholds enable tackling false negative errors
○ Prevents accepting too many packets eg., if all the predictions are

“accept”

76

Credence’s Thresholds

● Thresholds enable tackling false negative errors
○ Prevents accepting too many packets eg., if all the predictions are

“accept”
● Safe guard criterion to tackle false positive errors

○ Always accept a packet if the longest queue is lower than
fair-share of buffer partition

○ Prevents dropping too many packets eg., if all the predictions
are “drop”

77

Further Details in the Paper

● Competitive analysis
● Theoretical bounds for Credence’s performance
● …

78

Evaluation

● Packet-level simulations using NS3
● 256 servers, 4 spine switches and 16 ToR switches
● 10Gbps NICs
● Shared buffer at the switches
● Random Forest-based prediction oracle for Credence

79

Credence Performs Close to Push-out

80

Credence
& LQD

ABM
Dynamic

Thresholds

Credence Degrades with Prediction Error

81

LQD
(Push-out)

Credence

Open Questions and Future Research Directions

● Practically training a prediction oracle
○ Simulation-based data (may not capture real-world scenarios)
○ Real-world network data (more accurate but complex to obtain)

■ Online reinforcement learning
■ …

● Understanding push-out operation complexity
● Improving the robustness of Credence
● Considering latency for competitive analysis

82

Conclusion

● Traditional drop-tail buffer sharing approaches cannot be improved further
● Credence is the first buffer sharing algorithm augmented with predictions
● Credence offers bounded performance guarantees
● Credence can improve the performance of datacenter traffic in terms of

flow completion times for short flows and incast flows
● Source code: https://github.com/inet-tub/ns3-datacenter

83

https://github.com/inet-tub/ns3-datacenter

Thank You

Vamsi Addanki
vamsi@inet.tu-berlin.de

@Vamsi_DT

Maciej Pacut
maciej@inet.tu-berlin.de

Stefan Schmid
stefan.schmid@tu-berlin.de

@schmiste_ch

