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Brief context of electrical systems

5

Current

Voltage

Power = Voltage x Current



Analogy to networked systems
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Analogy to networked systems
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Voltage = BDP + queue length
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Analogy to networked systems
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Power?
Upnext… stay tuned!

Current = Rate

Voltage = BDP + queue length



PowerTCP in a Nutshell

● Power-based congestion control
● Quickly reacts to congestion without losing throughput
● Rapidly converges within 1 RTT
● Fair and asymptotically stable
● Reduces FCTs for short flows by up to 90%
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How do we measure Power?
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The debate over congestion signals

Microsoft says ECN is better [dctcp]

Google says delay is simple and effective [Timely, Swift]

Alibaba says INT is accurate [HPCC]

ECN, Delay or INT are essential
What matters more: what we do with it
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The debate over feedback signals
A debate over how to use the feedback
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Rare glimpse of Google datacenter
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Rare glimpse of Google datacenter
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Fear of the buffer

Buffer per unit capacity 
(KB/Gbps) 
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DC workloads and short flows
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Majority traffic volume is from long flows

Majority Flows are short

DC workloads and short flows
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DC workloads and short flows

I have a phobia that throughput is always low

I have a constant fear that delay is always high



Not just queueing but quickly utilizing available bandwidth is important too

eg., Emerging Reconfigurable Datacenter Networks (RDCNs)
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Emerging technologies and challenges
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Fine-grained 
congestion control 
is important for 
datacenter performance



Timeline of congestion control in datacenters

- Reno, Cubic
- DCTCP, DCQCN
- Timely
- HPCC
- Swift
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Timeline of congestion control in datacenters

- Voltage-based (BDP + Queue Length)
- ECN/Loss (eg., DCTCP)
- RTT based (eg., Swift)
- Inflight based (eg., HPCC)

- Current-based (Total transmission rate)
- RTT-gradient based (Eg., Timely)
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Reaction to queue length or RTT

Voltage-based
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Reaction to queue length or RTT

Voltage-based

Loss/ECN
eg., DCTCP
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Reaction to queue length or RTT

Voltage-based

Loss/ECN
eg., DCTCP

Delay
eg., Swift
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Loss/ECN
eg., DCTCP

Delay
eg., Swift

Inflight
eg., HPCC

Voltage-based
Reaction to queue length or RTT
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Reaction to queue length or RTT
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Problems of existing approaches

Fundamentally limited to a single dimension
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Problems of existing approaches
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Problems of existing approaches
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Problems of existing approaches
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Problems of existing approaches

35

25 Packets

Increasing at 8  x BW
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Problems of existing approaches
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25 Packets

Increasing at 8x BW

BW

25 Packets

Draining at max rate

BW



Problems of existing approaches
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Increasing at 8x BW

BW
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Problems of existing approaches

Fundamentally limited to a single dimension
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Summary of Our Analysis

- Voltage-based
- Can in-principle achieve near-zero queue equilibrium
- Slow reaction

- Current-based
- Unstable with no equilibrium
- Fast Reaction
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DCTCP Swift HPCC

Timely

Reaction to queue length or RTT
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Timely

DCTCP Swift HPCC

Better inflight control
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???

DCTCP Swift HPCC
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The notion of power

   Power = Voltage x Current
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BDP+queue bytes Total rate

Voltage CurrentPower



The notion of power
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Enqueue rate = queue-gradient + Dequeue rate

Sending rate = Window per RTT

RTT = queueing delay + base RTT



The notion of power
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Voltage Current



The notion of power

A function of both queue length and variations
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The notion of power

A function of both queue length and variations

- Detects increased queue lengths
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The notion of power

A function of both queue length and variations

- Detects increased queue lengths
- Detects congestion onset and intensity
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The notion of power

A function of both queue length and variations

- Detects increased queue lengths
- Detects congestion onset and intensity
- Detects rapid drop in queue lengths
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Power-based CC

DCTCP Swift HPCC
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Power-based CC
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PowerTCP control law
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New window size



PowerTCP control law
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Old window size



PowerTCP control law
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MIMD based on Power
(Multiplicative increase - multiplicative decrease)



PowerTCP control law

55

Additive increase



PowerTCP control law
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Exponential Weighted Moving Average (EWMA)



PowerTCP feedback

Power is measured via Inband Network Telemetry (INT)

- Queue lengths
- Timestamps
- Tx bytes
- Bandwidth
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PowerTCP without switch support

- Power can be measured via delay signal
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PowerTCP without switch support

- Power can be measured via delay signal
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Voltage CurrentPower

RTT RTT gradient



Evaluation
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Evaluation - Incast
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Evaluation - Incast
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Delay-PowerTCP



Evaluation - Incast
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TIMELY



Evaluation - Incast
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HPCC



Evaluation - Incast
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HOMA



Evaluation - Fairness & Stability
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Evaluation - Fairness & Stability
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Evaluation - Fairness & Stability
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HOMA

Delay-PowerTCP



Evaluation - Fairness & Stability
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TIMELY

HOMA

Delay-PowerTCP



Evaluation - Workload
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Evaluation - Workload
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Long flowsShort flows



Evaluation - Reconfigurable Networks
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High-bandwidth 
Circuit



Evaluation - Reconfigurable Networks
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High-bandwidth 
Circuit



Evaluation - Reconfigurable Networks
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High-bandwidth 
Circuit



Conclusion

- Existing CC are fundamentally limited to a single dimension
- Power is an interesting and provably good measure for CC
- PowerTCP: a novel control law based on Power
- Improves FCTs for short flows and even for long flows
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Thank you
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