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Admission Control Algorithms 
can improve throughput

(or severely impact throughput) 
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● Bursty traffic requires buffers to avoid packet losses
● Stringent performance requirements
● But buffer sizes are unable to scale with capacity increase

Buffer Sharing algorithm can severely impact end-to-end 
performance e.g., FCTs

Buffer Sharing: An Emerging Critical Problem



Buffer Sharing (An Online Perspective)

● Goal: Maximize the number of transmitted packets
○ Throughput maximization
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Buffer Sharing (An Online Perspective)

● Goal: Maximize the number of transmitted packets
○ Throughput maximization

● Online algorithm (ALG) takes spontaneous decisions upon 
every packet arrival

● Offline optimal algorithm (OPT) has prior knowledge of 
the entire arrival sequence and performs optimally
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Online Buffer Sharing Algorithms
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● Drop-tail: Drop on arrival or accept
○ All commodity switches support drop-tail buffers

● Push-out: Accept all packets and push a packet out when 
the buffer is full
○ Not supported in hardware
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Not supported in hardware! All commodity switches 
support drop-tail

Can we unlock this space?
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● Proactive unnecessary drops →throughput loss
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Limitations of Traditional Drop-tail Buffer Sharing

● Proactive unnecessary drops →throughput loss
○ Overprovisioning for the unknown future arrivals
○ Packet drops are unnecessary if the future is known

● Reactive avoidable drops →throughput loss
○ Underprovisioning for the unknown future arrivals
○ Packet drops are avoidable if the future is known
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● Predict the actions of a push-out algorithm (LQD)
● Augment drop-tail algorithms with predictions

○ Peek into the future

Predictions: A Hope for Competitive Buffer Sharing
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● Predict the actions of a push-out algorithm (LQD)
● Augment drop-tail algorithms with predictions

○ Peek into the future

Can predictions improve drop-tail’s competitive ratio?

Predictions: A Hope for Competitive Buffer Sharing
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Naive Approach

● Upon a packet arrival
○ Predict LQD’s action
○ If prediction is to accept, then accept
○ If prediction is to drop, then drop
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Challenge: Imperfect Predictions
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Challenge: Imperfect Predictions

● Excessive false positives can lead to starvation
○ eg., every prediction is “drop”
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Challenge: Imperfect Predictions

● Excessive false positives can lead to starvation
○ eg., every prediction is “drop”

● Even a single false negative can hurt throughput forever
○ (discussed in the paper)
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Goals

● Consistency (under perfect predictions)
○ Competitive ratio close to push-out

● Robustness (with large prediction error)
○ Competitive ratio close to existing algorithms

● Smoothness
○ Competitive ratio smoothly degrades with prediction error
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Credence

● Drop-tail buffer sharing augmented with predictions
● Threshold-based (similar to existing algorithms)
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Credence

● Drop-tail buffer sharing augmented with predictions
● Threshold-based (similar to existing algorithms)
● Consistency  ✅

○ Close to push-out under perfect predictions
● Robustness ✅

○ Close to existing algorithms even with large prediction error
● Smoothness ✅

○ Smoothly degrades with prediction error
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● Per-queue thresholds
○ Thresholds are incremented and decremented based on Longest 

Queue Drop (Push-out) algorithm

Credence’s Thresholds
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Credence’s Thresholds

● Per-queue thresholds
○ Thresholds are incremented and decremented based on Longest 

Queue Drop (Push-out) algorithm
● A packet is rejected immediately if the queue length is 

greater than its corresponding threshold
● A prediction is obtained only if  the queue length is lower 

than its corresponding threshold
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Credence’s Thresholds

● Thresholds enable tackling false negative errors
○ Prevents accepting too many packets eg., if all the predictions are 

“accept”
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Credence’s Thresholds

● Thresholds enable tackling false negative errors
○ Prevents accepting too many packets eg., if all the predictions are 

“accept”
● Safe guard criterion to tackle false positive errors 

○ Always accept a packet if the longest queue is lower than 
fair-share of buffer partition

○ Prevents dropping too many packets eg., if all the predictions 
are “drop”
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Further Details in the Paper

● Competitive analysis
● Theoretical bounds for Credence’s performance
● …
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Evaluation

● Packet-level simulations using NS3
● 256 servers, 4 spine switches and 16 ToR switches
● 10Gbps NICs
● Shared buffer at the switches
● Random Forest-based prediction oracle for Credence
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Credence Performs Close to Push-out
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Credence Degrades with Prediction Error
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Open Questions and Future Research Directions

● Practically training a prediction oracle
○ Simulation-based data (may not capture real-world scenarios)
○ Real-world network data (more accurate but complex to obtain)

■ Online reinforcement learning
■ …

● Understanding push-out operation complexity
● Improving the robustness of Credence
● Considering latency for competitive analysis
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Conclusion

● Traditional drop-tail buffer sharing approaches cannot be improved further
● Credence is the first buffer sharing algorithm augmented with predictions
● Credence offers bounded performance guarantees
● Credence can improve the performance of datacenter traffic in terms of 

flow completion times for short flows and incast flows
● Source code: https://github.com/inet-tub/ns3-datacenter
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https://github.com/inet-tub/ns3-datacenter
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