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Network Demand vs Capacity Mismatch

[1] A flat datacenter network with nanosecond optical switching (SIGCOMM 2020)
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● Generalization of the design space: Topology can change over time
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Reconfigurable Datacenter Networks

● Generalization of the design space: Topology can change over time
● Static networks are a special case

Sirius [Sigcomm 2020]

ProjecToR [Sigcomm 2016]
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Reconfigurable Datacenter Networks
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Main focus of this paper.
Stay tuned!

Which topology has better throughput?
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eg., expander-based
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eg., RotorNet, Sirius
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Amir et al., Optimal oblivious reconfigurable networks, STOC 2022



20



21



22



23



24



25

Emerging Technologies - Optical Networks on the Rise
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Emerging Technologies - Optical Networks on the Rise

Tunable laser

Port 1
Port 2

Port n

Nanosecond scale 
reconfigurable

Future-proof 
bandwidth scaling
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Emerging Technologies - Optical Networks on the Rise

Tunable laser

Port 1
Port 2

Port n

There is a Catch: Bufferless & Circuit Switched
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Timeslot 1
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Timeslot 2
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Timeslot 3



45

Timeslot 4
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Timeslot 5
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Timeslot 6
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Timeslot 7
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Timeslot 8
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Periodic Graph



Input: Demand Matrix 𝓜

Available buffer size

Output: Periodic graph

Maximize: Throughput

Optimal Topology
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Throughput
Periodic Graph

Demand Matrix

 𝜽(𝓜)Ｘ

t
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Throughput

Highest scaling factor such 
that the scaled demand 𝜽

(𝓜) is feasible in the 
periodic graph

𝓜



Input: Periodic Graph𝒢 

              Demand Matrix 𝓜 

Objective: Maximize 𝜽(𝓜)

Output: 𝜽(𝓜) and a feasible flow*

*subject to conservation, demand and capacity constraints
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Throughput of the Periodic Graph



● The periodic graph has the same throughput as that of a static graph it 
emulates - Static Emulated Graph
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Theorem 1: Periodic Graph   Static Graph
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𝜽

Periodic Graph

Static Emulated Graph
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Input: Periodic Graph𝒢  Static Emulated Graph 𝗚

              Demand Matrix 𝓜 

Objective: Maximize 𝜽(𝓜)

Output: 𝜽(𝓜) and a feasible flow*

*subject to conservation, demand and capacity constraints
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Throughput of the Periodic Graph
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● Throughput is a function of Average Route Length
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Capacity
Demand x ARL

𝜽

Periodic Graph

Static Emulated Graph



72



Input: Periodic Graph𝒢

              Demand Matrix 𝓜

Throughput 𝜽 and a feasible flow ℱ

Output: Minimum worst-case delay

Delay
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● Delay bound is a function of:
○ Degree d of the emulated graph
○ Duration of the period 𝚪 ᐧ 𝚫
○ Throughput 𝜽
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Theorem 3: Delay
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Input: Periodic Graph𝒢

              Demand Matrix 𝓜

Throughput 𝜽 and a feasible flow ℱ 

Output: Minimum required buffer to achieve throughput 𝜽

Buffer Requirements

80



● The required buffer is at least the throughput delay product
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● The required buffer is at least the throughput delay product
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Buffer > Bandwidth x Delay

Theorem 4: Buffer Requirements
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● Maximize Throughput
● Minimize Latency
● Minimize Buffer Requirements

Goals



Input: Periodic Graph𝒢

              Demand Matrix 𝓜

Available buffer size B at each node

Output: Degree d of the emulated graph                 Periodic graph

Maximize: Throughput 𝜽

Optimal Topology with Buffer Constraints
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Output: d = B ⁄ (c ·𝚫)
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d-regular directed deBruijn graph

Decomposition to d matchings

Periodic graph

Optimal Topology with Buffer Constraints
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Output: d = B ⁄ (c ·𝚫)

If the reconfiguration technology (𝚫) remains same:

● Buffer sizes (B) must keep up with the increase in capacity (c)

If Buffer sizes (B) do not keep up: 

● Increase in capacity (c) must be accompanied by decrease in reconfiguration 
times (𝚫)

● If not, reducing the degree (d) of the emulated graph is inevitable to optimize 
throughput → eventually reaching the case of static topologies.

Optimal Topology Implications and Future Outlook
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Static DCNs (uni-regular)

Low throughput but low delay and buffer requirements 
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Existing RDCN designs (Emulating a complete graph)

High throughput but high delay and buffer requirements 
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Near-optimal throughput within the available buffer

Static DCN: Low Throughput Existing RDCN: High Delay and buffer 
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